1
|
Ou X, Yang J, Yang L, Zeng H, Shao L. Histone acetylation regulated by histone deacetylases during spermatogenesis. Andrology 2025; 13:706-717. [PMID: 39132925 DOI: 10.1111/andr.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Physical, chemical, and biological factors in the environment constantly influence in vivo and in vitro biological processes, including diverse histone modifications involved in cancer and metabolism. However, the intricate mechanisms of acetylation regulation remain poorly elucidated. In mammalian spermatogenesis, acetylation plays a crucial role in repairing double-strand DNA breaks, regulating gene transcription, and modulating various signaling pathways. RESULTS This review summarizes the histone acetylation sites in the mouse testis and provides a comprehensive overview of how histone acetylation is involved in different stages of spermatogenesis under the regulation by histone deacetylases. The regulatory functions of various class histone deacetylases during spermatogenesis and the crossroad between histone acetylation and other histone modifications are highlighted. It is imperative to understand the mechanisms of histone acetylation regulated by histone deacetylases in spermatogenesis, which facilitates to prevent and treat infertility-related diseases.
Collapse
Affiliation(s)
- Xiangying Ou
- Department of Occupational Health and Toxicology, Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Juan Yang
- Department of Occupational Health and Toxicology, Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Linfeng Yang
- Department of Occupational Health and Toxicology, Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| |
Collapse
|
2
|
Zhuang S, Liu Z, Wu J, Yao Y, Li Z, Shen Y, Yu B, Wu D. Can O-GIcNAc Transferase (OGT) Complex Be Used as a Target for the Treatment of Hematological Malignancies? Pharmaceuticals (Basel) 2024; 17:664. [PMID: 38931332 PMCID: PMC11206344 DOI: 10.3390/ph17060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 06/28/2024] Open
Abstract
The circulatory system is a closed conduit system throughout the body and consists of two parts as follows: the cardiovascular system and the lymphatic system. Hematological malignancies usually grow and multiply in the circulatory system, directly or indirectly affecting its function. These malignancies include multiple myeloma, leukemia, and lymphoma. O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) regulates the function and stability of substrate proteins through O-GlcNAc modification. Abnormally expressed OGT is strongly associated with tumorigenesis, including hematological malignancies, colorectal cancer, liver cancer, breast cancer, and prostate cancer. In cells, OGT can assemble with a variety of proteins to form complexes to exercise related biological functions, such as OGT/HCF-1, OGT/TET, NSL, and then regulate glucose metabolism, gene transcription, cell proliferation, and other biological processes, thus affecting the development of hematological malignancies. This review summarizes the complexes involved in the assembly of OGT in cells and the role of related OGT complexes in hematological malignancies. Unraveling the complex network regulated by the OGT complex will facilitate a better understanding of hematologic malignancy development and progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Donglu Wu
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (S.Z.); (Z.L.); (J.W.); (Y.Y.); (Z.L.); (Y.S.); (B.Y.)
| |
Collapse
|
3
|
Sun W, Justice I, Green EM. Defining Biological and Biochemical Functions of Noncanonical SET Domain Proteins. J Mol Biol 2024; 436:168318. [PMID: 37863247 PMCID: PMC10957327 DOI: 10.1016/j.jmb.2023.168318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Within the SET domain superfamily of lysine methyltransferases, there is a well-conserved subfamily, frequently referred to as the Set3 SET domain subfamily, which contain noncanonical SET domains carrying divergent amino acid sequences. These proteins are implicated in diverse biological processes including stress responses, cell differentiation, and development, and their disruption is linked to diseases including cancer and neurodevelopmental disorders. Interestingly, biochemical and structural analysis indicates that they do not possess catalytic methyltransferase activity. At the molecular level, Set3 SET domain proteins appear to play critical roles in the regulation of gene expression, particularly repression and heterochromatin maintenance, and in some cases, via scaffolding other histone modifying activities at chromatin. Here, we explore the common and unique functions among Set3 SET domain subfamily proteins and analyze what is known about the specific contribution of the conserved SET domain to functional roles of these proteins, as well as propose areas of investigation to improve understanding of this important, noncanonical subfamily of proteins.
Collapse
Affiliation(s)
- Winny Sun
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Isabella Justice
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Erin M Green
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
4
|
Velmans C, O'Donnell-Luria AH, Argilli E, Tran Mau-Them F, Vitobello A, Chan MC, Fung JLF, Rech M, Abicht A, Aubert Mucca M, Carmichael J, Chassaing N, Clark R, Coubes C, Denommé-Pichon AS, de Dios JK, England E, Funalot B, Gerard M, Joseph M, Kennedy C, Kumps C, Willems M, van de Laar IMBH, Aarts-Tesselaar C, van Slegtenhorst M, Lehalle D, Leppig K, Lessmeier L, Pais LS, Paterson H, Ramanathan S, Rodan LH, Superti-Furga A, Chung BHY, Sherr E, Netzer C, Schaaf CP, Erger F. O'Donnell-Luria-Rodan syndrome: description of a second multinational cohort and refinement of the phenotypic spectrum. J Med Genet 2022; 59:697-705. [PMID: 34321323 DOI: 10.1136/jmedgenet-2020-107470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/02/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND O'Donnell-Luria-Rodan syndrome (ODLURO) is an autosomal-dominant neurodevelopmental disorder caused by pathogenic, mostly truncating variants in KMT2E. It was first described by O'Donnell-Luria et al in 2019 in a cohort of 38 patients. Clinical features encompass macrocephaly, mild intellectual disability (ID), autism spectrum disorder (ASD) susceptibility and seizure susceptibility. METHODS Affected individuals were ascertained at paediatric and genetic centres in various countries by diagnostic chromosome microarray or exome/genome sequencing. Patients were collected into a case cohort and were systematically phenotyped where possible. RESULTS We report 18 additional patients from 17 families with genetically confirmed ODLURO. We identified 15 different heterozygous likely pathogenic or pathogenic sequence variants (14 novel) and two partial microdeletions of KMT2E. We confirm and refine the phenotypic spectrum of the KMT2E-related neurodevelopmental disorder, especially concerning cognitive development, with rather mild ID and macrocephaly with subtle facial features in most patients. We observe a high prevalence of ASD in our cohort (41%), while seizures are present in only two patients. We extend the phenotypic spectrum by sleep disturbances. CONCLUSION Our study, bringing the total of known patients with ODLURO to more than 60 within 2 years of the first publication, suggests an unexpectedly high relative frequency of this syndrome worldwide. It seems likely that ODLURO, although just recently described, is among the more common single-gene aetiologies of neurodevelopmental delay and ASD. We present the second systematic case series of patients with ODLURO, further refining the mutational and phenotypic spectrum of this not-so-rare syndrome.
Collapse
Affiliation(s)
- Clara Velmans
- Institute of Human Genetics, University Hospital Cologne, Cologne, Nordrhein-Westfalen, Germany
| | - Anne H O'Donnell-Luria
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Emanuela Argilli
- Brain Development Research Program, Department of Neurology, University of California San Francisco Division of Hospital Medicine, San Francisco, California, USA
| | - Frederic Tran Mau-Them
- UFR Des Sciences de Santé, INSERM UMR1231 GAD Génétique des Anomalies du Développement, FHU-TRANSLAD, Université de Bourgogne, Dijon, Bourgogne, France.,Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Antonio Vitobello
- UFR Des Sciences de Santé, INSERM UMR1231 GAD Génétique des Anomalies du Développement, FHU-TRANSLAD, Université de Bourgogne, Dijon, Bourgogne, France.,Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Marcus Cy Chan
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Jasmine Lee-Fong Fung
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Megan Rech
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Marion Aubert Mucca
- Department of Medical Genetics, University Hospital Centre Toulouse, Toulouse, Midi-Pyrénées, France
| | - Jason Carmichael
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, California, USA
| | - Nicolas Chassaing
- Department of Medical Genetics, University Hospital Centre Toulouse, Toulouse, Midi-Pyrénées, France
| | - Robin Clark
- Pediatrics Specialty Clinics, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Christine Coubes
- Department of Medical Genetics, University Hospital Center Montpellier, Montpellier, Languedoc-Roussillon, France
| | - Anne-Sophie Denommé-Pichon
- UFR Des Sciences de Santé, INSERM UMR1231 GAD Génétique des Anomalies du Développement, FHU-TRANSLAD, Université de Bourgogne, Dijon, Bourgogne, France.,Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - John Karl de Dios
- Department of Medical Genetics, Dayton Children's Hospital, Dayton, Ohio, USA
| | - Eleina England
- Center for Mendelian Genomics and Medical and Population Genetics Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Benoit Funalot
- Department of Clinical Genetics, Hopital Henri Mondor, Creteil, Île-de-France, France
| | - Marion Gerard
- Service de Génétique, Centre Hospitalier Universitaire de Caen, Caen, Basse-Normandie, France
| | - Maries Joseph
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, California, USA
| | - Colleen Kennedy
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, California, USA
| | - Camille Kumps
- Division of Genetic Medicine, Lausanne University Hospital, Lausanne, VD, Switzerland
| | - Marjolaine Willems
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Groupe DI, Inserm U1298, Montpellier University, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Ingrid M B H van de Laar
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daphné Lehalle
- Department of Clinical Genetics, Hopital Henri Mondor, Creteil, Île-de-France, France
| | - Kathleen Leppig
- Genetic Services, Kaiser Permanente Washington, Seattle, Washington, USA
| | - Lennart Lessmeier
- Institute of Human Genetics, University Hospital Cologne, Cologne, Nordrhein-Westfalen, Germany
| | - Lynn S Pais
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Heather Paterson
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Subhadra Ramanathan
- Pediatrics Specialty Clinics, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Lance H Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital, Lausanne, VD, Switzerland
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Elliott Sherr
- Brain Development Research Program, Department of Neurology, University of California San Francisco Division of Hospital Medicine, San Francisco, California, USA
| | - Christian Netzer
- Institute of Human Genetics, University Hospital Cologne, Cologne, Nordrhein-Westfalen, Germany
| | - Christian P Schaaf
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Institute of Human Genetics, Heidelberg University, Heidelberg, Baden-Württemberg, Germany.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Florian Erger
- Institute of Human Genetics, University Hospital Cologne, Cologne, Nordrhein-Westfalen, Germany
| |
Collapse
|
5
|
Neuhaus D. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:62-105. [PMID: 36113918 PMCID: PMC7614390 DOI: 10.1016/j.pnmrs.2022.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/07/2023]
Abstract
Zinc fingers can be loosely defined as protein domains containing one or more tetrahedrally-co-ordinated zinc ions whose role is to stabilise the structure rather than to be involved in enzymatic chemistry; such zinc ions are often referred to as "structural zincs". Although structural zincs can occur in proteins of any size, they assume particular significance for very small protein domains, where they are often essential for maintaining a folded state. Such small structures, that sometimes have only marginal stability, can present particular difficulties in terms of sample preparation, handling and structure determination, and early on they gained a reputation for being resistant to crystallisation. As a result, NMR has played a more prominent role in structural studies of zinc finger proteins than it has for many other types of proteins. This review will present an overview of the particular issues that arise for structure determination of zinc fingers by NMR, and ways in which these may be addressed.
Collapse
Affiliation(s)
- David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
6
|
Shi X, Zhai Z, Chen Y, Li J, Nordenskiöld L. Recent Advances in Investigating Functional Dynamics of Chromatin. Front Genet 2022; 13:870640. [PMID: 35450211 PMCID: PMC9017861 DOI: 10.3389/fgene.2022.870640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Dynamics spanning the picosecond-minute time domain and the atomic-subcellular spatial window have been observed for chromatin in vitro and in vivo. The condensed organization of chromatin in eukaryotic cells prevents regulatory factors from accessing genomic DNA, which requires dynamic stabilization and destabilization of structure to initiate downstream DNA activities. Those processes are achieved through altering conformational and dynamic properties of nucleosomes and nucleosome–protein complexes, of which delineating the atomistic pictures is essential to understand the mechanisms of chromatin regulation. In this review, we summarize recent progress in determining chromatin dynamics and their modulations by a number of factors including post-translational modifications (PTMs), incorporation of histone variants, and binding of effector proteins. We focus on experimental observations obtained using high-resolution techniques, primarily including nuclear magnetic resonance (NMR) spectroscopy, Förster (or fluorescence) resonance energy transfer (FRET) microscopy, and molecular dynamics (MD) simulations, and discuss the elucidated dynamics in the context of functional response and relevance.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Ziwei Zhai
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Yinglu Chen
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Jindi Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
7
|
Zhang X, Zhang BW, Xiang L, Wu H, Sahiri Alexander SUPITA, Zhou P, Zi-Yu Dai M, Wang X, Xiong W, Zhang Y, Jin ZB, Deng LW. MLL5 is involved in retinal photoreceptor maturation through facilitating CRX-mediated photoreceptor gene transactivation. iScience 2022; 25:104058. [PMID: 35359806 PMCID: PMC8961232 DOI: 10.1016/j.isci.2022.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/11/2021] [Accepted: 03/07/2022] [Indexed: 11/06/2022] Open
Abstract
Histone methylation, particularly at the H3K4 position, is thought to contribute to the specification of photoreceptor cell fate; however, the mechanisms linking histone methylation with transcription factor transactivation and photoreceptor gene expression have not yet been determined. Here, we demonstrate that MLL5 is abundantly expressed in the mouse retina. Mll5 deficiency impaired electroretinogram responses, alongside attenuated expression of a number of retina genes. Mechanistic studies revealed that MLL5 interacts with the retina-specific transcription factor, CRX, contributing to its binding to photoreceptor-specific gene promoters. Moreover, depletion of MLL5 impairs H3K4 methylation and H3K79 methylation, which subsequently compromises CRX-CBP assembly and H3 acetylation on photoreceptor promoters. Our data support a scenario in which recognition of H3K4 methylation by MLL5 is required for photoreceptor-specific gene transcription through maintaining a permissive chromatin state and proper CRX-CBP recruitment at promoter sites. MLL5 is essential for the expression of critical photoreceptor genes MLL5 depletion reduces H3K4/K79 methylation at photoreceptor gene promoters MLL5 interacts with CRX via its CD4 domain Recognition of H3K4me2/3 by MLL5 is a prerequisite for CRX recruitment to chromatin
Collapse
|
8
|
Liu XY, Guo CH, Xi ZY, Xu XQ, Zhao QY, Li LS, Wang Y. Histone methylation in pancreatic cancer and its clinical implications. World J Gastroenterol 2021; 27:6004-6024. [PMID: 34629816 PMCID: PMC8476335 DOI: 10.3748/wjg.v27.i36.6004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive human cancer. Appropriate methods for the diagnosis and treatment of PC have not been found at the genetic level, thus making epigenetics a promising research path in studies of PC. Histone methylation is one of the most complicated types of epigenetic modifications and has proved crucial in the development of PC. Histone methylation is a reversible process regulated by readers, writers, and erasers. Some writers and erasers can be recognized as potential biomarkers and candidate therapeutic targets in PC because of their unusual expression in PC cells compared with normal pancreatic cells. Based on the impact that writers have on the development of PC, some inhibitors of writers have been developed. However, few inhibitors of erasers have been developed and put to clinical use. Meanwhile, there is not enough research on the reader domains. Therefore, the study of erasers and readers is still a promising area. This review focuses on the regulatory mechanism of histone methylation, and the diagnosis and chemotherapy of PC based on it. The future of epigenetic modification in PC research is also discussed.
Collapse
Affiliation(s)
- Xing-Yu Liu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Chuan-Hao Guo
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Zhi-Yuan Xi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Xin-Qi Xu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Qing-Yang Zhao
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Sha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Ying Wang
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
9
|
Quan Y, Cui Y, Wahafu W, Liu Y, Ping H, Zhang X. MLL5α activates AR/NDRG1 signaling to suppress prostate cancer progression. Am J Cancer Res 2020; 10:1608-1629. [PMID: 32509400 PMCID: PMC7269778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent malignancies in men. However, the molecular mechanism controlling the transformation of androgen-dependent PCa (ADPC) to castration-resistant PCa (CRPC) is largely unknown. Androgen receptor (AR) signaling has been reported to play a key role in this process; thus, searching for the novel AR co-activator is important for identifying the mechanism underlying PCa progression. In this study, we focused on the function of mixed lineage leukemia-5α (MLL5α), an epigenetic regulator that exhibits aberrant expression in PCa. MLL5α was the primary expressed form of MLL5 protein in PCa cells and it significantly suppressed proliferation, invasion, and migration in PCa cell lines. Upon stimulation with dihydrotestosterone (DHT), knockdown of MLL5α significantly suppressed N-myc downstream regulated gene 1 (NDRG1) and Kallikrein-related peptidase 3 (KLK3) expression. MLL5α directly bound with AR on the androgen response elements (AREs) and recruited H3K4me3 to the promoters of NDRG1 and KLK3. Downregulation of NDRG1 partially restored the cell invasion and migration suppressed by MLL5α. As evaluated by the proliferation of PCa cells, overexpression of MLL5α synergistically promoted sensitivity to enzalutamide (ENZ) treatment. In PCa patients, MLL5α expression was lower in the high Gleason score (GS) (GS > 7) group than in the low GS (GS < 7) group. In conclusion, suppression of AR/NDRG1 signaling via androgen deprivation therapy (ADT) may be a potential mechanism of CRPC progression. MLL5α significantly suppressed PCa progression by promoting AR/NDRG1 signaling, indicating that regulating MLL5α expression may be a potential treatment approach for patients with advanced PCa.
Collapse
Affiliation(s)
- Yongjun Quan
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing 100020, China
- Department of Urology, Beijing Tongren Hospital, Capital Medical UniversityBeijing 100730, China
| | - Yun Cui
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing 100020, China
| | - Wasilijiang Wahafu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing 100020, China
| | - Yuexin Liu
- Department of Urology, Beijing Tongren Hospital, Capital Medical UniversityBeijing 100730, China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical UniversityBeijing 100730, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing 100020, China
| |
Collapse
|
10
|
Jain K, Fraser CS, Marunde MR, Parker MM, Sagum C, Burg JM, Hall N, Popova IK, Rodriguez KL, Vaidya A, Krajewski K, Keogh MC, Bedford MT, Strahl BD. Characterization of the plant homeodomain (PHD) reader family for their histone tail interactions. Epigenetics Chromatin 2020; 13:3. [PMID: 31980037 PMCID: PMC6979384 DOI: 10.1186/s13072-020-0328-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/13/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Plant homeodomain (PHD) fingers are central "readers" of histone post-translational modifications (PTMs) with > 100 PHD finger-containing proteins encoded by the human genome. Many of the PHDs studied to date bind to unmodified or methylated states of histone H3 lysine 4 (H3K4). Additionally, many of these domains, and the proteins they are contained in, have crucial roles in the regulation of gene expression and cancer development. Despite this, the majority of PHD fingers have gone uncharacterized; thus, our understanding of how these domains contribute to chromatin biology remains incomplete. RESULTS We expressed and screened 123 of the annotated human PHD fingers for their histone binding preferences using reader domain microarrays. A subset (31) of these domains showed strong preference for the H3 N-terminal tail either unmodified or methylated at H3K4. These H3 readers were further characterized by histone peptide microarrays and/or AlphaScreen to comprehensively define their H3 preferences and PTM cross-talk. CONCLUSIONS The high-throughput approaches utilized in this study establish a compendium of binding information for the PHD reader family with regard to how they engage histone PTMs and uncover several novel reader domain-histone PTM interactions (i.e., PHRF1 and TRIM66). This study highlights the usefulness of high-throughput analyses of histone reader proteins as a means of understanding how chromatin engagement occurs biochemically.
Collapse
Affiliation(s)
- Kanishk Jain
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC, 27599, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Caroline S Fraser
- Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.,Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | - Madison M Parker
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC, 27599, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA
| | | | | | | | | | | | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA.
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA. .,Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
11
|
Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, Pallesen J, Agerbo E, Andreassen OA, Anney R, Awashti S, Belliveau R, Bettella F, Buxbaum JD, Bybjerg-Grauholm J, Bækvad-Hansen M, Cerrato F, Chambert K, Christensen JH, Churchhouse C, Dellenvall K, Demontis D, De Rubeis S, Devlin B, Djurovic S, Dumont AL, Goldstein JI, Hansen CS, Hauberg ME, Hollegaard MV, Hope S, Howrigan DP, Huang H, Hultman CM, Klei L, Maller J, Martin J, Martin AR, Moran JL, Nyegaard M, Nærland T, Palmer DS, Palotie A, Pedersen CB, Pedersen MG, dPoterba T, Poulsen JB, Pourcain BS, Qvist P, Rehnström K, Reichenberg A, Reichert J, Robinson EB, Roeder K, Roussos P, Saemundsen E, Sandin S, Satterstrom FK, Davey Smith G, Stefansson H, Steinberg S, Stevens CR, Sullivan PF, Turley P, Walters GB, Xu X, Stefansson K, Geschwind DH, Nordentoft M, Hougaard DM, Werge T, Mors O, Mortensen PB, Neale BM, Daly MJ, Børglum AD. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet 2019; 51:431-444. [PMID: 30804558 PMCID: PMC6454898 DOI: 10.1038/s41588-019-0344-8] [Citation(s) in RCA: 1427] [Impact Index Per Article: 237.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.
Collapse
Affiliation(s)
- Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany
| | - Thomas D Als
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | - Manuel Mattheisen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Raymond K Walters
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonatan Pallesen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | - Esben Agerbo
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Ole A Andreassen
- NORMENT-KG Jebsen Centre for Psychosis Research, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Richard Anney
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Swapnil Awashti
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany
| | - Rich Belliveau
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Francesco Bettella
- NORMENT-KG Jebsen Centre for Psychosis Research, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonas Bybjerg-Grauholm
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Marie Bækvad-Hansen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Felecia Cerrato
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kimberly Chambert
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jane H Christensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | - Claire Churchhouse
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Karin Dellenvall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Srdjan Djurovic
- NORMENT-KG Jebsen Centre for Psychosis Research, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ashley L Dumont
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jacqueline I Goldstein
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Christine S Hansen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Institute of Biological Psychiatry, MHC SctHans, Mental Health Services, Copenhagen, Denmark
| | - Mads Engel Hauberg
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | - Mads V Hollegaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Sigrun Hope
- NORMENT-KG Jebsen Centre for Psychosis Research, University of Oslo, Oslo, Norway
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
| | - Daniel P Howrigan
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julian Maller
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Genomics plc, Oxford, UK
- Vertex Pharmaceuticals, Abingdon, UK
| | - Joanna Martin
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jennifer L Moran
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mette Nyegaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | - Terje Nærland
- NORMENT-KG Jebsen Centre for Psychosis Research, University of Oslo, Oslo, Norway
- NevSom, Department of Rare Disorders and Disabilities, , Oslo University Hospital, Oslo, Norway
| | - Duncan S Palmer
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Aarno Palotie
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Carsten Bøcker Pedersen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Marianne Giørtz Pedersen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Timothy dPoterba
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jesper Buchhave Poulsen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Per Qvist
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | | | - Abraham Reichenberg
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer Reichert
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elise B Robinson
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kathryn Roeder
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| | | | - Sven Sandin
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - F Kyle Satterstrom
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | | | - Christine R Stevens
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick Turley
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - G Bragi Walters
- deCODE genetics/Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Xinyi Xu
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment and Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Mental Health Services in the Capital Region of Denmark, Mental Health Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Institute of Biological Psychiatry, MHC SctHans, Mental Health Services, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
12
|
SET domains and stress: uncovering new functions for yeast Set4. Curr Genet 2018; 65:643-648. [PMID: 30523388 DOI: 10.1007/s00294-018-0917-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 12/23/2022]
Abstract
Chromatin dynamics are central to the regulation of gene expression and genome stability, particularly in the presence of environmental signals or stresses that prompt rapid reprogramming of the genome to promote survival or differentiation. While numerous chromatin regulators have been implicated in modulating cellular responses to stress, gaps in our mechanistic understanding of chromatin-based changes during stress suggest that additional proteins are likely critical to these responses and the molecular details underlying their activities are unclear in many cases. We recently identified a role for the relatively uncharacterized SET domain protein Set4 in promoting cell survival during oxidative stress in Saccharomyces cerevisiae. Set4 is a member of the Set3 subfamily of SET domain proteins which are defined by the presence of a PHD finger and divergent SET domain sequences. Here, we integrate our new observations on the function of Set4 with known roles for other related family members, including yeast Set3, fly UpSET and mammalian proteins MLL5 and SETD5. We discuss outstanding questions regarding the molecular mechanisms by which these proteins control gene expression and their potential contributions to cellular responses to environmental stress.
Collapse
|
13
|
Klein BJ, Wang X, Cui G, Yuan C, Botuyan MV, Lin K, Lu Y, Wang X, Zhao Y, Bruns CJ, Mer G, Shi X, Kutateladze TG. PHF20 Readers Link Methylation of Histone H3K4 and p53 with H4K16 Acetylation. Cell Rep 2017; 17:1158-1170. [PMID: 27760318 DOI: 10.1016/j.celrep.2016.09.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/05/2016] [Accepted: 09/16/2016] [Indexed: 01/06/2023] Open
Abstract
PHF20 is a core component of the lysine acetyltransferase complex MOF (male absent on the first)-NSL (non-specific lethal) that generates the major epigenetic mark H4K16ac and is necessary for transcriptional regulation and DNA repair. The role of PHF20 in the complex remains elusive. Here, we report on functional coupling between methylation readers in PHF20. We show that the plant homeodomain (PHD) finger of PHF20 recognizes dimethylated lysine 4 of histone H3 (H3K4me2) and represents an example of a native reader that selects for this modification. Biochemical and structural analyses help to explain this selectivity and the preference of Tudor2, another reader in PHF20, for dimethylated p53. Binding of the PHD finger to H3K4me2 is required for histone acetylation, accumulation of PHF20 at target genes, and transcriptional activation. Together, our findings establish a unique PHF20-mediated link between MOF histone acetyltransferase (HAT), p53, and H3K4me2, and suggest a model for rapid spreading of H4K16ac-enriched open chromatin.
Collapse
Affiliation(s)
- Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Xiaoyan Wang
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Faculty of Medicine, Ludwig Maximilian University of Munich, Munich 80336, Germany
| | - Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chao Yuan
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaolu Wang
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yue Zhao
- Department of General, Visceral and Tumor Surgery, University Clinic Cologne, Cologne 50931, Germany
| | - Christiane J Bruns
- Faculty of Medicine, Ludwig Maximilian University of Munich, Munich 80336, Germany; Department of General, Visceral and Tumor Surgery, University Clinic Cologne, Cologne 50931, Germany
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
14
|
Zhang X, Novera W, Zhang Y, Deng LW. MLL5 (KMT2E): structure, function, and clinical relevance. Cell Mol Life Sci 2017; 74:2333-2344. [PMID: 28188343 PMCID: PMC11107642 DOI: 10.1007/s00018-017-2470-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/13/2022]
Abstract
The mixed lineage leukemia (MLL) family of genes, also known as the lysine N-methyltransferase 2 (KMT2) family, are homologous to the evolutionarily conserved trithorax group that plays critical roles in the regulation of homeotic gene (HOX) expression and embryonic development. MLL5, assigned as KMT2E on the basis of its SET domain homology, was initially categorized under MLL (KMT2) family together with other six SET methyltransferase domain proteins (KMT2A-2D and 2F-2G). However, emerging evidence suggests that MLL5 is distinct from the other MLL (KMT2) family members, and the protein it encodes appears to lack intrinsic histone methyltransferase (HMT) activity towards histone substrates. MLL5 has been reported to play key roles in diverse biological processes, including cell cycle progression, genomic stability maintenance, adult hematopoiesis, and spermatogenesis. Recent studies of MLL5 variants and isoforms and putative MLL5 homologs in other species have enriched our understanding of the role of MLL5 in gene expression regulation, although the mechanism of action and physiological function of MLL5 remains poorly understood. In this review, we summarize recent research characterizing the structural features and biological roles of MLL5, and we highlight the potential implications of MLL5 dysfunction in human disease.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, MD 7 #04-06, Singapore, 117597, Singapore
| | - Wisna Novera
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, MD 7 #04-06, Singapore, 117597, Singapore
| | - Yan Zhang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, MD 7 #04-06, Singapore, 117597, Singapore.
- National University Cancer Institute, National University Health System, Singapore, Singapore.
| |
Collapse
|
15
|
McElroy KA, Jung YL, Zee BM, Wang CI, Park PJ, Kuroda MI. upSET, the Drosophila homologue of SET3, Is Required for Viability and the Proper Balance of Active and Repressive Chromatin Marks. G3 (BETHESDA, MD.) 2017; 7:625-635. [PMID: 28064188 PMCID: PMC5295607 DOI: 10.1534/g3.116.037788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022]
Abstract
Chromatin plays a critical role in faithful implementation of gene expression programs. Different post-translational modifications (PTMs) of histone proteins reflect the underlying state of gene activity, and many chromatin proteins write, erase, bind, or are repelled by, these histone marks. One such protein is UpSET, the Drosophila homolog of yeast Set3 and mammalian KMT2E (MLL5). Here, we show that UpSET is necessary for the proper balance between active and repressed states. Using CRISPR/Cas-9 editing, we generated S2 cells that are mutant for upSET We found that loss of UpSET is tolerated in S2 cells, but that heterochromatin is misregulated, as evidenced by a strong decrease in H3K9me2 levels assessed by bulk histone PTM quantification. To test whether this finding was consistent in the whole organism, we deleted the upSET coding sequence using CRISPR/Cas-9, which we found to be lethal in both sexes in flies. We were able to rescue this lethality using a tagged upSET transgene, and found that UpSET protein localizes to transcriptional start sites (TSS) of active genes throughout the genome. Misregulated heterochromatin is apparent by suppressed position effect variegation of the wm4 allele in heterozygous upSET-deleted flies. Using nascent-RNA sequencing in the upSET-mutant S2 lines, we show that this result applies to heterochromatin genes generally. Our findings support a critical role for UpSET in maintaining heterochromatin, perhaps by delimiting the active chromatin environment.
Collapse
Affiliation(s)
- Kyle A McElroy
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Youngsook L Jung
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115
| | - Barry M Zee
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Charlotte I Wang
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Peter J Park
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115
| | - Mitzi I Kuroda
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
16
|
Mas-y-Mas S, Barbon M, Teyssier C, Déméné H, Carvalho JE, Bird LE, Lebedev A, Fattori J, Schubert M, Dumas C, Bourguet W, le Maire A. The Human Mixed Lineage Leukemia 5 (MLL5), a Sequentially and Structurally Divergent SET Domain-Containing Protein with No Intrinsic Catalytic Activity. PLoS One 2016; 11:e0165139. [PMID: 27812132 PMCID: PMC5094779 DOI: 10.1371/journal.pone.0165139] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/06/2016] [Indexed: 12/03/2022] Open
Abstract
Mixed Lineage Leukemia 5 (MLL5) plays a key role in hematopoiesis, spermatogenesis and cell cycle progression. Chromatin binding is ensured by its plant homeodomain (PHD) through a direct interaction with the N-terminus of histone H3 (H3). In addition, MLL5 contains a Su(var)3-9, Enhancer of zeste, Trithorax (SET) domain, a protein module that usually displays histone lysine methyltransferase activity. We report here the crystal structure of the unliganded SET domain of human MLL5 at 2.1 Å resolution. Although it shows most of the canonical features of other SET domains, both the lack of key residues and the presence in the SET-I subdomain of an unusually large loop preclude the interaction of MLL5 SET with its cofactor and substrate. Accordingly, we show that MLL5 is devoid of any in vitro methyltransferase activity on full-length histones and histone H3 peptides. Hence, the three dimensional structure of MLL5 SET domain unveils the structural basis for its lack of methyltransferase activity and suggests a new regulatory mechanism.
Collapse
Affiliation(s)
- Sarah Mas-y-Mas
- Inserm U1054, Centre de Biochimie Structurale, Montpellier, France
- CNRS UMR5048, Centre de Biochimie Structurale, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Marta Barbon
- Inserm U1054, Centre de Biochimie Structurale, Montpellier, France
- CNRS UMR5048, Centre de Biochimie Structurale, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Catherine Teyssier
- Université de Montpellier, Montpellier, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | - Hélène Déméné
- Inserm U1054, Centre de Biochimie Structurale, Montpellier, France
- CNRS UMR5048, Centre de Biochimie Structurale, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - João E. Carvalho
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Louise E. Bird
- OPPF-UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, United Kingdom
| | - Andrey Lebedev
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, United Kingdom
| | - Juliana Fattori
- Centro Nacional de Pesquisa em Energia e Materiais, Laboratório Nacional de Biociências, Campinas, SP, Brazil
| | - Michael Schubert
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Christian Dumas
- Inserm U1054, Centre de Biochimie Structurale, Montpellier, France
- CNRS UMR5048, Centre de Biochimie Structurale, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - William Bourguet
- Inserm U1054, Centre de Biochimie Structurale, Montpellier, France
- CNRS UMR5048, Centre de Biochimie Structurale, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Albane le Maire
- Inserm U1054, Centre de Biochimie Structurale, Montpellier, France
- CNRS UMR5048, Centre de Biochimie Structurale, Montpellier, France
- Université de Montpellier, Montpellier, France
- Centro Nacional de Pesquisa em Energia e Materiais, Laboratório Nacional de Biociências, Campinas, SP, Brazil
- * E-mail:
| |
Collapse
|
17
|
Structural Insight into Recognition of Methylated Histone H3K4 by Set3. J Mol Biol 2016; 429:2066-2074. [PMID: 27697561 DOI: 10.1016/j.jmb.2016.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 09/17/2016] [Indexed: 01/25/2023]
Abstract
The plant homeodomain (PHD) finger of Set3 binds methylated lysine 4 of histone H3 in vitro and in vivo; however, precise selectivity of this domain has not been fully characterized. Here, we explore the determinants of methyllysine recognition by the PHD fingers of Set3 and its orthologs. We use X-ray crystallographic and spectroscopic approaches to show that the Set3 PHD finger binds di- and trimethylated states of H3K4 with comparable affinities and employs similar molecular mechanisms to form complexes with either mark. Composition of the methyllysine-binding pocket plays an essential role in determining the selectivity of the PHD fingers. The finding that the histone-binding activity is not conserved in the PHD finger of Set4 suggests different functions for the Set3 and Set4 paralogs.
Collapse
|
18
|
Zhao W, Liu J, Zhang X, Deng LW. MLL5 maintains spindle bipolarity by preventing aberrant cytosolic aggregation of PLK1. J Cell Biol 2016; 212:829-43. [PMID: 27002166 PMCID: PMC4810297 DOI: 10.1083/jcb.201501021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/12/2016] [Indexed: 11/25/2022] Open
Abstract
Faithful chromosome segregation with bipolar spindle formation is critical for the maintenance of genomic stability. Perturbation of this process often leads to severe mitotic failure, contributing to tumorigenesis. MLL5 has been demonstrated to play vital roles in cell cycle progression and the maintenance of genomic stability. Here, we identify a novel interaction between MLL5 and PLK1 in the cytosol that is crucial for sustaining spindle bipolarity during mitosis. Knockdown of MLL5 caused aberrant PLK1 aggregation that led to acentrosomal microtubule-organizing center (aMTOC) formation and subsequent spindle multipolarity. Further molecular studies revealed that the polo-box domain (PBD) of PLK1 interacted with a binding motif on MLL5 (Thr887-Ser888-Thr889), and this interaction was essential for spindle bipolarity. Overexpression of wild-type MLL5 was able to rescue PLK1 mislocalization and aMTOC formation in MLL5-KD cells, whereas MLL5 mutants incapable of interacting with the PBD failed to do so. We thus propose that MLL5 preserves spindle bipolarity through maintaining cytosolic PLK1 in a nonaggregated form.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Jie Liu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Xiaoming Zhang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| |
Collapse
|
19
|
Milne TA. MLL5 expression as a biomarker for DNA hypermethylation and sensitivity to epigenetic therapy. Haematologica 2015; 99:1405-7. [PMID: 25176980 DOI: 10.3324/haematol.2014.113357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Thomas A Milne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| |
Collapse
|
20
|
Katoh M. Functional proteomics of the epigenetic regulators ASXL1, ASXL2 and ASXL3: a convergence of proteomics and epigenetics for translational medicine. Expert Rev Proteomics 2015; 12:317-28. [PMID: 25835095 DOI: 10.1586/14789450.2015.1033409] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ASXL1, ASXL2 and ASXL3 are epigenetic scaffolds for BAP1, EZH2, NCOA1, nuclear receptors and WTIP. Here, functional proteomics of the ASXL family members are reviewed with emphasis on mutation spectra, the ASXM2 domain and the plant homeodomain (PHD) finger. Copy number gains of ASXL1 occur in chromosome 20q11.2 duplication syndrome and cervical cancer. Truncation mutations of ASXLs occur in autism, Bohring-Opitz and related syndromes, hematological malignancies and solid tumors, such as prostate cancer, breast cancer and high-grade glioma, which are gain- or loss-of-function mutations. The ASXM2 domain is a binding module for androgen receptor and estrogen receptor α, while the PHD finger is a ligand of WTIP LIM domains and a putative chromatin-binding module. Phylogenetic analyses of 139 human PHD fingers revealed that ASXL PHD fingers cluster with those of BPTF, DIDO, ING1, KDM5A (JARID1A), KMT2E (MLL5), PHF2, PHF8 and PHF23. The cell context-dependent epigenetic code of ASXLs should be deciphered to develop therapeutics for human diseases.
Collapse
Affiliation(s)
- Masaru Katoh
- Department of Omics Network, National Cancer Center - Japan, 5-1-1 Tsukiji Chuo Ward, Tokyo 104-0045, Japan
| |
Collapse
|
21
|
Yao Y, Des Marais TL, Costa M. Chromatin Memory in the Development of Human Cancers. GENE TECHNOLOGY 2014; 3:114. [PMID: 25606572 PMCID: PMC4297643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cancer is a complex disease with acquired genomic and epigenomic alterations that affect cell proliferation, viability and invasiveness. Almost all the epigenetic mechanisms including cytosine methylation and hydroxymethylation, chromatin remodeling and non-coding RNAs have been found associate with carcinogenesis and cancer specific expression profile. Altered histone modification as an epigenetic hallmark is frequently found in tumors. Understanding the epigenetic alterations induced by carcinogens or infectious agents may help us understand early epigenetic changes prior to the development of cancer. In this review, we focus on chromatin remodeling and the associated histone modifiers in the development of cancer; the application of these modifiers as a cancer therapy target in different clinical trial phases is also discussed.
Collapse
Affiliation(s)
- Yixin Yao
- Department of Environmental Medicine New York University, New York, USA,Corresponding author: Yixin Yao, Department of Environmental Medicine, New York University, New York, USA; Tel: 845-731-3517;
| | | | - Max Costa
- Department of Environmental Medicine New York University, New York, USA,Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, Tuxedo, New York, USA
| |
Collapse
|
22
|
Abstract
Histone modifiers like acetyltransferases, methyltransferases, and demethylases are critical regulators of most DNA-based nuclear processes, de facto controlling cell cycle progression and cell fate. These enzymes perform very precise post-translational modifications on specific histone residues, which in turn are recognized by different effector modules/proteins. We now have a better understanding of how these enzymes exhibit such specificity. As they often reside in multisubunit complexes, they use associated factors to target their substrates within chromatin structure and select specific histone mark-bearing nucleosomes. In this review, we cover the current understanding of how histone modifiers select their histone targets. We also explain how different experimental approaches can lead to conflicting results about the histone specificity and function of these enzymes.
Collapse
Affiliation(s)
- Marie-Eve Lalonde
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre de Recherche du CHU de Québec-Axe Oncologie, Hôtel-Dieu de Québec, Quebec City, Quebec G1R 2J6, Canada
| | - Xue Cheng
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre de Recherche du CHU de Québec-Axe Oncologie, Hôtel-Dieu de Québec, Quebec City, Quebec G1R 2J6, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre de Recherche du CHU de Québec-Axe Oncologie, Hôtel-Dieu de Québec, Quebec City, Quebec G1R 2J6, Canada
| |
Collapse
|
23
|
Ali M, Hom RA, Blakeslee W, Ikenouye L, Kutateladze TG. Diverse functions of PHD fingers of the MLL/KMT2 subfamily. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:366-71. [PMID: 24291127 DOI: 10.1016/j.bbamcr.2013.11.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 12/22/2022]
Abstract
Five members of the KMT2 family of lysine methyltransferases, originally named the mixed lineage leukemia (MLL1-5) proteins, regulate gene expression during embryogenesis and development. Each KMT2A-E contains a catalytic SET domain that methylates lysine 4 of histone H3, and one or several PHD fingers. Over the past few years a growing number of studies have uncovered diverse biological roles of the KMT2A-E PHD fingers, implicating them in binding to methylated histones and other nuclear proteins, and in mediating the E3 ligase activity and dimerization. Mutations in the PHD fingers or deletion of these modules are linked to human diseases including cancer and Kabuki syndrome. In this work, we summarize recently identified biological functions of the KMT2A-E PHD fingers, discuss mechanisms of their action, and examine preference of these domains for histone and non-histone ligands.
Collapse
Affiliation(s)
- Muzaffar Ali
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Robert A Hom
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Weston Blakeslee
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Larissa Ikenouye
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|