1
|
Binda KH, Landau AM, Chacur M, Brooks DJ, Real CC. Treadmill exercise modulates nigral and hippocampal cannabinoid receptor type 1 in the 6-OHDA model of Parkinson's disease. Brain Res 2023; 1814:148436. [PMID: 37268248 DOI: 10.1016/j.brainres.2023.148436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
Physical exercise benefits Parkinson's disease (PD) patients but the mechanism is unclear. Cannabinoid receptor type 1 (CB1R) is known to be reduced in PD patients and animal models. We test the hypothesis that binding of the CB1R inverse agonist, [3H]SR141716A, is normalized by treadmill exercise in the toxin-induced 6-hydroxydopamine (6-OHDA) model of PD. Male rats had unilateral striatal injections of 6-OHDA or saline. After 15 days, half were submitted to treadmill exercise and half remained sedentary. [3H]SR141716A autoradiography was performed in postmortem tissue from striatum, substantia nigra (SN) and hippocampus. There was a 41% decrease of [3H]SR141716A specific binding in the ipsilateral SN of 6-OHDA-injected sedentary animals which was attenuated to 15% by exercise, when compared to saline-injected animals. No striatal differences were observed. A 30% bilateral hippocampal increase was observed in both healthy and 6-OHDA exercised groups. In addition, a positive correlation between nigral [3H]SR141716A binding and nociceptive threshold was observed in PD-exercised animals (p = 0.0008), suggesting a beneficial effect of exercise in the pain associated with the model. Chronic exercise can reduce the detrimental effects of PD on nigral [3H]SR141716A binding, similar to the reported reduction after dopamine replacement therapy, so should be considered as an adjunct therapy for PD.
Collapse
Affiliation(s)
- Karina Henrique Binda
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University and Hospital, Aarhus, Denmark.
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University and Hospital, Aarhus, Denmark.
| | - Marucia Chacur
- Laboratory of Functional Neuroanatomy of Pain, Department of Anatomy, Universidade de São Paulo, São Paulo, São Paulo, Brazil.
| | - David J Brooks
- Department of Nuclear Medicine and PET Center, Aarhus University and Hospital, Aarhus, Denmark; Institute of Translational and Clinical Research, University of Newcastle upon Tyne, United Kingdom.
| | - Caroline Cristiano Real
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University and Hospital, Aarhus, Denmark.
| |
Collapse
|
2
|
Fernández-Moncada I, Eraso-Pichot A, Tor TD, Fortunato-Marsol B, Marsicano G. An enquiry to the role of CB1 receptors in neurodegeneration. Neurobiol Dis 2023:106235. [PMID: 37481040 DOI: 10.1016/j.nbd.2023.106235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023] Open
Abstract
Neurodegenerative disorders are debilitating conditions that impair patient quality of life and that represent heavy social-economic burdens to society. Whereas the root of some of these brain illnesses lies in autosomal inheritance, the origin of most of these neuropathologies is scantly understood. Similarly, the cellular and molecular substrates explaining the progressive loss of brain functions remains to be fully described too. Indeed, the study of brain neurodegeneration has resulted in a complex picture, composed of a myriad of altered processes that include broken brain bioenergetics, widespread neuroinflammation and aberrant activity of signaling pathways. In this context, several lines of research have shown that the endocannabinoid system (ECS) and its main signaling hub, the type-1 cannabinoid (CB1) receptor are altered in diverse neurodegenerative disorders. However, some of these data are conflictive or poorly described. In this review, we summarize the findings about the alterations in ECS and CB1 receptors signaling in three representative brain illnesses, the Alzheimer's, Parkinson's and Huntington's diseases, and we discuss the relevance of these studies in understanding neurodegeneration development and progression, with a special focus on astrocyte function. Noteworthy, the analysis of ECS defects in neurodegeneration warrant much more studies, as our conceptual understanding of ECS function has evolved quickly in the last years, which now include glia cells and the subcellular-specific CB1 receptors signaling as critical players of brain functions.
Collapse
Affiliation(s)
| | - Abel Eraso-Pichot
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Tommaso Dalla Tor
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France; Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95124, Italy
| | | | - Giovanni Marsicano
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
3
|
Marini P, Cowie P, Ayar A, Bewick GS, Barrow J, Pertwee RG, MacKenzie A, Tucci P. M3 Receptor Pathway Stimulates Rapid Transcription of the CB1 Receptor Activation through Calcium Signalling and the CNR1 Gene Promoter. Int J Mol Sci 2023; 24:ijms24021308. [PMID: 36674826 PMCID: PMC9867084 DOI: 10.3390/ijms24021308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/17/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
In this study, we have investigated a possible mechanism that enables CB1/M3 receptor cross-talk, using SH-SY5Y cells as a model system. Our results show that M3 receptor activation initiates signaling that rapidly upregulates the CNR1 gene, resulting in a greatly potentiated CB1 receptor response to agonists. Calcium homeostasis plays an essential intermediary role in this functional CB1/M3 receptor cross-talk. We show that M3 receptor-triggered calcium release greatly increases CB1 receptor expression via both transcriptional and translational activity, by enhancing CNR1 promoter activity. The co-expression of M3 and CB1 receptors in brain areas such as the nucleus accumbens and amygdala support the hypothesis that the altered synaptic plasticity observed after exposure to cannabinoids involves cross-talk with the M3 receptor subtype. In this context, M3 receptors and their interaction with the cannabinoid system at the transcriptional level represent a potential pharmacogenomic target not only for the develop of new drugs for addressing addiction and tolerance. but also to understand the mechanisms underpinning response stratification to cannabinoids.
Collapse
Affiliation(s)
- Pietro Marini
- Institute of Education in Healthcare and Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Philip Cowie
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Ahmet Ayar
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Guy S. Bewick
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - John Barrow
- Institute of Education in Healthcare and Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Roger G. Pertwee
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Alasdair MacKenzie
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Correspondence:
| |
Collapse
|
4
|
Saumell-Esnaola M, Elejaga-Jimeno A, Echeazarra L, Borrega-Román L, Barrondo S, López de Jesús M, González-Burguera I, Gómez-Caballero A, Goicolea MA, Sallés J, García del Caño G. Design and validation of recombinant protein standards for quantitative Western blot analysis of cannabinoid CB1 receptor density in cell membranes: an alternative to radioligand binding methods. Microb Cell Fact 2022; 21:192. [PMID: 36109736 PMCID: PMC9479267 DOI: 10.1186/s12934-022-01914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background Replacement of radioligand binding assays with antibody-antigen interaction-based approaches for quantitative analysis of G protein-coupled receptor (GPCR) levels requires the use of purified protein standards containing the antigen. GPCRs in general and cannabinoid CB1 receptor in particular show a progressive tendency to aggregate and precipitate in aqueous solution outside of their biological context due to the low solubility that the hydrophobic nature imprinted by their seven transmembrane domains. This renders full-length recombinant GPCRs useless for analytical purposes, a problem that can be overcome by engineering soluble recombinant fragments of the receptor containing the antigen. Results Here we generated highly soluble and stable recombinant protein constructs GST-CB1414–472 and GST-CB1414-442 containing much of the human CB1 receptor C-terminal tail for use as standard and negative control, respectively, in quantitative Western blot analysis of CB1 receptor expression on crude synaptosomes of the adult rat brain cortex. To this end we used three different antibodies, all raised against a peptide comprising the C-terminal residues 443–473 of the mouse CB1 receptor that corresponds to residues 442–472 in the human homolog. Estimated values of CB1 receptor density obtained by quantitative Western blot were of the same order of magnitude but slightly higher than values obtained by the radioligand saturation binding assay. Conclusions Collectively, here we provide a suitable Western blot-based design as a simple, cost-effective and radioactivity-free alternative for the quantitative analysis of CB1 receptor expression, and potentially of any GPCR, in a variety of biological samples. The discrepancies between the results obtained by quantitative Western blot and radioligand saturation binding techniques are discussed in the context of their particular theoretical bases and methodological constraints. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01914-1.
Collapse
|
5
|
Patricio F, Morales Dávila E, Patricio-Martínez A, Arana Del Carmen N, Martínez I, Aguilera J, Perez-Aguilar JM, Limón ID. Intrapallidal injection of cannabidiol or a selective GPR55 antagonist decreases motor asymmetry and improves fine motor skills in hemiparkinsonian rats. Front Pharmacol 2022; 13:945836. [PMID: 36120297 PMCID: PMC9479130 DOI: 10.3389/fphar.2022.945836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
Cannabidiol (CBD) presents antiparkinsonian properties and neuromodulatory effects, possibly due to the pleiotropic activity caused at multiple molecular targets. Recently, the GPR55 receptor has emerged as a molecular target of CBD. Interestingly, GPR55 mRNA is expressed in the external globus pallidus (GPe) and striatum, hence, it has been suggested that its activity is linked to motor dysfunction in Parkinson’s disease (PD). The present study aimed to evaluate the effect of the intrapallidal injection of both CBD and a selective GPR55 antagonist (CID16020046) on motor asymmetry, fine motor skills, and GAD-67 expression in hemiparkinsonian rats. The hemiparkinsonian animal model applied involved the induction of a lesion in male Wistar rats via the infusion of the neurotoxin 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle via stereotaxic surgery. After a period of twenty days, a second surgical procedure was performed to implant a guide cannula into the GPe. Seven days later, lysophosphatidylinositol (LPI), CBD, or CID16020046 were injected once a day for three consecutive days (from the 28th to the 30th day post-lesion). Amphetamine-induced turning behavior was evaluated on the 14th and 30th days post-injury. The staircase test and fine motor skills were evaluated as follows: the rats were subject to a ten-day training period prior to the 6-OHDA injury; from the 15th to the 19th days post-lesion, the motor skills alterations were evaluated under basal conditions; and, from the 28th to the 30th day post-lesion, the pharmacological effects of the drugs administered were evaluated. The results obtained show that the administration of LPI or CBD generated lower levels of motor asymmetry in the turning behavior of hemiparkinsonian rats. It was also found that the injection of CBD or CID16020046, but not LPI, in the hemiparkinsonian rats generated significantly superior performance in the staircase test, in terms of the use of the forelimb contralateral to the 6-OHDA-induced lesion, when evaluated from the 28th to the 30th day post-lesion. Similar results were also observed for superior fine motor skills performance for pronation, grasp, and supination. Finally, the immunoreactivity levels were found to decrease for the GAD-67 enzyme in the striatum and the ipsilateral GPe of the rats injected with CBD and CID16020046, in contrast with those lesioned with 6-OHDA. The results obtained suggest that the inhibitory effects of CBD and CID16020046 on GPR55 in the GPe could be related to GABAergic overactivation in hemiparkinsonism, thus opening new perspectives to explain, at a cellular level, the reversal of the motor impairment observed in PD models.
Collapse
Affiliation(s)
- Felipe Patricio
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Eliud Morales Dávila
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Nayeli Arana Del Carmen
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Isabel Martínez
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - José Aguilera
- Departament de Bioquímica i de Biologia Molecular, Facultad de Medicina, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Ilhuicamina Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: Ilhuicamina Daniel Limón, ,
| |
Collapse
|
6
|
Soti M, Ranjbar H, Kohlmeier KA, Shabani M. Parkinson's disease related alterations in cannabinoid transmission. Brain Res Bull 2021; 178:82-96. [PMID: 34808322 DOI: 10.1016/j.brainresbull.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNc) by neurodegeneration. Recent findings in animal models of PD propose tonic inhibition of the remaining DA neurons through GABA release from reactive glial cells. Movement dysfunctions could be ameliorated by promotion of activity in dormant DA cells. The endocannabinoid system (ECS) is extensively present in basal ganglia (BG) and is known as an indirect modulator of DAergic neurotransmission, thus drugs designed to target this system have shown promising therapeutic potential in PD patients. Interestingly, down/up-regulation of cannabinoid receptors (CBRs) varies across the different stages of PD, suggesting that some of the motor/ non-motor deficits may be related to changes in CBRs. Determination of the profile of changes of these receptors across the different stages of PD as well as their neural distribution within the BG could improve understanding of PD and identify pathways important in disease pathobiology. In this review, we focus on temporal and spatial alterations of CBRs during PD in the BG. At present, as inconclusive, but suggestive results have been obtained, future investigations should be conducted to extend preclinical studies examining CBRs changes within each stage in controlled clinical trials in order to determine the potential of targeting CBRs in management of PD.
Collapse
Affiliation(s)
- Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
In vivo Bidirectional Modulation of Cannabinoid on the Activity of Globus Pallidus in Rats. Neuroscience 2021; 468:123-138. [PMID: 34129911 DOI: 10.1016/j.neuroscience.2021.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022]
Abstract
Endocannabinoids are bioactive substances which participate in central motor control. The globus pallidus (GP) is a major nucleus in the basal ganglia circuit, which plays an important function in movement regulation. Both cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 (CB2R) are expressed in the GP suggesting GP as a main action area of endocannabinoids. To investigate the direct electrophysiological and behavioral effects of cannabinoids in GP, in vivo single unit extracellular recordings and behavioral tests were performed in rats. Administration of WIN 55,212-2 exerted three neuronal response patterns from all sampled neurons of GP, including (1) increase of the firing rate; (2) decrease of the firing rate; (3) increase and then decrease of the firing rate. Selectively blocking CB1R by AM 251 decreased the firing rate and increased the firing rate. Selectively blocking CB2R by AM 630 did not change the firing rate significantly, which suggested that endocannabinoids modulated the spontaneous firing activity of pallidal neurons mainly via CB1R. Furthermore, co-application of AM 251, but not AM 630, blocked WIN 55,212-2-induced modulation of firing activity of pallidal neurons. Finally, both haloperidol-induced postural behavioral test and elevated body swing test (EBST) showed that unilateral microinjection of WIN 55,212-2 mainly induced contralateral-biased swing and deflection behaviors. Meanwhile, AM 251 produced opposite effect. The present in vivo study revealed that cannabinoids produced complicated electrophysiological and behavioral effects in the GP, which further demonstrated that the GP is a major functional region of endocannabinoid.
Collapse
|
8
|
Patricio F, Morales-Andrade AA, Patricio-Martínez A, Limón ID. Cannabidiol as a Therapeutic Target: Evidence of its Neuroprotective and Neuromodulatory Function in Parkinson's Disease. Front Pharmacol 2020; 11:595635. [PMID: 33384602 PMCID: PMC7770114 DOI: 10.3389/fphar.2020.595635] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
The phytocannabinoids of Cannabis sativa L. have, since ancient times, been proposed as a pharmacological alternative for treating various central nervous system (CNS) disorders. Interestingly, cannabinoid receptors (CBRs) are highly expressed in the basal ganglia (BG) circuit of both animals and humans. The BG are subcortical structures that regulate the initiation, execution, and orientation of movement. CBRs regulate dopaminergic transmission in the nigro-striatal pathway and, thus, the BG circuit also. The functioning of the BG is affected in pathologies related to movement disorders, especially those occurring in Parkinson’s disease (PD), which produces motor and non-motor symptoms that involving GABAergic, glutamatergic, and dopaminergic neural networks. To date, the most effective medication for PD is levodopa (l-DOPA); however, long-term levodopa treatment causes a type of long-term dyskinesias, l-DOPA-induced dyskinesias (LIDs). With neuromodulation offering a novel treatment strategy for PD patients, research has focused on the endocannabinoid system (ECS), as it participates in the physiological neuromodulation of the BG in order to control movement. CBRs have been shown to inhibit neurotransmitter release, while endocannabinoids (eCBs) play a key role in the synaptic regulation of the BG. In the past decade, cannabidiol (CBD), a non-psychotropic phytocannabinoid, has been shown to have compensatory effects both on the ECS and as a neuromodulator and neuroprotector in models such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and reserpine, as well as other PD models. Although the CBD-induced neuroprotection observed in animal models of PD has been attributed to the activation of the CB1 receptor, recent research conducted at a molecular level has proposed that CBD is capable of activating other receptors, such as CB2 and the TRPV-1 receptor, both of which are expressed in the dopaminergic neurons of the nigro-striatal pathway. These findings open new lines of scientific inquiry into the effects of CBD at the level of neural communication. Cannabidiol activates the PPARγ, GPR55, GPR3, GPR6, GPR12, and GPR18 receptors, causing a variety of biochemical, molecular, and behavioral effects due to the broad range of receptors it activates in the CNS. Given the low number of pharmacological treatment alternatives for PD currently available, the search for molecules with the therapeutic potential to improve neuronal communication is crucial. Therefore, the investigation of CBD and the mechanisms involved in its function is required in order to ascertain whether receptor activation could be a treatment alternative for both PD and LID.
Collapse
Affiliation(s)
- Felipe Patricio
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alan Axel Morales-Andrade
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Facultad De Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ilhuicamina Daniel Limón
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
9
|
Haspula D, Clark MA. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int J Mol Sci 2020; 21:E7693. [PMID: 33080916 PMCID: PMC7590033 DOI: 10.3390/ijms21207693] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task. An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases. This review focusses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Michelle A. Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
10
|
Chen XY, Xue Y, Chen H, Chen L. The globus pallidus as a target for neuropeptides and endocannabinoids participating in central activities. Peptides 2020; 124:170210. [PMID: 31778724 DOI: 10.1016/j.peptides.2019.170210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
The globus pallidus in the basal ganglia plays an important role in movement regulation. Neuropeptides and endocannabinoids are neuronal signalling molecules that influence the functions of the whole brain. Endocannabinoids, enkephalin, substance P, neurotensin, orexin, somatostatin and pituitary adenylate cyclase-activating polypeptides are richly concentrated in the globus pallidus. Neuropeptides and endocannabinoids exert excitatory or inhibitory effects in the globus pallidus mainly by modulating GABAergic, glutamatergic and dopaminergic neurotransmission, as well as many ionic mechanisms. Pallidal neuropeptides and endocannabinoids are associated with the pathophysiology of a number of neurological disorders, such as Parkinson's disease, Huntington's disease, schizophrenia, and depression. The levels of neuropeptides and endocannabinoids and their receptors in the globus pallidus change in neurological diseases. It has been demonstrated that spontaneous firing activity of globus pallidus neurons is closely related to the manifestations of Parkinson's disease. Therefore, the neuropeptides and endocannabinoids in the globus pallidus may function as potential targets for treatment in some neurological diseases. In this review, we highlight the morphology and function of neuropeptides and endocannabinoids in the globus pallidus and their involvement in neurological diseases.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Department of Pathology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China; Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hua Chen
- Department of Pathology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by a progressive loss of dopaminergic neurons from the nigrostriatal pathway, formation of Lewy bodies, and microgliosis. During the past decades multiple cellular pathways have been associated with PD pathology (i.e., oxidative stress, endosomal-lysosomal dysfunction, endoplasmic reticulum stress, and immune response), yet disease-modifying treatments are not available. We have recently used genetic data from familial and sporadic cases in an unbiased approach to build a molecular landscape for PD, revealing lipids as central players in this disease. Here we extensively review the current knowledge concerning the involvement of various subclasses of fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and lipoproteins in PD pathogenesis. Our review corroborates a central role for most lipid classes, but the available information is fragmented, not always reproducible, and sometimes differs by sex, age or PD etiology of the patients. This hinders drawing firm conclusions about causal or associative effects of dietary lipids or defects in specific steps of lipid metabolism in PD. Future technological advances in lipidomics and additional systematic studies on lipid species from PD patient material may improve this situation and lead to a better appreciation of the significance of lipids for this devastating disease.
Collapse
|
12
|
Mackovski N, Liao J, Weng R, Wei X, Wang R, Chen Z, Liu X, Yu Y, Meyer BJ, Xia Y, Deng C, Huang XF, Wang Q. Reversal effect of simvastatin on the decrease in cannabinoid receptor 1 density in 6-hydroxydopamine lesioned rat brains. Life Sci 2016; 155:123-32. [DOI: 10.1016/j.lfs.2016.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 04/25/2016] [Accepted: 05/01/2016] [Indexed: 01/07/2023]
|
13
|
Promising cannabinoid-based therapies for Parkinson's disease: motor symptoms to neuroprotection. Mol Neurodegener 2015; 10:17. [PMID: 25888232 PMCID: PMC4404240 DOI: 10.1186/s13024-015-0012-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/23/2015] [Indexed: 11/27/2022] Open
Abstract
Parkinson’s disease (PD) is a slow insidious neurological disorder characterized by a loss of dopaminergic neurons in the midbrain. Although several recent preclinical advances have proposed to treat PD, there is hardly any clinically proved new therapeutic for its cure. Increasing evidence suggests a prominent modulatory function of the cannabinoid signaling system in the basal ganglia. Hence, use of cannabinoids as a new therapeutic target has been recommended as a promising therapy for PD. The elements of the endocannabinoid system are highly expressed in the neural circuit of basal ganglia wherein they bidirectionally interact with dopaminergic, glutamatergic, and GABAergic signaling systems. As the cannabinoid signaling system undergoes a biphasic pattern of change during progression of PD, it explains the motor inhibition typically observed in patients with PD. Cannabinoid agonists such as WIN-55,212-2 have been demonstrated experimentally as neuroprotective agents in PD, with respect to their ability to suppress excitotoxicity, glial activation, and oxidative injury that causes degeneration of dopaminergic neurons. Additional benefits provided by cannabinoid related compounds including CE-178253, oleoylethanolamide, nabilone and HU-210 have been reported to possess efficacy against bradykinesia and levodopa-induced dyskinesia in PD. Despite promising preclinical studies for PD, use of cannabinoids has not been studied extensively at the clinical level. In this review, we reassess the existing evidence suggesting involvement of the endocannabinoid system in the cause, symptomatology, and treatment of PD. We will try to identify future threads of research that will help in the understanding of the potential therapeutic benefits of the cannabinoid system for treating PD.
Collapse
|
14
|
Muñoz-Arenas G, Paz-Bermúdez F, Báez-Cordero A, Caballero-Florán R, González-Hernández B, Florán B, Daniel Limón I. Cannabinoid CB1 receptors activation and coactivation with D2 receptors modulate GABAergic neurotransmission in the globus pallidus and increase motor asymmetry. Synapse 2014; 69:103-14. [DOI: 10.1002/syn.21796] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 11/29/2014] [Accepted: 12/03/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Guadalupe Muñoz-Arenas
- Laboratorio de Neurofarmacología; Facultad de Ciencias Químicas; and Posgrado en Ciencias Químicas; Benemérita Universidad Autónoma de Puebla; Puebla 72570 México
| | - Francisco Paz-Bermúdez
- Departamento de Fisiología; Biofísica y Neurociencias; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; México
| | - Ana Báez-Cordero
- Laboratorio de Neurofarmacología; Facultad de Ciencias Químicas; and Posgrado en Ciencias Químicas; Benemérita Universidad Autónoma de Puebla; Puebla 72570 México
| | - René Caballero-Florán
- Departamento de Fisiología; Biofísica y Neurociencias; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; México
| | | | - Benjamín Florán
- Departamento de Fisiología; Biofísica y Neurociencias; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; México
| | - I. Daniel Limón
- Laboratorio de Neurofarmacología; Facultad de Ciencias Químicas; and Posgrado en Ciencias Químicas; Benemérita Universidad Autónoma de Puebla; Puebla 72570 México
| |
Collapse
|
15
|
Wang Y, Zhang QJ, Wang HS, Wang T, Liu J. Genome-wide microarray analysis identifies a potential role for striatal retrograde endocannabinoid signaling in the pathogenesis of experimentall-DOPA-induced dyskinesia. Synapse 2014; 68:332-43. [DOI: 10.1002/syn.21740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Yong Wang
- Department of Physiology and Pathophysiology, School of Medicine; Xi'an Jiaotong University; Xi'an 710061 China
| | - Qiao Jun Zhang
- Department of Rehabilitation Medicine, The Second Hospital; Xi'an Jiaotong University; Xi'an 710004 China
| | - Hui Sheng Wang
- Department of Physiology and Pathophysiology, School of Medicine; Xi'an Jiaotong University; Xi'an 710061 China
| | - Tao Wang
- Department of Physiology and Pathophysiology, School of Medicine; Xi'an Jiaotong University; Xi'an 710061 China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Medicine; Xi'an Jiaotong University; Xi'an 710061 China
| |
Collapse
|