1
|
Inhibition of an active zymogen protease: the zymogen form of matriptase is regulated by HAI-1 and HAI-2. Biochem J 2020; 477:1779-1794. [PMID: 32338287 DOI: 10.1042/bcj20200182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/17/2022]
Abstract
The membrane-bound serine protease matriptase belongs to a rare subset of serine proteases that display significant activity in the zymogen form. Matriptase is critically involved in epithelial differentiation and homeostasis, and insufficient regulation of its proteolytic activity directly causes onset and development of malignant cancer. There is strong evidence that the zymogen activity of matriptase is sufficient for its biological function(s). Activated matriptase is inhibited by the two Kunitz-type inhibitor domain-containing hepatocyte growth factor activator inhibitors 1 (HAI-1) and HAI-2, however, it remains unknown whether the activity of the matriptase zymogen is regulated. Using both purified proteins and a cell-based assay, we show that the catalytic activity of the matriptase zymogen towards a peptide-based substrate as well as the natural protein substrates, pro-HGF and pro-prostasin, can be inhibited by HAI-1 and HAI-2. Inhibition of zymogen matriptase by HAI-1 and HAI-2 appears similar to inhibition of activated matriptase and occurs at comparable inhibitor concentrations. This indicates that HAI-1 and HAI-2 interact with the active sites of zymogen and activated matriptase in a similar manner. Our results suggest that HAI-1 and HAI-2 regulate matriptase zymogen activity and thus may act as regulators of matriptase trans(auto)-activation. Due to the main localisation of HAI-2 in the ER and HAI-1 in the secretory pathway and on the cell surface, this regulation likely occurs both in the secretory pathway and on the plasma membrane. Regulation of an active zymogen form of a protease is a novel finding.
Collapse
|
2
|
Holt-Danborg L, Vodopiutz J, Nonboe AW, De Laffolie J, Skovbjerg S, Wolters VM, Müller T, Hetzer B, Querfurt A, Zimmer KP, Jensen JK, Entenmann A, Heinz-Erian P, Vogel LK, Janecke AR. SPINT2 (HAI-2) missense variants identified in congenital sodium diarrhea/tufting enteropathy affect the ability of HAI-2 to inhibit prostasin but not matriptase. Hum Mol Genet 2020; 28:828-841. [PMID: 30445423 DOI: 10.1093/hmg/ddy394] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/13/2022] Open
Abstract
The syndromic form of congenital sodium diarrhea (SCSD) is caused by bi-allelic mutations in SPINT2, which encodes a Kunitz-type serine protease inhibitor (HAI-2). We report three novel SCSD patients, two novel SPINT2 mutations and review published cases. The most common findings in SCSD patients were choanal atresia (20/34) and keratitis of infantile onset (26/34). Characteristic epithelial tufts on intestinal histology were reported in 13/34 patients. Of 13 different SPINT2 variants identified in SCSD, 4 are missense variants and localize to the second Kunitz domain (KD2) of HAI-2. HAI-2 has been implicated in the regulation of the activities of several serine proteases including prostasin and matriptase, which are both important for epithelial barrier formation. No patient with bi-allelic stop mutations was identified, suggesting that at least one SPINT2 allele encoding a protein with residual HAI-2 function is necessary for survival. We show that the SCSD-associated HAI-2 variants p.Phe161Val, p.Tyr163Cys and p.Gly168Ser all display decreased ability to inhibit prostasin-catalyzed cleavage. However, the SCSD-associated HAI-2 variants inhibited matriptase as efficiently as the wild-type HAI-2. Homology modeling indicated limited solvent exposure of the mutated amino acids, suggesting that they induce misfolding of KD2. This suggests that prostasin needs to engage with an exosite motif located on KD2 in addition to the binding loop (Cys47/Arg48) located on the first Kunitz domain in order to inhibit prostasin. In conclusion our data suggests that SCSD is caused by lack of inhibition of prostasin or a similar protease in the secretory pathway or on the plasma membrane.
Collapse
Affiliation(s)
- Lasse Holt-Danborg
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Denmark
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna
| | - Annika W Nonboe
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Denmark
| | - Jan De Laffolie
- Abteilung Allgemeine Pädiatrie und Neonatologie, Zentrum für Kinderheilkunde und Jugendmedizin, Justus-Liebig-Universität, Gießen, Germany
| | - Signe Skovbjerg
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Denmark
| | - Victorien M Wolters
- Department of Pediatric Gastroenterology, WKZ/ UMC Utrecht, Utrecht, The Netherlands
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Benjamin Hetzer
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Querfurt
- Gesundheit Nord gGmbH, Klinikverbund Bremen, Klinik für Kinder und Jugendmedizin, Professor-Hess-Kinderklinik, Klinikum Bremen-Mitte, Bremen, Germany
| | - Klaus-Peter Zimmer
- Abteilung Allgemeine Pädiatrie und Neonatologie, Zentrum für Kinderheilkunde und Jugendmedizin, Justus-Liebig-Universität, Gießen, Germany
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andreas Entenmann
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Heinz-Erian
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Lotte K Vogel
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Denmark
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.,Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Abstract
Over the last two decades, a novel subgroup of serine proteases, the cell surface-anchored serine proteases, has emerged as an important component of the human degradome, and several members have garnered significant attention for their roles in cancer progression and metastasis. A large body of literature describes that cell surface-anchored serine proteases are deregulated in cancer and that they contribute to both tumor formation and metastasis through diverse molecular mechanisms. The loss of precise regulation of cell surface-anchored serine protease expression and/or catalytic activity may be contributing to the etiology of several cancer types. There is therefore a strong impetus to understand the events that lead to deregulation at the gene and protein levels, how these precipitate in various stages of tumorigenesis, and whether targeting of selected proteases can lead to novel cancer intervention strategies. This review summarizes current knowledge about cell surface-anchored serine proteases and their role in cancer based on biochemical characterization, cell culture-based studies, expression studies, and in vivo experiments. Efforts to develop inhibitors to target cell surface-anchored serine proteases in cancer therapy will also be summarized.
Collapse
|
4
|
Mirza AZ, Shamshad H. QSAR and Docking Studies on Piperidyl-cyclohexylurea Derivatives for Prediction of Selective and Potent Inhibitor of Matriptase. Curr Comput Aided Drug Des 2019; 15:167-181. [DOI: 10.2174/1573409914666180516162349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/03/2018] [Accepted: 05/11/2018] [Indexed: 11/22/2022]
Abstract
Background: QSAR models as PLS, GFA, and 3D were developed for a series of matriptase
inhibitors using 35 piperidyl-cyclohexylurea compounds. The training and test sets were divided into a
set of 28 and 8 compounds, respectively and the pki values of each compound were used in the analysis.
Methods:
Docking and alignment methodologies were used to develop models in 3D QSAR. The best
models among all were selected on the basis of regression statistics as r2, predictive r2 and Friedman
Lack of fit measure. Hydrogen donors and rotatable bonds were found to be positively correlated properties
for this target. The models were validated and used for the prediction of new compounds. Based
on the predictions of 3D-QSAR model, 17 new compounds were prepared and their activities were predicted
and compared with the active compound. Prediction of activities was performed for these 18
compounds using consensus results of all models. ADMET was also performed for the best-chosen
compound and compared with the known active.
Results and Conclusion:
The developed model was able to validate the obtained results and can be
successfully used to predict new potential and active compounds.
Collapse
Affiliation(s)
- Agha Zeeshan Mirza
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hina Shamshad
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, University of Karachi, Karachi-75270, Pakistan
| |
Collapse
|
5
|
Tamberg T, Hong Z, De Schepper D, Skovbjerg S, Dupont DM, Vitved L, Schar CR, Skjoedt K, Vogel LK, Jensen JK. Blocking the proteolytic activity of zymogen matriptase with antibody-based inhibitors. J Biol Chem 2018; 294:314-326. [PMID: 30409910 DOI: 10.1074/jbc.ra118.004126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/04/2018] [Indexed: 11/06/2022] Open
Abstract
Matriptase is a member of the type-II transmembrane serine protease (TTSP) family and plays a crucial role in the development and maintenance of epithelial tissues. As all chymotrypsin-like serine proteases, matriptase is synthesized as a zymogen (proform), requiring a cleavage event for full activity. Recent studies suggest that the zymogen of matriptase possesses enough catalytic activity to not only facilitate autoactivation, but also carry out its in vivo functions, which include activating several proteolytic and signaling cascades. Inhibition of zymogen matriptase may therefore be a highly effective approach for limiting matriptase activity. To this end, here we sought to characterize the catalytic activity of human zymogen matriptase and to develop mAb inhibitors against this enzyme form. Using a mutated variant of matriptase in which the serine protease domain is locked in the zymogen conformation, we confirmed that the zymogen form of human matriptase has catalytic activity. Moreover, the crystal structure of the catalytic domain of zymogen matriptase was solved to 2.5 Å resolution to characterize specific antibody-based matriptase inhibitors and to further structure-based studies. Finally, we describe the first antibody-based competitive inhibitors that target both the zymogen and activated forms of matriptase. We propose that these antibodies provide a more efficient way to regulate matriptase activity by targeting the protease both before and after its activation and may be of value for both research and preclinical applications.
Collapse
Affiliation(s)
- Trine Tamberg
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, Aarhus 8000, Denmark
| | - Zebin Hong
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, Aarhus 8000, Denmark
| | - Daphné De Schepper
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, Aarhus 8000, Denmark
| | - Signe Skovbjerg
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 1165, Denmark
| | - Daniel M Dupont
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, Aarhus 8000, Denmark
| | - Lars Vitved
- Department of Cancer and Inflammation, University of Southern Denmark, Odense 5230, Denmark
| | - Christine R Schar
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, Aarhus 8000, Denmark
| | - Karsten Skjoedt
- Department of Cancer and Inflammation, University of Southern Denmark, Odense 5230, Denmark
| | - Lotte K Vogel
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 1165, Denmark
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, Aarhus 8000, Denmark.
| |
Collapse
|
6
|
Mangold M, Gütschow M, Stirnberg M. A Short Peptide Inhibitor as an Activity-Based Probe for Matriptase-2. Pharmaceuticals (Basel) 2018; 11:ph11020049. [PMID: 29883401 PMCID: PMC6027297 DOI: 10.3390/ph11020049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/19/2022] Open
Abstract
Matriptase-2 is a type II transmembrane serine protease and a key regulator of systemic iron homeostasis. Since the activation mechanism and several features of the physiological role of matriptase-2 are not fully understood, there is strong need for analytical tools to perform tasks such as distinguishing active and inactive matriptase-2. For this purpose we present a short biotinylated peptide derivative with a chloromethyl ketone group, biotin-RQRR-CMK, as an activity-based probe for matriptase-2. Biotin-RQRR-CMK was kinetically characterized and exhibited a second-order rate constant of inactivation (kinac/Ki) of 10,800 M−1 s−1 towards the matriptase-2 activity in the supernatant of transfected human embryonic kidney (HEK) cells. Biotin-RQRR-CMK was able to label active matriptase-2, as visualized in western blot experiments. Pretreatment with aprotinin, an active-site directed inhibitor of serine proteases, protected matriptase-2 from the reaction with biotin-RQRR-CMK.
Collapse
Affiliation(s)
- Martin Mangold
- Pharmaceutical Chemistry I, Pharmaceutical Institute, University of Bonn, Bonn 53113, Germany.
| | - Michael Gütschow
- Pharmaceutical Chemistry I, Pharmaceutical Institute, University of Bonn, Bonn 53113, Germany.
| | - Marit Stirnberg
- Pharmaceutical Chemistry I, Pharmaceutical Institute, University of Bonn, Bonn 53113, Germany.
| |
Collapse
|
7
|
Mitchell AC, Alford SC, Hunter SA, Kannan D, Sperberg RAP, Chang CH, Cochran JR. Development of a Protease Biosensor Based on a Dimerization-Dependent Red Fluorescent Protein. ACS Chem Biol 2018; 13:66-72. [PMID: 29125730 PMCID: PMC6453536 DOI: 10.1021/acschembio.7b00715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dysregulated activity of the protease matriptase is a key contributor to aggressive tumor growth, cancer metastasis, and osteoarthritis. Methods for the detection and quantification of matriptase activity and inhibition would be useful tools. To address this need, we developed a matriptase-sensitive protein biosensor based on a dimerization-dependent red fluorescent protein (ddRFP) reporter system. In this platform, two adjoining protein domains, connected by a protease-labile linker, produce fluorescence when assembled and are nonfluorescent when the linker is cleaved by matriptase. A panel of ddRFP-based matriptase biosensor designs was created that contained different linker lengths between the protein domains. These constructs were characterized for linker-specific cleavage, matriptase activity, and matriptase selectivity; a biosensor containing a RSKLRVGGH linker (termed B4) was expressed at high yields and displayed both high catalytic efficiency and matriptase specificity. This biosensor detects matriptase inhibition by soluble and yeast cell surface expressed inhibitor domains with up to a 5-fold dynamic range and also detects matriptase activity expressed by human cancer cell lines. In addition to matriptase, we highlight a strategy that can be used to create effective biosensors for quantifying activity and inhibition of other proteases of interest.
Collapse
Affiliation(s)
- Aaron C. Mitchell
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Spencer C. Alford
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Sean A. Hunter
- Cancer Biology Program, Stanford University, Stanford, California 94305, United States
| | - Deepti Kannan
- Cancer Biology Program, Stanford University, Stanford, California 94305, United States
| | | | - Cheryl H. Chang
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Jennifer R. Cochran
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
- Cancer Biology Program, Stanford University, Stanford, California 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Tseng CC, Jia B, Barndt R, Gu Y, Chen CY, Tseng IC, Su SF, Wang JK, Johnson MD, Lin CY. Matriptase shedding is closely coupled with matriptase zymogen activation and requires de novo proteolytic cleavage likely involving its own activity. PLoS One 2017; 12:e0183507. [PMID: 28829816 PMCID: PMC5567652 DOI: 10.1371/journal.pone.0183507] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/04/2017] [Indexed: 11/18/2022] Open
Abstract
The type 2 transmembrane serine protease matriptase is involved in many pathophysiological processes probably via its enzymatic activity, which depends on the dynamic relationship between zymogen activation and protease inhibition. Matriptase shedding can prolong the life of enzymatically active matriptase and increase accessibility to substrates. We show here that matriptase shedding occurs via a de novo proteolytic cleavage at sites located between the SEA domain and the CUB domain. Point or combined mutations at the four positively charged amino acid residues in the region following the SEA domain allowed Arg-186 to be identified as the primary cleavage site responsible for matriptase shedding. Kinetic studies further demonstrate that matriptase shedding is temporally coupled with matriptase zymogen activation. The onset of matriptase shedding lags one minute behind matriptase zymogen activation. Studies with active site triad Ser-805 point mutated matriptase, which no longer undergoes zymogen activation or shedding, further suggests that matriptase shedding depends on matriptase zymogen activation, and that matriptase proteolytic activity may be involved in its own shedding. Our studies uncover an autonomous mechanism coupling matriptase zymogen activation, proteolytic activity, and shedding such that a proportion of newly generated active matriptase escapes HAI-1-mediated rapid inhibition by shedding into the extracellular milieu.
Collapse
Affiliation(s)
- Chun-Che Tseng
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington DC, United States of America
| | - Bailing Jia
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington DC, United States of America
- Department of Gastroenterology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Robert Barndt
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington DC, United States of America
| | - Yayun Gu
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington DC, United States of America
| | - Chien-Yu Chen
- Department of Biochemistry National Defense Medical Center, Taipei, Taiwan
- School of Medicine National Defense Medical Center, Taipei, Taiwan
| | - I-Chu Tseng
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington DC, United States of America
| | - Sheng-Fang Su
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington DC, United States of America
| | - Jehng-Kang Wang
- Department of Biochemistry National Defense Medical Center, Taipei, Taiwan
| | - Michael D. Johnson
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington DC, United States of America
- * E-mail: (CYL); (MDJ)
| | - Chen-Yong Lin
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington DC, United States of America
- * E-mail: (CYL); (MDJ)
| |
Collapse
|
9
|
Friis S, Tadeo D, Le-Gall SM, Jürgensen HJ, Sales KU, Camerer E, Bugge TH. Matriptase zymogen supports epithelial development, homeostasis and regeneration. BMC Biol 2017; 15:46. [PMID: 28571576 PMCID: PMC5452369 DOI: 10.1186/s12915-017-0384-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/05/2017] [Indexed: 12/31/2022] Open
Abstract
Background Matriptase is a membrane serine protease essential for epithelial development, homeostasis, and regeneration, as well as a central orchestrator of pathogenic pericellular signaling in the context of inflammatory and proliferative diseases. Matriptase is an unusual protease in that its zymogen displays measurable enzymatic activity. Results Here, we used gain and loss of function genetics to investigate the possible biological functions of zymogen matriptase. Unexpectedly, transgenic mice mis-expressing a zymogen-locked version of matriptase in the epidermis displayed pathologies previously reported for transgenic mice mis-expressing wildtype epidermal matriptase. Equally surprising, mice engineered to express only zymogen-locked endogenous matriptase, unlike matriptase null mice, were viable, developed epithelial barrier function, and regenerated the injured epithelium. Compatible with these observations, wildtype and zymogen-locked matriptase were equipotent activators of PAR-2 inflammatory signaling. Conclusion The study demonstrates that the matriptase zymogen is biologically active and is capable of executing developmental and homeostatic functions of the protease. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0384-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stine Friis
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.,Section for Molecular Disease Biology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Tadeo
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.,Georgetown University School of Medicine, Washington, DC, 20057, USA
| | - Sylvain M Le-Gall
- INSERM U970, Paris Cardiovascular Research Centre, Paris, France.,Université Sorbonne Paris Cité, Paris, France
| | - Henrik Jessen Jürgensen
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA
| | - Katiuchia Uzzun Sales
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.,Department of Cell and Molecular Biology, Ribierão Preto School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Paris, France.,Université Sorbonne Paris Cité, Paris, France
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Nonboe AW, Krigslund O, Soendergaard C, Skovbjerg S, Friis S, Andersen MN, Ellis V, Kawaguchi M, Kataoka H, Bugge TH, Vogel LK. HAI-2 stabilizes, inhibits and regulates SEA-cleavage-dependent secretory transport of matriptase. Traffic 2017; 18:378-391. [PMID: 28371047 DOI: 10.1111/tra.12482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 11/28/2022]
Abstract
It has recently been shown that hepatocyte growth factor activator inhibitor-2 (HAI-2) is able to suppress carcinogenesis induced by overexpression of matriptase, as well as cause regression of individual established tumors in a mouse model system. However, the role of HAI-2 is poorly understood. In this study, we describe 3 mutations in the binding loop of the HAI-2 Kunitz domain 1 (K42N, C47F and R48L) that cause a delay in the SEA domain cleavage of matriptase, leading to accumulation of non-SEA domain cleaved matriptase in the endoplasmic reticulum (ER). We suggest that, like other known SEA domains, the matriptase SEA domain auto-cleaves and reflects that correct oligomerization, maturation, and/or folding has been obtained. Our results suggest that the HAI-2 Kunitz domain 1 mutants influence the flux of matriptase to the plasma membrane by affecting the oligomerization, maturation and/or folding of matriptase, and as a result the SEA domain cleavage of matriptase. Two of the HAI-2 Kunitz domain 1 mutants investigated (C47F, R48L and C47F/R48L) also displayed a reduced ability to proteolytically silence matriptase. Hence, HAI-2 separately stabilizes matriptase, regulates the secretory transport, possibly via maturation/oligomerization and inhibits the proteolytic activity of matriptase in the ER, and possible throughout the secretory pathway.
Collapse
Affiliation(s)
- Annika W Nonboe
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen North, Denmark
| | - Oliver Krigslund
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen North, Denmark
| | - Christoffer Soendergaard
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen North, Denmark.,Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Signe Skovbjerg
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen North, Denmark
| | - Stine Friis
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen North, Denmark.,Department of Molecular Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen East, Denmark
| | - Martin N Andersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Vincent Ellis
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Lotte K Vogel
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen North, Denmark
| |
Collapse
|
11
|
Häußler D, Schulz-Fincke AC, Beckmann AM, Keils A, Gilberg E, Mangold M, Bajorath J, Stirnberg M, Steinmetzer T, Gütschow M. A Fluorescent-Labeled Phosphono Bisbenzguanidine As an Activity-Based Probe for Matriptase. Chemistry 2017; 23:5205-5209. [DOI: 10.1002/chem.201700319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/24/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Daniela Häußler
- Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | | | - Anna-Madeleine Beckmann
- Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Aline Keils
- Institute of Pharmaceutical Chemistry; Philipps University of Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Erik Gilberg
- Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry; University of Bonn; Dahlmannstr. 2 53113 Bonn Germany
| | - Martin Mangold
- Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry; University of Bonn; Dahlmannstr. 2 53113 Bonn Germany
| | - Marit Stirnberg
- Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry; Philipps University of Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| |
Collapse
|
12
|
Prostasin and matriptase (ST14) in placenta from preeclamptic and healthy pregnant women. J Hypertens 2016; 34:298-306. [DOI: 10.1097/hjh.0000000000000795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Kløverpris S, Mikkelsen JH, Pedersen JH, Jepsen MR, Laursen LS, Petersen SV, Oxvig C. Stanniocalcin-1 Potently Inhibits the Proteolytic Activity of the Metalloproteinase Pregnancy-associated Plasma Protein-A. J Biol Chem 2015. [PMID: 26195635 DOI: 10.1074/jbc.m115.650143] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stanniocalcin-1 (STC1) is a disulfide-bound homodimeric glycoprotein, first identified as a hypocalcemic hormone important for maintaining calcium homeostasis in teleost fish. STC1 was later found to be widely expressed in mammals, although it is not believed to function in systemic calcium regulation in these species. Several physiological functions of STC1 have been reported, although many molecular details are still lacking. We here demonstrate that STC1 is an inhibitor of the metzincin metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A), which modulates insulin-like growth factor (IGF) signaling through proteolytic cleavage of IGF-binding proteins (IGFBPs). STC1 potently (Ki = 68 pm) inhibits PAPP-A cleavage of IGFBP-4, and we show in a cell-based assay that STC1 effectively antagonizes PAPP-A-mediated type 1 IGF receptor (IGF1R) phosphorylation. It has recently been found that the homologous STC2 inhibits PAPP-A proteolytic activity, and that this depends on the formation of a covalent complex between the inhibitor and the proteinase, mediated by Cys-120 of STC2. We find that STC1 is unable to bind covalently to PAPP-A, in agreement with the absence of a corresponding cysteine residue. It rather binds to PAPP-A with high affinity (KD = 75 pm). We further demonstrate that both STC1 and STC2 show inhibitory activity toward PAPP-A2, but not selected serine proteinases and metalloproteinases. We therefore conclude that the STCs are proteinase inhibitors, probably restricted in specificity to the pappalysin family of metzincin metalloproteinases. Our data are the first to identify STC1 as a proteinase inhibitor, suggesting a previously unrecognized function of STC1 in the IGF system.
Collapse
Affiliation(s)
| | | | | | | | | | - Steen V Petersen
- the Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Claus Oxvig
- From the Department of Molecular Biology and Genetics and
| |
Collapse
|
14
|
Chu LL, Xu Y, Yang JR, Hu YA, Chang HH, Lai HY, Tseng CC, Wang HY, Johnson MD, Wang JK, Lin CY. Human cancer cells retain modest levels of enzymatically active matriptase only in extracellular milieu following induction of zymogen activation. PLoS One 2014; 9:e92244. [PMID: 24663123 PMCID: PMC3963879 DOI: 10.1371/journal.pone.0092244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/09/2014] [Indexed: 11/18/2022] Open
Abstract
The type 2 transmembrane serine protease matriptase is broadly expressed in human carcinomas and hematological cancers. The proteolytic activity of matriptase is a potential target of drugs and imaging probes. We assessed the fate of active matriptase following the induction of matriptase zymogen activation. Exposing eight human carcinoma cells to pH 6.0 buffer induced robust matriptase zymogen activation followed by rapid inhibition of the nascent active matriptase by hepatocyte growth factor activator inhibitor (HAI)-1. Consequently, no enzymatically active matriptase was detected in these cells. Some active matriptase is, however, rapidly shed to the extracellular milieu by these carcinoma cells. The lack of cell-associated active matriptase and the shedding of active matriptase were also observed in two hematological cancer lines. Matriptase shedding is correlated closely with the induction of matriptase activation, suggesting that matriptase activation and shedding are kinetically coupled. The coupling allows a proportion of active matriptase to survive HAI-1 inhibition by rapid shedding from cell surface. Our study suggests that cellular free, active matriptase is scarce and might not be an effective target for in vivo imaging and drug development.
Collapse
Affiliation(s)
- Li-Ling Chu
- Department of Pharmacy, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yuan Xu
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
| | - Jie-Ru Yang
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-An Hu
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsiang-Hua Chang
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hong-Yu Lai
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
| | - Chun-Che Tseng
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
- Department of Biology, Carleton College, Northfield, Minnesota, United States of America
| | - Hue-Yu Wang
- Department of Pharmacy, Chi-Mei Medical Center, Tainan, Taiwan
| | - Michael D. Johnson
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
| | - Jehng-Kang Wang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
- * E-mail: (C-YL); (J-KW)
| | - Chen-Yong Lin
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
- * E-mail: (C-YL); (J-KW)
| |
Collapse
|