1
|
Kannan P, Baskaran H, Juliana Selvaraj JB, Saeid A, Kiruba Nester JM. Mycotransformation of Commercial Grade Cypermethrin Dispersion by Aspergillus terreus PDB-B Strain Isolated from Lake Sediments of Kulamangalam, Madurai. Molecules 2024; 29:1446. [PMID: 38611726 PMCID: PMC11012587 DOI: 10.3390/molecules29071446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
A fungal isolate Aspergillus terreus PDB-B (accession number: MT774567.1), which could tolerate up to 500 mg/L of cypermethrin, was isolated from the lake sediments of Kulamangalam tropical lake, Madurai, and identified by internal transcribed spacer (ITS) sequencing followed by phylogenetic analysis. The biotransformation potential of the strain was compared with five other strains (A, J, UN2, M1 and SM108) as a consortium, which were tentatively identified as Aspergillus glaucus, Aspergillus niger, Aspergillus flavus, Aspergillus terreus, and Aspergillus flavus, respectively. Batch culture and soil microcosm studies were conducted to explore biotransformation using plate-based enzymatic screening and GC-MS. A mycotransformation pathway was predicted based on a comparative analysis of the transformation products (TPs) obtained. The cytotoxicity assay revealed that the presence of (3-methylphenyl) methanol and isopropyl ether could be relevant to the high rate of lethality.
Collapse
Affiliation(s)
- Priyadharshini Kannan
- Department of Microbiology, The American College, Madurai 625002, Tamil Nadu, India; (P.K.); (H.B.)
| | - Hidayah Baskaran
- Department of Microbiology, The American College, Madurai 625002, Tamil Nadu, India; (P.K.); (H.B.)
| | | | - Agnieszka Saeid
- Department of Chemical Engineering, Politechnika Wroclawska, 50-370 Wroclaw, Poland;
| | | |
Collapse
|
2
|
Sarnaik AP, Shinde S, Mhatre A, Jansen A, Jha AK, McKeown H, Davis R, Varman AM. Unravelling the hidden power of esterases for biomanufacturing of short-chain esters. Sci Rep 2023; 13:10766. [PMID: 37402758 DOI: 10.1038/s41598-023-37542-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
Microbial production of esters has recently garnered wide attention, but the current production metrics are low. Evidently, the ester precursors (organic acids and alcohols) can be accumulated at higher titers by microbes like Escherichia coli. Hence, we hypothesized that their 'direct esterification' using esterases will be efficient. We engineered esterases from various microorganisms into E. coli, along with overexpression of ethanol and lactate pathway genes. High cell density fermentation exhibited the strains possessing esterase-A (SSL76) and carbohydrate esterase (SSL74) as the potent candidates. Fed-batch fermentation at pH 7 resulted in 80 mg/L of ethyl acetate and 10 mg/L of ethyl lactate accumulation by SSL76. At pH 6, the total ester titer improved by 2.5-fold, with SSL76 producing 225 mg/L of ethyl acetate, and 18.2 mg/L of ethyl lactate, the highest reported titer in E. coli. To our knowledge, this is the first successful demonstration of short-chain ester production by engineering 'esterases' in E. coli.
Collapse
Affiliation(s)
- Aditya P Sarnaik
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Somnath Shinde
- Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, USA
| | - Apurv Mhatre
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Abigail Jansen
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Amit Kumar Jha
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
- Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, USA
| | - Haley McKeown
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Ryan Davis
- Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, USA.
| | - Arul M Varman
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
3
|
Gricajeva A, Kalėdienė L. Investigation of amino acids related to Staphylococcus saprophyticus AG1 EstAG1 carboxylesterase catalytic function revealed a new family of bacterial lipolytic enzymes. Int J Biol Macromol 2023; 235:123791. [PMID: 36828093 DOI: 10.1016/j.ijbiomac.2023.123791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Most of the lipolytic enzymes (carboxylesterases, EC 3.1.1.1 and triacylglycerol acylhydrolases, EC 3.1.1.3) originate from bacteria and form a large group of functionally important enzymes that are also well known for their use in multiple biotechnology sectors. Rapid and increasing amount of bacterial lipolytic enzymes being discovered and characterized led to a necessity to classify them. More than twenty years ago bacterial lipolytic enzymes were originally classified into eight families and six true lipase sub-families based on the differences in their amino acid sequences and biochemical properties. Later, this classification was comprehensively updated to 19 families with eight subfamilies, and more recently, employing deeper comparative analysis methods, classification expanded to 35 families and 11 subfamilies. Bacterial lipolytic enzymes that cannot be classified into currently existing families are still being discovered. This work provides site-directed mutagenesis and differential scanning fluorimetry based investigation of catalytic function-related amino acids of previously discovered and characterized EstAG1 carboxylesterase from Staphylococcus saprophyticus AG1. Experimental results obtained in this work revealed that EstAG1 carboxylesterase can be placed into a new family of bacterial lipolytic enzymes.
Collapse
Affiliation(s)
- Alisa Gricajeva
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Lilija Kalėdienė
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Tan C, Li P, Shang N. Novel perspective on the spoilage metabolism of refrigerated sturgeon fillets: Nonspecific spoilage dominant organisms play an important role. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Song J, Wang Z, Zhang S, Wang Y, Liang Y, Dai Q, Huo Z, Xu K. The Toxicity of Salicylhydroxamic Acid and Its Effect on the Sensitivity of Ustilaginoidea virens to Azoxystrobin and Pyraclostrobin. J Fungi (Basel) 2022; 8:jof8111231. [PMID: 36422052 PMCID: PMC9692728 DOI: 10.3390/jof8111231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Rice false smut (RFS) caused by Ustilaginoidea virens has been one of the most severe rice diseases. Fungicide-based chemical control is a significant measure to control RFS. In the sensitivity determination of quinone outside inhibitor (QoI) fungicide in vitro, salicylhydroxamic acid (SHAM) has been commonly added to artificial culture media in order to inhibit alternative oxidase of phytopathogenic fungi. However, some studies showed that artificial media should not include SHAM due to its toxicity. Whether SHAM should be added in the assay of U. virens sensitivity to QoI fungicide remains unknown. In this study, two appropriate media, potato sucrose agar (PSA) and minimal medium (MM), were selected to test SHAM toxicity and sensitivity of U. virens to azoxystrobin and pyraclostrobin. The mycelial growth and sensitivity to azoxystrobin and pyraclostrobin had no significant difference between on PSA and MM. SHAM could significantly inhibit mycelial growth, conidial germination, peroxidase (POD) and esterase activity of U. virens. Average effective concentration for inhibiting 50% (EC50) values of SHAM against mycelial growth of ten U. virens were 27.41 and 12.75 μg/mL on PSA and MM, respectively. The EC50 values of SHAM against conidial germination of isolates HWD and JS60 were 70.36 and 44.69 μg/mL, respectively. SHAM at 30 μg/mL significantly inhibited POD and esterase activity of isolates HWD and JS60, and even SHAM at 10 μg/mL significantly inhibited POD activity of isolate HWD. In addition, SHAM significantly reduced EC50 values and EC90 values of azoxystrobin and pyraclostrobin on both PSA and MM. Even in the presence of SHAM at 10 μg/mL, average EC50 values of ten U. virens isolates for azoxystrobin decreased 1.7-fold on PSA and 4.8-fold on MM, and for pyraclostrobin that decreased 2.8-fold on PSA and 4.8-fold on MM. Therefore, these results suggest that SHAM should not be included in artificial media in the assay of U. virens sensitivity to QoI fungicides.
Collapse
|
6
|
Rafeeq H, Hussain A, Shabbir S, Ali S, Bilal M, Sher F, Iqbal HMN. Esterases as emerging biocatalysts: Mechanistic insights, genomic and metagenomic, immobilization, and biotechnological applications. Biotechnol Appl Biochem 2022; 69:2176-2194. [PMID: 34699092 DOI: 10.1002/bab.2277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023]
Abstract
Esterase enzymes are a family of hydrolases that catalyze the breakdown and formation of ester bonds. Esterases have gained a prominent position in today's world's industrial enzymes market. Due to their unique biocatalytic attributes, esterases contribute to environmentally sustainable design approaches, including biomass degradation, food and feed industry, dairy, clothing, agrochemical (herbicides, insecticides), bioremediation, biosensor development, anticancer, antitumor, gene therapy, and diagnostic purposes. Esterases can be isolated by a diverse range of mammalian tissues, animals, and microorganisms. The isolation of extremophilic esterases increases the interest of researchers in the extraction and utilization of these enzymes at the industrial level. Genomic, metagenomic, and immobilization techniques have opened innovative ways to extract esterases and utilize them for a longer time to take advantage of their beneficial activities. The current study discusses the types of esterases, metagenomic studies for exploring new esterases, and their biomedical applications in different industrial sectors.
Collapse
Affiliation(s)
- Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Asim Hussain
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Sumaira Shabbir
- Department of Zoology, Wildlife, and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Sabir Ali
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
7
|
Characterization and purification of esterase from Cellulomonas fimi DB19 isolated from Zanthoxylum armatum with its possible role in diesel biodegradation. Arch Microbiol 2022; 204:580. [DOI: 10.1007/s00203-022-03210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
|
8
|
Noby N, Johnson RL, Tyzack JD, Embaby AM, Saeed H, Hussein A, Khattab SN, Rizkallah PJ, Jones DD. Structure-Guided Engineering of a Family IV Cold-Adapted Esterase Expands Its Substrate Range. Int J Mol Sci 2022; 23:4703. [PMID: 35563094 PMCID: PMC9100969 DOI: 10.3390/ijms23094703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cold active esterases have gained great interest in several industries. The recently determined structure of a family IV cold active esterase (EstN7) from Bacillus cohnii strain N1 was used to expand its substrate range and to probe its commercially valuable substrates. Database mining suggested that triacetin was a potential commercially valuable substrate for EstN7, which was subsequently proved experimentally with the final product being a single isomeric product, 1,2-glyceryl diacetate. Enzyme kinetics revealed that EstN7's activity is restricted to C2 and C4 substrates due to a plug at the end of the acyl binding pocket that blocks access to a buried water-filled cavity. Residues M187, N211 and W206 were identified as key plug forming residues. N211A stabilised EstN7 allowing incorporation of the destabilising M187A mutation. The M187A-N211A double mutant had the broadest substrate range, capable of hydrolysing a C8 substrate. W206A did not appear to have any significant effect on substrate range either alone or when combined with the double mutant. Thus, the enzyme kinetics and engineering together with a recently determined structure of EstN7 provide new insights into substrate specificity and the role of acyl binding pocket plug residues in determining family IV esterase stability and substrate range.
Collapse
Affiliation(s)
- Nehad Noby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (A.M.E.); (H.S.); (A.H.)
| | - Rachel L. Johnson
- Molecular Biosciences Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Jonathan D. Tyzack
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK;
| | - Amira M. Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (A.M.E.); (H.S.); (A.H.)
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (A.M.E.); (H.S.); (A.H.)
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (A.M.E.); (H.S.); (A.H.)
| | - Sherine N. Khattab
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt;
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | | | - D. Dafydd Jones
- Molecular Biosciences Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| |
Collapse
|
9
|
Pavarina GC, Lemos EGDM, Lima NSM, Pizauro JM. Characterization of a new bifunctional endo-1,4-β-xylanase/esterase found in the rumen metagenome. Sci Rep 2021; 11:10440. [PMID: 34001974 PMCID: PMC8128909 DOI: 10.1038/s41598-021-89916-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Metagenomic data mining of the Nellore cattle rumen microbiota identified a new bifunctional enzyme, endo-1,4-β-xylanase/esterase, which was subsequently overexpressed in E. coli BL21 (DE3). This enzyme was stable at pH intervals of 5 to 6.5 and temperatures between 30 and 45 °C, and under the test conditions, it had a Vmax of 30.959 ± 2.334 µmol/min/mg, Km of 3.6 ± 0.6 mM and kcat of 2.323 ± 175 s-1. Additionally, the results showed that the enzyme is tolerant to NaCl and organic solvents and therefore is suitable for industrial environments. Xylanases are widely applicable, and the synergistic activity of endo-1,4-β-xylanase/esterase in a single molecule will improve the degradation efficiency of heteroxylans via the creation of xylanase binding sites. Therefore, this new molecule has the potential for use in lignocellulosic biomass processing and as an animal feed food additive and could improve xylooligosaccharide production efficiency.
Collapse
Affiliation(s)
- Gabriella Cavazzini Pavarina
- Technology Department, School of Agricultural and Veterinarian Sciencess, Sao Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane S/N, km 5, Sao Paulo, Brazil.,Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinarian Sciences, Sao Paulo State University (Unesp), Jaboticabal, Sao Paulo, Brazil
| | - Eliana Gertrudes de Macedo Lemos
- Technology Department, School of Agricultural and Veterinarian Sciencess, Sao Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane S/N, km 5, Sao Paulo, Brazil.,Molecular Biology Laboratory, Bioenergy Research Institute (IPBEN), Jaboticabal, Sao Paulo, Brazil
| | - Natália Sarmanho Monteiro Lima
- Technology Department, School of Agricultural and Veterinarian Sciencess, Sao Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane S/N, km 5, Sao Paulo, Brazil.,Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinarian Sciences, Sao Paulo State University (Unesp), Jaboticabal, Sao Paulo, Brazil
| | - João Martins Pizauro
- Technology Department, School of Agricultural and Veterinarian Sciencess, Sao Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane S/N, km 5, Sao Paulo, Brazil.
| |
Collapse
|
10
|
Abstract
Enzyme-mediated esterification reactions can be a promising alternative to produce esters of commercial interest, replacing conventional chemical processes. The aim of this work was to verify the potential of an esterase for ester synthesis. For that, recombinant lipolytic enzyme EST5 was purified and presented higher activity at pH 7.5, 45 °C, with a Tm of 47 °C. Also, the enzyme remained at least 50% active at low temperatures and exhibited broad substrate specificity toward p-nitrophenol esters with highest activity for p-nitrophenyl valerate with a Kcat/Km of 1533 s−1 mM−1. This esterase exerted great properties that make it useful for industrial applications, since EST5 remained stable in the presence of up to 10% methanol and 20% dimethyl sulfoxide. Also, preliminary studies in esterification reactions for the synthesis of methyl butyrate led to a specific activity of 127.04 U·mg−1. The enzyme showed higher esterification activity compared to other literature results, including commercial enzymes such as LIP4 and CL of Candida rugosa assayed with butyric acid and propanol which showed esterification activity of 86.5 and 15.83 U·mg−1, respectively. In conclusion, EST5 has potential for synthesis of flavor esters, providing a concept for its application in biotechnological processes.
Collapse
|
11
|
Le LTHL, Yoo W, Jeon S, Lee C, Kim KK, Lee JH, Kim TD. Biodiesel and flavor compound production using a novel promiscuous cold-adapted SGNH-type lipase ( HaSGNH1) from the psychrophilic bacterium Halocynthiibacter arcticus. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:55. [PMID: 32190120 PMCID: PMC7074997 DOI: 10.1186/s13068-020-01696-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Biodiesel and flavor compound production using enzymatic transesterification by microbial lipases provides mild reaction conditions and low energy cost compared to the chemical process. SGNH-type lipases are very effective catalysts for enzymatic transesterification due to their high reaction rate, great stability, relatively small size for convenient genetic manipulations, and ease of immobilization. Hence, it is highly important to identify novel SGNH-type lipases with high catalytic efficiencies and good stabilities. RESULTS A promiscuous cold-adapted SGNH-type lipase (HaSGNH1) from Halocynthiibacter arcticus was catalytically characterized and functionally explored. HaSGNH1 displayed broad substrate specificity that included tert-butyl acetate, glucose pentaacetate, and p-nitrophenyl esters with excellent stability and high efficiency. Important amino acids (N83, M86, R87, F131, and I173F) around the substrate-binding pocket were shown to be responsible for catalytic activity, substrate specificity, and reaction kinetics. Moreover, immobilized HaSGNH1 was used to produce high yields of butyl and oleic esters. CONCLUSIONS This work provides a molecular understanding of substrate specificities, catalytic regulation, immobilization, and industrial applications of a promiscuous cold-adapted SGNH-type lipase (HaSGNH1) from H. arcticus. This is the first analysis on biodiesel and flavor synthesis using a cold-adapted halophilic SGNH-type lipase from a Halocynthiibacter species.
Collapse
Affiliation(s)
- Ly Thi Huong Luu Le
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, 04310 South Korea
| | - Wanki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, 04310 South Korea
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 440-746 South Korea
| | - Sangeun Jeon
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, 04310 South Korea
| | - Changwoo Lee
- Department of Polar Sciences, University of Science and Technology (UST), Incheon, 21990 South Korea
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon, 21990 South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 440-746 South Korea
| | - Jun Hyuck Lee
- Department of Polar Sciences, University of Science and Technology (UST), Incheon, 21990 South Korea
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon, 21990 South Korea
| | - T. Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, 04310 South Korea
| |
Collapse
|
12
|
Expression, Characterisation and Homology Modelling of a Novel Hormone-Sensitive Lipase (HSL)-Like Esterase from Glaciozyma antarctica. Catalysts 2020. [DOI: 10.3390/catal10010058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Microorganisms, especially those that survive in extremely cold places such as Antarctica, have gained research attention since they produce a unique feature of the protein, such as being able to withstand at extreme temperature, salinity, and pressure, that make them desired for biotechnological application. Here, we report the first hormone-sensitive lipase (HSL)-like esterase from a Glaciozyma species, a psychrophilic yeast designated as GlaEst12-like esterase. In this study, the putative lipolytic enzyme was cloned, expressed in E. coli, purified, and characterised for its biochemical properties. Protein sequences analysis showed that GlaEst12 shared about 30% sequence identity with chain A of the bacterial hormone-sensitive lipase of E40. It belongs to the H group since it has the conserved motifs of Histidine-Glycine-Glycine-Glycine (HGGG)and Glycine-Aspartate-Serine-Alanine-Glycine (GDSAG) at the amino acid sequences. The recombinant GlaEst12 was successfully purified via one-step Ni-Sepharose affinity chromatography. Interestingly, GlaEst12 showed unusual properties with other enzymes from psychrophilic origin since it showed an optimal temperature ranged between 50–60 °C and was stable at alkaline pH conditions. Unlike other HSL-like esterase, this esterase showed higher activity towards medium-chain ester substrates rather than shorter chain ester. The 3D structure of GlaEst12, predicted by homology modelling using Robetta software, showed a secondary structure composed of mainly α/β hydrolase fold, with the catalytic residues being found at Ser232, Glu341, and His371.
Collapse
|
13
|
Biochemical characterization of an esterase from Clostridium acetobutylicum with novel GYSMG pentapeptide motif at the catalytic domain. J Ind Microbiol Biotechnol 2019; 47:169-181. [PMID: 31807968 DOI: 10.1007/s10295-019-02253-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022]
Abstract
Gene CA_C0816 codes for a serine hydrolase protein from Clostridium acetobutylicum (ATCC 824) a member of hormone-sensitive lipase of lipolytic family IV. This gene was overexpressed in E. coli strain BL21and purified using Ni2+-NTA affinity chromatography. Size exclusion chromatography revealed that the protein is a dimer in solution. Optimum pH and temperature for recombinant Clostridium acetobutylicum esterase (Ca-Est) were found to be 7.0 and 60 °C, respectively. This enzyme exhibited high preference for p-nitrophenyl butyrate. KM and kcat/KM of the enzyme were 24.90 µM and 25.13 s-1 µM-1, respectively. Sequence analysis of Ca-Est predicts the presence of catalytic amino acids Ser 89, His 224, and Glu 196, presence of novel GYSMG conserved sequence (instead of GDSAG and GTSAG motif), and undescribed variation of HGSG motif. Site-directed mutagenesis confirmed that Ser 89 and His 224 play a major role in catalysis. This study reports that Ca-Est is hormone-sensitive lipase with novel GYSMG pentapeptide motif at a catalytic domain.
Collapse
|
14
|
Liang H, Li J, Luo C, Li J, Zhu FX. Effects of SHAM on the Sensitivity of Sclerotinia sclerotiorum and Botrytis cinerea to QoI Fungicides. PLANT DISEASE 2019; 103:1884-1888. [PMID: 31161931 DOI: 10.1094/pdis-12-18-2142-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is a common practice to add salicylhydroxamic acid (SHAM) into artificial medium in the in vitro sensitivity assay of fungal phytopathogens to the quinone outside inhibitor (QoI) fungicides. The rationale for adding SHAM is to inhibit fungal alternative oxidase, which is presumed to be inhibited by secondary metabolites of plants. Therefore, the ideal characteristics of SHAM should be almost nontoxic to phytopathogens and have no significant effect on control efficacy of fungicides. However, this study showed that the average effective concentration for 50% inhibition (EC50) of mycelial growth values of SHAM were 97.5 and 401.4 μg/ml for Sclerotinia sclerotiorum and Botrytis cinerea, respectively. EC50 values of the three QoI fungicides azoxystrobin, kresoxim-methyl, and trifloxystrobin in the presence of SHAM at 20 and 80 μg/ml for S. sclerotiorum and B. cinerea, respectively, declined by 52.7 to 78.1% compared with those without SHAM. For the dicarboximide fungicide dimethachlone, the average EC50 values in the presence of SHAM declined by 18.2% (P = 0.008) for S. sclerotiorum and 35.9% (P = 0.012) for B. cinerea. Pot experiments showed that SHAM increased control efficacy of the three QoI fungicides against the two pathogens by 43 to 83%. For dimethachlone, SHAM increased control efficacy by 134% for S. sclerotiorum and 86% for B. cinerea. Biochemical studies showed that SHAM significantly inhibited peroxidase activity (P = 0.024) of B. cinerea and esterase activity (P = 0.015) of S. sclerotiorum. The strong inhibitions of SHAM per se on mycelial growth of B. cinerea and S. sclerotiorum and significant influences on the sensitivity of the two pathogens to both the QoI fungicides and dimethachlone as well as inhibitions on peroxidase and esterase indicate that SHAM should not be added in the in vitro assay of sensitivity to the QoI fungicides.
Collapse
Affiliation(s)
- Hongjie Liang
- 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- 2Potato Research Institute, Gansu Academy of Agricultural Sciences, Gansu 730070, China
| | - Jinli Li
- 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoxi Luo
- 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhong Li
- 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fu-Xing Zhu
- 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Hernández-Sánchez B, Díaz-Godínez R, Luna-Sánchez S, Sánchez C. Producción de esterasas por microorganismos: importancia y aplicación industrial. ACTA ACUST UNITED AC 2019. [DOI: 10.29267/mxjb.2019.4.1.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Las enzimas esterasas son de gran importancia en el área biotecnológica debido a las reacciones de interesterificación, transesterificación y esterificación que llevan a cabo. Las esterasas microbianas pueden ser secretadas por hongos filamentosos, levaduras o bacterias. En base a las características de cada enzima, éstas se pueden emplear en las industrias del vino y de lácteos, en la degradación de sustratos complejos, en biorremediación de sitios contaminados, entre otras aplicaciones. La enzima de interés debe ser caracterizada para que pueda ser producida a nivel industrial. El proceso de producción industrial de las
enzimas se lleva a cabo principalmente en fermentación líquida. En general, este proceso consiste en una serie de pasos que inician con la inoculación del organismo, mismo que debe crecer en condiciones óptimas, posteriormente se lleva a cabo el pretratamiento de la enzima de interés, seguido del concentrado de ésta por medio de filtración para eliminar el excedente de agua y finalmente se realiza la purificación del producto.
Collapse
Affiliation(s)
- Brenda Hernández-Sánchez
- Maestría en Biotecnología y manejo de Recursos Naturales, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala, CP. 90120, México
| | - Rubén Díaz-Godínez
- Laboratorio de Biotecnología, Centro de Investigación en Ciencias Biológicas. Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala, CP. 90120, México
| | - Silvia Luna-Sánchez
- Centro de Investigación en Biotecnología Aplicada. Instituto Politécnico Nacional (IPN). Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, Tlaxcala C.P. 90700, México
| | - Carmen Sánchez
- Laboratorio de Biotecnología, Centro de Investigación en Ciencias Biológicas. Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala, CP. 90120, México
| |
Collapse
|
16
|
Rong Z, Huo YY, Jian SL, Wu YH, Xu XW. Characterization of a novel alkaline esterase from Altererythrobacter epoxidivorans CGMCC 1.7731 T. Prep Biochem Biotechnol 2018; 48:113-120. [PMID: 29099313 DOI: 10.1080/10826068.2017.1387559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A novel esterase gene (e25) was identified from Altererythrobacter epoxidivorans CGMCC 1.7731T by genome sequence screening. The e25 gene is 948 nucleotides in length and encodes a 315 amino acid protein (E25) with a predicted molecular mass of 33,683 Da. A phylogenetic tree revealed that E25 belongs to the hormone-sensitive lipase (HSL) family of lipolytic enzymes. An activity assay of E25 showed that it exhibited the highest catalytic efficiency when using p-nitrophenyl caproate (C6) as a substrate. The optimum pH and temperature were determined to be approximately pH 9 and 45°C, and the Km and Vmax values were 0.12 mM and 1,772 µmol/min/mg, respectively. After an incubation at 40°C for 80 min, E25 retained 75% of its basal activity. The enzyme exhibited good tolerance to metal cations, such as Ba2+, Ca2+, and Cu2+ (10 mM), but its activity was strongly inhibited by Co2+, Ni2+, Mn2+, and Zn2+. The E25 enzyme was stimulated by glycerol and retained over 60% of its basal activity in the presence of 1% Tween-80 and Triton X-100. Overall, the activity of E25 under alkaline conditions and its organic solvent and detergent tolerance indicate that E25 could be useful as a novel industrial catalyst in biotechnological applications.
Collapse
Affiliation(s)
- Zhen Rong
- a Key Laboratory of Marine Ecosystem and Biogeochemistry , Second Institute of Oceanography, State Oceanic Administration , Hangzhou , China
| | - Ying-Yi Huo
- a Key Laboratory of Marine Ecosystem and Biogeochemistry , Second Institute of Oceanography, State Oceanic Administration , Hangzhou , China
| | - Shu-Ling Jian
- a Key Laboratory of Marine Ecosystem and Biogeochemistry , Second Institute of Oceanography, State Oceanic Administration , Hangzhou , China
| | - Yue-Hong Wu
- a Key Laboratory of Marine Ecosystem and Biogeochemistry , Second Institute of Oceanography, State Oceanic Administration , Hangzhou , China
| | - Xue-Wei Xu
- a Key Laboratory of Marine Ecosystem and Biogeochemistry , Second Institute of Oceanography, State Oceanic Administration , Hangzhou , China
| |
Collapse
|
17
|
Castro FF, Pinheiro ABP, Gerhardt ECM, Oliveira MAS, Barbosa-Tessmann IP. Production, purification, and characterization of a novel serine-esterase from Aspergillus westerdijkiae. J Basic Microbiol 2017; 58:131-143. [PMID: 29193163 DOI: 10.1002/jobm.201700509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/20/2017] [Accepted: 11/09/2017] [Indexed: 01/16/2023]
Abstract
Esterases hydrolyze water soluble short chain fatty acids esters and are biotechnologically important. A strain of Aspergillus westerdijkiae isolated from cooking oil for recycling was found to secrete an esterase. The best enzyme production (19-24 U/ml of filtrate) culture conditions were stablished. The protein was purified using ammonium sulphate precipitation, dialysis, and a chromatographic step in Sephacryl S-200 HR. The 32 kDa purified protein presented an optimal temperature of 40°C, with a T50 of 48.95°C, and an optimal pH of 8.0. KM and Vmax were 638.11 µM for p-NPB and 5.47 µmol of released p-NP · min-1 · µg-1 of protein, respectively. The purified enzyme was partially active in the presence of 25% acetone. PMSF inhibited the enzyme, indicating that it is a serine hydrolase. MS enzyme peptides sequences were used to find the protein in the A. westerdijkiae sequenced genome. A structure model demonstrated that the protein is a member of the a/ß -hydrolase fold superfamily.
Collapse
Affiliation(s)
- Fausto F Castro
- Department of Biochemistry, Maringá State University, Maringá, Paraná, Brazil
| | - Ana B P Pinheiro
- Department of Biochemistry, Maringá State University, Maringá, Paraná, Brazil
| | | | - Marco A S Oliveira
- Department of Biochemistry, Maringá State University, Maringá, Paraná, Brazil
| | | |
Collapse
|
18
|
Sánchez-Carbente MDR, Batista-García RA, Sánchez-Reyes A, Escudero-Garcia A, Morales-Herrera C, Cuervo-Soto LI, French-Pacheco L, Fernández-Silva A, Amero C, Castillo E, Folch-Mallol JL. The first description of a hormone-sensitive lipase from a basidiomycete: Structural insights and biochemical characterization revealed Bjerkandera adusta BaEstB as a novel esterase. Microbiologyopen 2017; 6. [PMID: 28251842 PMCID: PMC5552909 DOI: 10.1002/mbo3.463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 11/06/2022] Open
Abstract
The heterologous expression and characterization of a Hormone-Sensitive Lipases (HSL) esterase (BaEstB) from the Basidiomycete fungus Bjerkandera adusta is reported for the first time. According to structural analysis, amino acid similarities and conservation of particular motifs, it was established that this enzyme belongs to the (HSL) family. The cDNA sequence consisted of 969 nucleotides, while the gene comprised 1133, including three introns of 57, 50, and 57 nucleotides. Through three-dimensional modeling and phylogenetic analysis, we conclude that BaEstB is an ortholog of the previously described RmEstB-HSL from the phylogenetically distant fungus Rhizomucor miehei. The purified BaEstB was characterized in terms of its specificity for the hydrolysis of different acyl substrates confirming its low lipolytic activity and a noticeable esterase activity. The biochemical characterization of BaEstB, the DLS analysis and the kinetic parameters determination revealed this enzyme as a true esterase, preferentially found in a dimeric state, displaying activity under alkaline conditions and relative low temperature (pH = 10, 20°C). Our data suggest that BaEstB is more active on substrates with short acyl chains and bulky aromatic moieties. Phylogenetic data allow us to suggest that a number of fungal hypothetical proteins could belong to the HSL family.
Collapse
Affiliation(s)
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Ayixón Sánchez-Reyes
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.,Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Angela Escudero-Garcia
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Catalina Morales-Herrera
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Laura I Cuervo-Soto
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.,Departamento de Biología, Facultad de Ciencias, Universidad Antonio Nariño, Bogota, Colombia
| | - Leidys French-Pacheco
- Centro de Investigaciones Químicas, Instituto de Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Arline Fernández-Silva
- Centro de Investigaciones Químicas, Instituto de Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Carlos Amero
- Centro de Investigaciones Químicas, Instituto de Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Edmundo Castillo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
19
|
Badillo-Zeferino GL, Ruiz-López II, Oliart-Ros R, Sánchez-Otero MG. Improved expression and immobilization ofGeobacillus thermoleovoransCCR11 thermostable recombinant lipase. Biotechnol Appl Biochem 2017; 64:62-69. [DOI: 10.1002/bab.1444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 08/30/2015] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Rosamaŕıa Oliart-Ros
- Unidad de Investigación y Desarrollo en Alimentos; Instituto Tecnológico de Veracruz; Veracruz México
| | | |
Collapse
|
20
|
Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway. PLoS One 2016; 11:e0160035. [PMID: 27466817 PMCID: PMC4965127 DOI: 10.1371/journal.pone.0160035] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/12/2016] [Indexed: 11/19/2022] Open
Abstract
Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product.
Collapse
|
21
|
Maester TC, Pereira MR, Machado Sierra EG, Balan A, de Macedo Lemos EG. Characterization of EST3: a metagenome-derived esterase with suitable properties for biotechnological applications. Appl Microbiol Biotechnol 2016; 100:5815-27. [DOI: 10.1007/s00253-016-7385-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/31/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
|
22
|
Yang S, Qin Z, Duan X, Yan Q, Jiang Z. Structural insights into the substrate specificity of two esterases from the thermophilic Rhizomucor miehei. J Lipid Res 2015; 56:1616-24. [PMID: 26108223 PMCID: PMC4514002 DOI: 10.1194/jlr.m060673] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 01/19/2023] Open
Abstract
Two hormone-sensitive lipase (HSL) family esterases (RmEstA and RmEstB) from the thermophilic fungus Rhizomucor miehei, exhibiting distinct substrate specificity, have been recently reported to show great potential in industrial applications. In this study, the crystal structures of RmEstA and RmEstB were determined at 2.15 Å and 2.43 Å resolutions, respectively. The structures of RmEstA and RmEstB showed two distinctive domains, a catalytic domain and a cap domain, with the classical α/β-hydrolase fold. Catalytic triads consisting of residues Ser161, Asp262, and His292 in RmEstA, and Ser164, Asp261, and His291 in RmEstB were found in the respective canonical positions. Structural comparison of RmEstA and RmEstB revealed that their distinct substrate specificity might be attributed to their different substrate-binding pockets. The aromatic amino acids Phe222 and Trp92, located in the center of the substrate-binding pocket of RmEstB, blocked this pocket, thus narrowing its catalytic range for substrates (C2–C8). Two mutants (F222A and W92F in RmEstB) showing higher catalytic activity toward long-chain substrates further confirmed the hypothesized interference. This is the first report of HSL family esterase structures from filamentous fungi.jlr The information on structure-function relationships could open important avenues of exploration for further industrial applications of esterases.
Collapse
Affiliation(s)
- Shaoqing Yang
- College of Food Science and Nutritional Engineering, The Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, China
| | - Zhen Qin
- College of Food Science and Nutritional Engineering, The Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, China
| | - Xiaojie Duan
- College of Food Science and Nutritional Engineering, The Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, The Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, China
| |
Collapse
|
23
|
Xu H, Yan Q, Duan X, Yang S, Jiang Z. Characterization of an acidic cold-adapted cutinase from Thielavia terrestris and its application in flavor ester synthesis. Food Chem 2015; 188:439-45. [PMID: 26041215 DOI: 10.1016/j.foodchem.2015.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/14/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
An acidic cutinase (TtcutB) from Thielavia terrestris CAU709 was purified to apparent homogeneity with 983 Um g(-1) specific activity. The molecular mass of the enzyme was estimated to be 27.3 and 27.9 kDa by SDS-PAGE and gel filtration, respectively. A peptide sequence homology search revealed no homologous cutinases from T. terrestris, except for one putative cutinase gene (XP003656017.1), indicating that TtcutB is a novel enzyme. TtcutB exhibited an acidic pH optimum of 4.0, and stability at pH 2.5-10.5. Optimal activity was at 55 °C, it was stable up to 65 °C, and retained over 30% activity at 0 °C. Km values toward p-nitrophenyl (pNP) acetate, pNP-butyrate and pNP-caproate were 8.3, 1.1 and 0.88 mM, respectively. The cutinase exhibited strong synthetic activity on flavor ester butyl butyrate under non-aqueous environment, and the highest esterification efficiency of 95% was observed under the optimized reaction conditions. The enzyme's unique biochemical properties suggest great potential in flavor esters-producing industries.
Collapse
Affiliation(s)
- Haibo Xu
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaojie Duan
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Zhengqiang Jiang
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
24
|
Ghati A, Paul G. Purification and characterization of a thermo-halophilic, alkali-stable and extremely benzene tolerant esterase from a thermo-halo tolerant Bacillus cereus strain AGP-03, isolated from ‘Bakreshwar’ hot spring, India. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Yan QJ, Yang SQ, Duan XJ, Xu HB, Liu Y, Jiang ZQ. Characterization of a novel hormone-sensitive lipase family esterase from Rhizomucor miehei with tertiary alcohol hydrolysis activity. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Zhou P, Zhang G, Chen S, Jiang Z, Tang Y, Henrissat B, Yan Q, Yang S, Chen CF, Zhang B, Du Z. Genome sequence and transcriptome analyses of the thermophilic zygomycete fungus Rhizomucor miehei. BMC Genomics 2014; 15:294. [PMID: 24746234 PMCID: PMC4023604 DOI: 10.1186/1471-2164-15-294] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The zygomycete fungi like Rhizomucor miehei have been extensively exploited for the production of various enzymes. As a thermophilic fungus, R. miehei is capable of growing at temperatures that approach the upper limits for all eukaryotes. To date, over hundreds of fungal genomes are publicly available. However, Zygomycetes have been rarely investigated both genetically and genomically. RESULTS Here, we report the genome of R. miehei CAU432 to explore the thermostable enzymatic repertoire of this fungus. The assembled genome size is 27.6-million-base (Mb) with 10,345 predicted protein-coding genes. Even being thermophilic, the G + C contents of fungal whole genome (43.8%) and coding genes (47.4%) are less than 50%. Phylogenetically, R. miehei is more closerly related to Phycomyces blakesleeanus than to Mucor circinelloides and Rhizopus oryzae. The genome of R. miehei harbors a large number of genes encoding secreted proteases, which is consistent with the characteristics of R. miehei being a rich producer of proteases. The transcriptome profile of R. miehei showed that the genes responsible for degrading starch, glucan, protein and lipid were highly expressed. CONCLUSIONS The genome information of R. miehei will facilitate future studies to better understand the mechanisms of fungal thermophilic adaptation and the exploring of the potential of R. miehei in industrial-scale production of thermostable enzymes. Based on the existence of a large repertoire of amylolytic, proteolytic and lipolytic genes in the genome, R. miehei has potential in the production of a variety of such enzymes.
Collapse
Affiliation(s)
| | | | | | - Zhengqiang Jiang
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | | | | | | | | | | | | | | |
Collapse
|