1
|
Yue Y, Tan Y, Yang P, Zhang S, Pan H, Lang Y, Yuan Z. Mapping Brain-Wide Neural Activity of Murine Attentional Processing in the Five-Choice Serial Reaction Time Task. Neurosci Bull 2025; 41:741-758. [PMID: 40121342 PMCID: PMC12014984 DOI: 10.1007/s12264-025-01380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/26/2024] [Indexed: 03/25/2025] Open
Abstract
Attention is the cornerstone of effective functioning in a complex and information-rich world. While the neural activity of attention has been extensively studied in the cortex, the brain-wide neural activity patterns are largely unknown. In this study, we conducted a comprehensive analysis of neural activity across the mouse brain during attentional processing using EEG and c-Fos staining, utilizing hierarchical clustering and c-Fos-based functional network analysis to evaluate the c-Fos activation patterns. Our findings reveal that a wide range of brain regions are activated, notably in the high-order cortex, thalamus, and brain stem regions involved in advanced cognition and arousal regulation, with the central lateral nucleus of the thalamus as a strong hub, suggesting the crucial role of the thalamus in attention control. These results provide valuable insights into the neural network mechanisms underlying attention, offering a foundation for formulating functional hypotheses and conducting circuit-level testing.
Collapse
Affiliation(s)
- Yin Yue
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Youming Tan
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Pin Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230022, China
| | - Shu Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230022, China
| | - Hongzhen Pan
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yiran Lang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
2
|
Triccas LT, Camilleri KP, Tracey C, Mansoureh FH, Benjamin W, Francesca M, Leonardo B, Dante M, Geert V. Reliability of Upper Limb Pin-Prick Stimulation With Electroencephalography: Evoked Potentials, Spectra and Source Localization. Front Hum Neurosci 2022; 16:881291. [PMID: 35937675 PMCID: PMC9351050 DOI: 10.3389/fnhum.2022.881291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In order for electroencephalography (EEG) with sensory stimuli measures to be used in research and neurological clinical practice, demonstration of reliability is needed. However, this is rarely examined. Here we studied the test-retest reliability of the EEG latency and amplitude of evoked potentials and spectra as well as identifying the sources during pin-prick stimulation. We recorded EEG in 23 healthy older adults who underwent a protocol of pin-prick stimulation on the dominant and non-dominant hand. EEG was recorded in a second session with rest intervals of 1 week. For EEG electrodes Fz, Cz, and Pz peak amplitude, latency and frequency spectra for pin-prick evoked potentials was determined and test-retest reliability was assessed. Substantial reliability ICC scores (0.76-0.79) were identified for evoked potential negative-positive amplitude from the left hand at C4 channel and positive peak latency when stimulating the right hand at Cz channel. Frequency spectra showed consistent increase of low-frequency band activity (< 5 Hz) and also in theta and alpha bands in first 0.25 s. Almost perfect reliability scores were found for activity at both low-frequency and theta bands (ICC scores: 0.81-0.98). Sources were identified in the primary somatosensory and motor cortices in relation to the positive peak using s-LORETA analysis. Measuring the frequency response from the pin-prick evoked potentials may allow the reliable assessment of central somatosensory impairment in the clinical setting.
Collapse
Affiliation(s)
- Lisa Tedesco Triccas
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Systems and Control Engineering, University of Malta, Msida, Malta
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
- Centre for Biomedical Cybernetics, University of Malta, Msida, Malta
| | - Kenneth P. Camilleri
- Department of Systems and Control Engineering, University of Malta, Msida, Malta
- Centre for Biomedical Cybernetics, University of Malta, Msida, Malta
| | - Camilleri Tracey
- Department of Systems and Control Engineering, University of Malta, Msida, Malta
- Centre for Biomedical Cybernetics, University of Malta, Msida, Malta
| | - Fahimi Hnazaee Mansoureh
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
- The Wellcome Trust Centre for Neuroimaging, University College London Institute of Neurology, London, United Kingdom
| | | | - Muscat Francesca
- Department of Systems and Control Engineering, University of Malta, Msida, Malta
- Centre for Biomedical Cybernetics, University of Malta, Msida, Malta
| | - Boccuni Leonardo
- Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Mantini Dante
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Verheyden Geert
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Han HB, Kim B, Kim Y, Jeong Y, Choi JH. Nine-day continuous recording of EEG and 2-hour of high-density EEG under chronic sleep restriction in mice. Sci Data 2022; 9:225. [PMID: 35606461 PMCID: PMC9126869 DOI: 10.1038/s41597-022-01354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThis work provides an EEG dataset collected from nine mice during the sleep deprivation (SD) paradigm for the sleep science community. It includes 9-day of continuous recording of the frontal and parietal EEG, accelerometer, and 2-hour of high-density EEG (HD-EEG) under SD and SD-free conditions. Eighteen hours of SD were conducted on 5 consecutive days. The HD-EEG data were saved in the EEGLAB format and stored as the brain imaging data structure (BIDS). These datasets can be used to (i) compare mouse HD-EEG to human HD-EEG, (ii) track oscillatory activities of the sleep EEG (e.g., slow waves, spindles) across the cortical regions under different conditions of sleep pressure, and (iii) investigate the cortical traveling waves in the mouse brain. We also provided Python code for basic analyses of this dataset, including the detection of slow waves and sleep spindles. We hope that our dataset will reveal hidden activities during sleep and lead to a better understanding of the functions and mechanisms of sleep.
Collapse
|
4
|
Jiricek S, Koudelka V, Lacik J, Vejmola C, Kuratko D, Wójcik DK, Raida Z, Hlinka J, Palenicek T. Electrical Source Imaging in Freely Moving Rats: Evaluation of a 12-Electrode Cortical Electroencephalography System. Front Neuroinform 2021; 14:589228. [PMID: 33568980 PMCID: PMC7868391 DOI: 10.3389/fninf.2020.589228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022] Open
Abstract
This work presents and evaluates a 12-electrode intracranial electroencephalography system developed at the National Institute of Mental Health (Klecany, Czech Republic) in terms of an electrical source imaging (ESI) technique in rats. The electrode system was originally designed for translational research purposes. This study demonstrates that it is also possible to use this well-established system for ESI, and estimates its precision, accuracy, and limitations. Furthermore, this paper sets a methodological basis for future implants. Source localization quality is evaluated using three approaches based on surrogate data, physical phantom measurements, and in vivo experiments. The forward model for source localization is obtained from the FieldTrip-SimBio pipeline using the finite-element method. Rat brain tissue extracted from a magnetic resonance imaging template is approximated by a single-compartment homogeneous tetrahedral head model. Four inverse solvers were tested: standardized low-resolution brain electromagnetic tomography, exact low-resolution brain electromagnetic tomography (eLORETA), linear constrained minimum variance (LCMV), and dynamic imaging of coherent sources. Based on surrogate data, this paper evaluates the accuracy and precision of all solvers within the brain volume using error distance and reliability maps. The mean error distance over the whole brain was found to be the lowest in the eLORETA solution through signal to noise ratios (SNRs) (0.2 mm for 25 dB SNR). The LCMV outperformed eLORETA under higher SNR conditions, and exhibiting higher spatial precision. Both of these inverse solvers provided accurate results in a phantom experiment (1.6 mm mean error distance across shallow and 2.6 mm across subcortical testing dipoles). Utilizing the developed technique in freely moving rats, an auditory steady-state response experiment provided results in line with previously reported findings. The obtained results support the idea of utilizing a 12-electrode system for ESI and using it as a solid basis for the development of future ESI dedicated implants.
Collapse
Affiliation(s)
- Stanislav Jiricek
- National Institute of Mental Health, Klecany, Czechia
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | | | - Jaroslav Lacik
- Department of Radioengineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Cestmir Vejmola
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - David Kuratko
- Department of Radioengineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Daniel K. Wójcik
- Department of Radioengineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Zbynek Raida
- Department of Radioengineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Jaroslav Hlinka
- National Institute of Mental Health, Klecany, Czechia
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Palenicek
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
5
|
Hwang E, Han HB, Kim JY, Choi JH. High-density EEG of auditory steady-state responses during stimulation of basal forebrain parvalbumin neurons. Sci Data 2020; 7:288. [PMID: 32901008 PMCID: PMC7478973 DOI: 10.1038/s41597-020-00621-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022] Open
Abstract
We present high-density EEG datasets of auditory steady-state responses (ASSRs) recorded from the cortex of freely moving mice with or without optogenetic stimulation of basal forebrain parvalbumin (BF-PV) neurons, known as a subcortical hub circuit for the global workspace. The dataset of ASSRs without BF-PV stimulation (dataset 1) contains raw 36-channel EEG epochs of ASSRs elicited by 10, 20, 30, 40, and 50 Hz click trains and time stamps of stimulations. The dataset of ASSRs with BF-PV stimulation (dataset 2) contains raw 36-channel EEG epochs of 40-Hz ASSRs during BF-PV stimulation with latencies of 0, 6.25, 12.5, and 18.75 ms and time stamps of stimulations. We provide the datasets and step-by-step tutorial analysis scripts written in Python, allowing for descriptions of the event-related potentials, spectrograms, and the topography of power. We complement this experimental dataset with simulation results using a time-dependent perturbation on coupled oscillators. This publicly available dataset will be beneficial to the experimental and computational neuroscientists. Measurement(s) | functional brain measurement • response to auditory stimulus | Technology Type(s) | electroencephalography (EEG) | Factor Type(s) | stimulation frequency • optogenetic stimulation of basal forebrain parvalbumin neurons | Sample Characteristic - Organism | Mus musculus |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12758720
Collapse
Affiliation(s)
- Eunjin Hwang
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.,Lablup, Inc., 34 Seolleung-ro, Gangnam-gu, Seoul, 06132, Republic of Korea
| | - Hio-Been Han
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.,Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jung Young Kim
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.,Department of Physics, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea. .,Department of Neural Sciences, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea.
| |
Collapse
|
6
|
Optogenetic stimulation of basal forebrain parvalbumin neurons modulates the cortical topography of auditory steady-state responses. Brain Struct Funct 2019; 224:1505-1518. [PMID: 30826928 PMCID: PMC6532347 DOI: 10.1007/s00429-019-01845-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
High-density electroencephalographic (hdEEG) recordings are widely used in human studies to determine spatio-temporal patterns of cortical electrical activity. How these patterns of activity are modulated by subcortical arousal systems is poorly understood. Here, we couple selective optogenetic stimulation of a defined subcortical cell-type, basal forebrain (BF) parvalbumin (PV) neurons, with hdEEG recordings in mice (Opto-hdEEG). Stimulation of BF PV projection neurons preferentially generated time-locked gamma oscillations in frontal cortices. BF PV gamma-frequency stimulation potently modulated an auditory sensory paradigm used to probe cortical function in neuropsychiatric disorders, the auditory steady-state response (ASSR). Phase-locked excitation of BF PV neurons in advance of 40 Hz auditory stimuli enhanced the power, precision and reliability of cortical responses, and the relationship between responses in frontal and auditory cortices. Furthermore, synchronization within a frontal hub and long-range cortical interactions were enhanced. Thus, phasic discharge of BF PV neurons changes cortical processing in a manner reminiscent of global workspace models of attention and consciousness.
Collapse
|
7
|
Lee S, Kim S, Choi JH. A Novel Visualization Method for Sleep Spindles Based on Source Localization of High Density EEG. Exp Neurobiol 2018; 26:362-368. [PMID: 29302203 PMCID: PMC5746501 DOI: 10.5607/en.2017.26.6.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/30/2017] [Accepted: 12/07/2017] [Indexed: 11/19/2022] Open
Abstract
Equivalent dipole source localization is a well-established approach to localizing the electrical activity in electroencephalogram (EEG). So far, source localization has been used primarily in localizing the epileptic source in human epileptic patients. Currently, source localization techniques have been applied to account for localizing epileptic source among the epileptic patients. Here, we present the first application of source localization in the field of sleep spindle in mouse brain. The spatial distribution of cortical potential was obtained by high density EEG and then the anterior and posterior sleep spindles were classified based on the K-mean clustering algorithm. To solve the forward problem, a realistic geometry brain model was produced based on boundary element method (BEM) using mouse MRI. Then, we applied four different source estimation algorithms (minimum norm, eLORETA, sLORETA, and LORETA) to estimate the spatial location of equivalent dipole source of sleep spindles. The estimated sources of anterior and posterior spindles were plotted in a cine-mode that revealed different topographic patterns of spindle propagation. The characterization of sleep spindles may be better be distinguished by our novel visualization method.
Collapse
Affiliation(s)
- Soohyun Lee
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seunghwan Kim
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
8
|
Drinkenburg WHIM, Ahnaou A, Ruigt GSF. Pharmaco-EEG Studies in Animals: A History-Based Introduction to Contemporary Translational Applications. Neuropsychobiology 2016; 72:139-50. [PMID: 26901675 DOI: 10.1159/000443175] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Current research on the effects of pharmacological agents on human neurophysiology finds its roots in animal research, which is also reflected in contemporary animal pharmaco-electroencephalography (p-EEG) applications. The contributions, present value and translational appreciation of animal p-EEG-based applications are strongly interlinked with progress in recording and neuroscience analysis methodology. After the pioneering years in the late 19th and early 20th century, animal p-EEG research flourished in the pharmaceutical industry in the early 1980s. However, around the turn of the millennium the emergence of structurally and functionally revealing imaging techniques and the increasing application of molecular biology caused a temporary reduction in the use of EEG as a window into the brain for the prediction of drug efficacy. Today, animal p-EEG is applied again for its biomarker potential - extensive databases of p-EEG and polysomnography studies in rats and mice hold EEG signatures of a broad collection of psychoactive reference and test compounds. A multitude of functional EEG measures has been investigated, ranging from simple spectral power and sleep-wake parameters to advanced neuronal connectivity and plasticity parameters. Compared to clinical p-EEG studies, where the level of vigilance can be well controlled, changes in sleep-waking behaviour are generally a prominent confounding variable in animal p-EEG studies and need to be dealt with. Contributions of rodent pharmaco-sleep EEG research are outlined to illustrate the value and limitations of such preclinical p-EEG data for pharmacodynamic and chronopharmacological drug profiling. Contemporary applications of p-EEG and pharmaco-sleep EEG recordings in animals provide a common and relatively inexpensive window into the functional brain early in the preclinical and clinical development of psychoactive drugs in comparison to other brain imaging techniques. They provide information on the impact of drugs on arousal and sleep architecture, assessing their neuropharmacological characteristics in vivo, including central exposure and information on kinetics. In view of the clear disadvantages as well as advantages of animal p-EEG as compared to clinical p-EEG, general statements about the usefulness of EEG as a biomarker to demonstrate the translatability of p-EEG effects should be made with caution, however, because they depend on the particular EEG or sleep parameter that is being studied. The contribution of animal p-EEG studies to the translational characterisation of centrally active drugs can be furthered by adherence to guidelines for methodological standardisation, which are presently under construction by the International Pharmaco-EEG Society (IPEG).
Collapse
|
9
|
Stienen PJ, Venzi M, Poppendieck W, Hoffmann KP, Åberg E. Precaution for volume conduction in rodent cortical electroencephalography using high-density polyimide-based microelectrode arrays on the skull. J Neurophysiol 2016; 115:1970-7. [PMID: 26864767 DOI: 10.1152/jn.00932.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
In humans, significant progress has been made to link spatial changes in electroencephalographic (EEG) spectral density, connectivity strength, and phase-amplitude modulation to neurological, physiological, and psychological correlates. In contrast, standard rodent EEG techniques employ only few electrodes, which results in poor spatial resolution. Recently, a technique was developed to overcome this limitation in mice. This technique was based on a polyimide-based microelectrode (PBM) array applied on the mouse skull, maintaining a significant number of electrodes with consistent contact, electrode impedance, and mechanical stability. The present study built on this technique by extending it to rats. Therefore, a similar PBM array, but adapted to rats, was designed and fabricated. In addition, this array was connected to a wireless EEG headstage, allowing recording in untethered, freely moving rats. The advantage of a high-density array relies on the assumption that the signal recorded from the different electrodes is generated from distinct sources, i.e., not volume-conducted. Therefore, the utility and validity of the array were evaluated by determining the level of synchrony between channels due to true synchrony or volume conduction during basal vigilance states and following a subanesthetic dose of ketamine. Although the PBM array allowed recording with high signal quality, under both drug and drug-free conditions, high synchronization existed due to volume conduction between the electrodes even in the higher spectral frequency range. Discrimination existed only between frontally and centrally/distally grouped electrode pairs. Therefore, caution should be used in interpreting spatial data obtained from high-density PBM arrays in rodents.
Collapse
Affiliation(s)
- P J Stienen
- AstraZeneca Research and Development, Innovative Medicines and Early Development, Personalized Healthcare and Biomarkers, AstraZeneca Translational Science Centre at Science for Life Laboratory, Solna, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; and
| | - M Venzi
- AstraZeneca Research and Development, Innovative Medicines and Early Development, Personalized Healthcare and Biomarkers, AstraZeneca Translational Science Centre at Science for Life Laboratory, Solna, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; and
| | - W Poppendieck
- Department of Medical Engineering and Neuroprosthetics, Fraunhofer Institute for Biomedical Engineering, St. Ingbert, Germany
| | - K P Hoffmann
- Department of Medical Engineering and Neuroprosthetics, Fraunhofer Institute for Biomedical Engineering, St. Ingbert, Germany
| | - E Åberg
- AstraZeneca Research and Development, Innovative Medicines and Early Development, Personalized Healthcare and Biomarkers, AstraZeneca Translational Science Centre at Science for Life Laboratory, Solna, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; and
| |
Collapse
|
10
|
Lee KY, Byeon HH, Jang C, Choi JH, Choi IS, Jung Y, Kim W, Chang J, Yi H. Hydrodynamic assembly of conductive nanomesh of single-walled carbon nanotubes using biological glue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:922-928. [PMID: 25504593 DOI: 10.1002/adma.201404483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/15/2014] [Indexed: 06/04/2023]
Abstract
A hydrodynamic phenomenon is used to assemble a large-scale conductive nanomesh of single-walled carbon nanotubes (SWNTs) with exceptional control of the nanostructure. This is accomplished by a biological material with nanoscale features and a strong binding affinity toward SWNTs. The biological material also presents a unique glue effect for the assembly. Unprecedented material characteristics are observed for the nanomesh.
Collapse
Affiliation(s)
- Ki-Young Lee
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kim D, Hwang E, Lee M, Sung H, Choi JH. Characterization of topographically specific sleep spindles in mice. Sleep 2015; 38:85-96. [PMID: 25325451 DOI: 10.5665/sleep.4330] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/17/2014] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVE Sleep spindles in humans have been classified as slow anterior and fast posterior spindles; recent findings indicate that their profiles differ according to pharmacology, pathology, and function. However, little is known about the generation mechanisms within the thalamocortical system for different types of spindles. In this study, we aim to investigate the electrophysiological behaviors of the topographically distinctive spindles within the thalamocortical system by applying high-density EEG and simultaneous thalamic LFP recordings in mice. DESIGN 32-channel extracranial EEG and 2-channel thalamic LFP were recorded simultaneously in freely behaving mice to acquire spindles during spontaneous sleep. SUBJECTS Hybrid F1 male mice of C57BL/6J and 129S4/svJae. MEASUREMENTS AND RESULTS Spindle events in each channel were detected by spindle detection algorithm, and then a cluster analysis was applied to classify the topographically distinctive spindles. All sleep spindles were successfully classified into 3 groups: anterior, posterior, and global spindles. Each spindle type showed distinct thalamocortical activity patterns regarding the extent of similarity, phase synchrony, and time lags between cortical and thalamic areas during spindle oscillation. We also found that sleep slow waves were likely to associate with all types of sleep spindles, but also that the ongoing cortical decruitment/ recruitment dynamics before the onset of spindles and their relationship with spindle generation were also variable, depending on the spindle types. CONCLUSION Topographically specific sleep spindles show distinctive thalamocortical network behaviors.
Collapse
Affiliation(s)
- Dongwook Kim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, South Korea: Department of Neuroscience, University of Science and Technology, Daejon, South Korea
| | - Eunjin Hwang
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, South Korea
| | - Mina Lee
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, South Korea and Department of Neuroscience, University of Science and Technology, Daejon, South Korea
| | - Hokun Sung
- Korea Advanced Nano Fab Center, Gyeonggi-do, South Korea
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, South Korea: Department of Neuroscience, University of Science and Technology, Daejon, South Korea
| |
Collapse
|