1
|
Ceniceros-Ojeda EA, Hayano-Kanashiro C, Martínez O, Reyes-Valdés MH, Hernández-Godinez F, Pons-Hernández JL, Simpson J. Large scale sampling of Mexican maize landraces for the presence of transgenes. Transgenic Res 2023; 32:399-409. [PMID: 37326744 DOI: 10.1007/s11248-023-00357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
The presence and levels of transgenic maize in Mexico and the effect this could have on local landraces or closely related species such as teosinte has been the subject of several previous reports, some showing contrasting results. Cultural, social and political factors all affect maize cultivation in Mexico and although since 1998 there has been a moratorium on the commercial cultivation of transgenic maize, Mexico imports maize, mainly from the USA where transgenic cultivars are widely grown. Additionally extensive migration between rural areas in Mexico and the USA and customs of seed exchange between farmers may also play an unintentional role in the establishment of transgenic seed. A comprehensive study of all Mexican maize landraces throughout the country is not feasible, however this report presents data based on analysis of 3204 maize accessions obtained from the central region of Mexico (where permits have never been authorized for cultivation of transgenic maize) and the northern region (where for a short period authorization for experimental plots was granted). The results of the study confirm that transgenes are present in all the geographical areas sampled and were more common in germplasm obtained in the northern region. However, there was no evidence that regions where field trials had been authorized showed higher levels of transgene presence or that the morphology of seed lots harboring transgenic material was significantly modified in favor of expected transgenic phenotypes.
Collapse
Affiliation(s)
- E Adriana Ceniceros-Ojeda
- Departamento de Agrogenómica, Grupo Solena SAPI, de CV., Av. Olímpica 3020-D, Col. Villas de San Juan, 37295, León, Guanajuato, Mexico
| | - Corina Hayano-Kanashiro
- DICTUS, Universidad de Sonora, Blvd. Colosio entre Reforma y Sahuaripa. Col. Centro, 83000, Hermosillo, Sonora, Mexico
| | - Octavio Martínez
- Unidad de Genómica Avanzada (UGA/LANGEBIO), Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico
| | - M Humberto Reyes-Valdés
- Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, 25315, Saltillo, Coahuila, Mexico
| | - Fernando Hernández-Godinez
- Unidad de Genómica Avanzada (UGA/LANGEBIO), Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico
| | - José Luis Pons-Hernández
- Campo Experimental Bajio, INIFAP, Km. 6.5 Carretera Celaya-San Miguel de Allende, 38110, Celaya, Guanajuato, Mexico
| | - June Simpson
- Department of Genetic Engineering, CINVESTAV, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
2
|
Arca M, Gouesnard B, Mary-Huard T, Le Paslier MC, Bauland C, Combes V, Madur D, Charcosset A, Nicolas SD. Genotyping of DNA pools identifies untapped landraces and genomic regions to develop next-generation varieties. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1123-1139. [PMID: 36740649 DOI: 10.1111/pbi.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 01/18/2023] [Indexed: 05/27/2023]
Abstract
Landraces, that is, traditional varieties, have a large diversity that is underexploited in modern breeding. A novel DNA pooling strategy was implemented to identify promising landraces and genomic regions to enlarge the genetic diversity of modern varieties. As proof of concept, DNA pools from 156 American and European maize landraces representing 2340 individuals were genotyped with an SNP array to assess their genome-wide diversity. They were compared to elite cultivars produced across the 20th century, represented by 327 inbred lines. Detection of selective footprints between landraces of different geographic origin identified genes involved in environmental adaptation (flowering times, growth) and tolerance to abiotic and biotic stress (drought, cold, salinity). Promising landraces were identified by developing two novel indicators that estimate their contribution to the genome of inbred lines: (i) a modified Roger's distance standardized by gene diversity and (ii) the assignation of lines to landraces using supervised analysis. It showed that most landraces do not have closely related lines and that only 10 landraces, including famous landraces as Reid's Yellow Dent, Lancaster Surecrop and Lacaune, cumulated half of the total contribution to inbred lines. Comparison of ancestral lines directly derived from landraces with lines from more advanced breeding cycles showed a decrease in the number of landraces with a large contribution. New inbred lines derived from landraces with limited contributions enriched more the haplotype diversity of reference inbred lines than those with a high contribution. Our approach opens an avenue for the identification of promising landraces for pre-breeding.
Collapse
Affiliation(s)
- Mariangela Arca
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Brigitte Gouesnard
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Tristan Mary-Huard
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Cyril Bauland
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Valérie Combes
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Delphine Madur
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alain Charcosset
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Stéphane D Nicolas
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Costa FM, Silva NCDA, Vidal R, Clement CR, Freitas FDO, Alves-Pereira A, Petroli CD, Zucchi MI, Veasey EA. Maize dispersal patterns associated with different types of endosperm and migration of indigenous groups in lowland South America. ANNALS OF BOTANY 2022; 129:737-751. [PMID: 35390119 PMCID: PMC9113157 DOI: 10.1093/aob/mcac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/31/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS The lowlands of South America appear to be remarkably important in the evolutionary history of maize, due to new evidence that suggests that maize dispersed from Mexico and arrived in this region in a state of partial domestication. This study aimed to identify dispersal patterns of maize genetic diversity in this part of the continent. METHODS A total of 170 maize accessions were characterized with 4398 single nucleotide polymorphisms (SNPs) and analysed to determine if maize dispersal was associated with types of endosperm and indigenous language families. KEY RESULTS Four genetic groups were identified in the discriminant analysis of principal components and five groups in the cluster analysis (neighbour-joining method). The groups were structured according to the predominance of endosperm types (popcorn, floury, flint/semi-flint). Spatial principal component analysis of genetic variation suggests different dispersal patterns for each endosperm type and can be associated with hypotheses of expansions of different indigenous groups. CONCLUSIONS From a possible origin in Southwestern Amazonia, different maize dispersal routes emerged: (1) towards Northern Amazonia, which continued towards the Caatinga and south-eastern Atlantic Forest (Floury); (2) towards Southern Brazil, passing through the Cerrado and Southern Atlantic Forest reaching the Pampa region (Floury); and (3) along the Atlantic Coast, following Tupi movements originating from two separate expansions: one (Tupinamba) from north to south, and the other (Guarani) in the opposite direction, from south to north (flint, floury and popcorn).
Collapse
Affiliation(s)
- Flaviane Malaquias Costa
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, SP, 13418-900, Brazil
| | | | - Rafael Vidal
- Facultad de Agronomía, Universidad de la República, Montevideo, 12900, Uruguay
| | | | | | | | | | - Maria Imaculada Zucchi
- Secretaria de Agricultura e Abastecimento do Estado de São Paulo, Piracicaba, SP, 13400-900, Brazil
| | - Elizabeth Ann Veasey
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
4
|
Yu Q, Ling Y, Xiong Y, Zhao W, Xiong Y, Dong Z, Yang J, Zhao J, Zhang X, Ma X. RAD-seq as an effective strategy for heterogenous variety identification in plants-a case study in Italian Ryegrass (Lolium multiflorum). BMC PLANT BIOLOGY 2022; 22:231. [PMID: 35513782 PMCID: PMC9069751 DOI: 10.1186/s12870-022-03617-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/21/2022] [Indexed: 06/02/2023]
Abstract
The primary approach for variety distinction in Italian ryegrass is currently the DUS (distinctness, uniformity and stability) test based on phenotypic traits. Considering the diverse genetic background within the population and the complexity of the environment, however, it is challenging to accurately distinguish varieties based on DUS criteria alone. In this study, we proposed the application of high-throughput RAD-seq to distinguish 11 Italian ryegrass varieties with three bulks of 50 individuals per variety. Our findings revealed significant differences among the 11 tested varieties. The PCA, DAPC and STRUCTURE analysis indicated a heterogeneous genetic background for all of them, and the AMOVA analysis also showed large genetic variance among these varieties (ΦST = 0.373), which were clearly distinguished based on phylogenetic analysis. Further nucleotide diversity (Pi) analysis showed that the variety 'Changjiang No.2' had the best intra-variety consistency among 11 tested varieties. Our findings suggest that the RAD-seq could be an effectively alternative method for the variety distinction of Italian ryegrass, as well as a potential tool for open-pollinated varieties (OPVs) of other allogamous species.
Collapse
Affiliation(s)
- Qingqing Yu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yao Ling
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Wenda Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Zhixiao Dong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jian Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
5
|
Sohn HB, Kim SJ, Hong SY, Park SG, Oh DH, Lee S, Nam HY, Nam JH, Kim YH. Development of 50 InDel-based barcode system for genetic identification of tartary buckwheat resources. PLoS One 2021; 16:e0250786. [PMID: 34081692 PMCID: PMC8174720 DOI: 10.1371/journal.pone.0250786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/14/2021] [Indexed: 11/18/2022] Open
Abstract
Tartary buckwheat (Fagopyrum tataricum Gartn.) is a highly functional crop that is poised to be the target of many future breeding efforts. The reliable ex situ conservation of various genetic resources is essential for the modern breeding of tartary buckwheat varieties. We developed PCR-based co-dominant insertion/deletion (InDel) markers to discriminate tartary buckwheat genetic resources. First, we obtained the whole genome from 26 accessions across a superscaffold-scale reference genome of 569.37 Mb for tartary buckwheat cv. "Daegwan 3-7." Next, 171,926 homogeneous and 53,755 heterogeneous InDels were detected by comparing 26 accessions with the "Daegwan 3-7" reference sequence. Of these, 100 candidate InDels ranging from 5-20 bp in length were chosen for validation, and 50 of them revealed polymorphisms between the 26 accessions and "Daegwan 3-7." The validated InDels were further tested through the assessment of their likelihood to give rise to a single or a few PCR products in 50 other accessions, covering most tartary buckwheat genome types. The major allele frequencies ranged from 0.5616 at the TB42 locus to 0.9863 at the TB48 locus, with the average PIC value of 0.1532 with a range of 0.0267-0.3712. To create a user-friendly system, the homology of the genotypes between and among the accessions were visualized in both one- (1D) and two-dimensional (2D) barcode types by comparing amplicon polymorphisms with the reference variety, "Daegwan 3-7." A phylogenetic tree and population structure of the 76 accessions according to amplicon polymorphisms for the 50 InDel markers corresponded to those using non-synonymous single nucleotide polymorphism variants, indicating that the barcode system based on the 50 InDels was a useful tool to improve the reliability of identification of tartary buckwheat accessions in the germplasm stocks.
Collapse
Affiliation(s)
- Hwang-Bae Sohn
- Highland Agriculture Research Institute, National Institute of Crop Science, Pyeongchang, Gangwon-do, Republic of Korea
| | - Su-Jeong Kim
- Highland Agriculture Research Institute, National Institute of Crop Science, Pyeongchang, Gangwon-do, Republic of Korea
| | - Su-Young Hong
- Highland Agriculture Research Institute, National Institute of Crop Science, Pyeongchang, Gangwon-do, Republic of Korea
| | - Sin-Gi Park
- TheragenEtex Bio Institute, TherageneEtex Inc., Suwon, Gyeonggi-do, Republic of Korea
| | - Dong-Ha Oh
- Department of Biological Science, Louisiana State University, Baton Rouge, LA, United States of America
| | - Sunghoon Lee
- EONE-DIAGNOMICS Genome Center Co. Ltd., Incheon, Republic of Korea
| | - Hwa Yeun Nam
- Highland Agriculture Research Institute, National Institute of Crop Science, Pyeongchang, Gangwon-do, Republic of Korea
| | - Jung Hwan Nam
- Highland Agriculture Research Institute, National Institute of Crop Science, Pyeongchang, Gangwon-do, Republic of Korea
| | - Yul-Ho Kim
- Highland Agriculture Research Institute, National Institute of Crop Science, Pyeongchang, Gangwon-do, Republic of Korea
| |
Collapse
|
6
|
Arca M, Mary-Huard T, Gouesnard B, Bérard A, Bauland C, Combes V, Madur D, Charcosset A, Nicolas SD. Deciphering the Genetic Diversity of Landraces With High-Throughput SNP Genotyping of DNA Bulks: Methodology and Application to the Maize 50k Array. FRONTIERS IN PLANT SCIENCE 2021; 11:568699. [PMID: 33488638 PMCID: PMC7817617 DOI: 10.3389/fpls.2020.568699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/12/2020] [Indexed: 05/13/2023]
Abstract
Genebanks harbor original landraces carrying many original favorable alleles for mitigating biotic and abiotic stresses. Their genetic diversity remains, however, poorly characterized due to their large within genetic diversity. We developed a high-throughput, cheap and labor saving DNA bulk approach based on single-nucleotide polymorphism (SNP) Illumina Infinium HD array to genotype landraces. Samples were gathered for each landrace by mixing equal weights from young leaves, from which DNA was extracted. We then estimated allelic frequencies in each DNA bulk based on fluorescent intensity ratio (FIR) between two alleles at each SNP using a two step-approach. We first tested either whether the DNA bulk was monomorphic or polymorphic according to the two FIR distributions of individuals homozygous for allele A or B, respectively. If the DNA bulk was polymorphic, we estimated its allelic frequency by using a predictive equation calibrated on FIR from DNA bulks with known allelic frequencies. Our approach: (i) gives accurate allelic frequency estimations that are highly reproducible across laboratories, (ii) protects against false detection of allele fixation within landraces. We estimated allelic frequencies of 23,412 SNPs in 156 landraces representing American and European maize diversity. Modified Roger's genetic Distance between 156 landraces estimated from 23,412 SNPs and 17 simple sequence repeats using the same DNA bulks were highly correlated, suggesting that the ascertainment bias is low. Our approach is affordable, easy to implement and does not require specific bioinformatics support and laboratory equipment, and therefore should be highly relevant for large-scale characterization of genebanks for a wide range of species.
Collapse
Affiliation(s)
- Mariangela Arca
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Tristan Mary-Huard
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Brigitte Gouesnard
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Aurélie Bérard
- Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux, Evry-Courcouronnes, France
| | - Cyril Bauland
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Valérie Combes
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Delphine Madur
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Alain Charcosset
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Stéphane D. Nicolas
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Ma S, Han C, Zhou J, Hu R, Jiang X, Wu F, Tian K, Nie G, Zhang X. Fingerprint identification of white clover cultivars based on SSR molecular markers. Mol Biol Rep 2020; 47:8513-8521. [PMID: 33040266 DOI: 10.1007/s11033-020-05893-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/03/2020] [Indexed: 11/28/2022]
Abstract
White clover (Trifolium repens L.) is an important perennial legume forage with high productivity and quality. To strengthen the basic research on the genetic characteristics, fingerprint identification and adaptability of white clover germplasm resources, Simple sequence repeat (SSR) molecular markers were applied to 10 white clover cultivars to assess the genetic diversity and related lines of white clover at the molecular level in order to lay a theoretical foundation for the selection of high-quality seeds and cultivars of white clover. A total of 120 different bands were amplified by 29 pairs of SSR primers with good polymorphism, of which 103 (89.5%) were polymorphic. Meanwhile, the PIC of each primer was 0.181-0.588, with an average of 0.329. Analysis of molecular variance revealed that 57% of the genetic variation occurred within cultivars and 43% occurred among cultivars. The results of cluster analysis and the principal coordinate analysis revealed that the parental relationships of the 10 cultivars, with the 'Purple' cultivar very distantly related to the other 9 cultivars and the closest parental relationship between 'Ladino' and 'Sulky'. The fingerprints constructed by three representative primers (gtrs679, gtrs319, and gtrs678) have a strong identification ability. In summary, the SSR markers had good polymorphism and could be used for DNA fingerprint analysis of white clover cultivars.
Collapse
Affiliation(s)
- Sainan Ma
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chongyang Han
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jie Zhou
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ruchang Hu
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xing Jiang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Feifei Wu
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ke Tian
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Nie
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xinquan Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
8
|
Comparisons of sampling methods for assessing intra- and inter-accession genetic diversity in three rice species using genotyping by sequencing. Sci Rep 2020; 10:13995. [PMID: 32814806 PMCID: PMC7438528 DOI: 10.1038/s41598-020-70842-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/27/2020] [Indexed: 11/09/2022] Open
Abstract
To minimize the cost of sample preparation and genotyping, most genebank genomics studies in self-pollinating species are conducted on a single individual to represent an accession, which may be heterogeneous with larger than expected intra-accession genetic variation. Here, we compared various population genetics parameters among six DNA (leaf) sampling methods on 90 accessions representing a wild species (O. barthii), cultivated and landraces (O. glaberrima, O. sativa), and improved varieties derived through interspecific hybridizations. A total of 1,527 DNA samples were genotyped with 46,818 polymorphic single nucleotide polymorphisms (SNPs) using DArTseq. Various statistical analyses were performed on eleven datasets corresponding to 5 plants per accession individually and in a bulk (two sets), 10 plants individually and in a bulk (two sets), all 15 plants individually (one set), and a randomly sampled individual repeated six times (six sets). Overall, we arrived at broadly similar conclusions across 11 datasets in terms of SNP polymorphism, heterozygosity/heterogeneity, diversity indices, concordance among genetic dissimilarity matrices, population structure, and genetic differentiation; there were, however, a few discrepancies between some pairs of datasets. Detailed results of each sampling method, the concordance in their outputs, and the technical and cost implications of each method were discussed.
Collapse
|
9
|
Reyes-Valdés MH, Kantartzi SK. An information theory approach to biocultural complexity. Sci Rep 2020; 10:7203. [PMID: 32350371 PMCID: PMC7190823 DOI: 10.1038/s41598-020-64260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/13/2020] [Indexed: 11/29/2022] Open
Abstract
The study of biocultural diversity requires the use of appropriate concepts and analytical tools. Particularly, there is a need of indices capable to show the degree of stratification in the set of interactions among cultures and groups of plants and animals in a given region. Here, we present a mathematical approach based on the mutual Shannon information theory to study the relationships among cultural and biological groups. Biocultural complexity was described in terms of effective biocultural units, a new concept defined in this work. From the mathematical formulation of biocultural complexity, formulas were derived to measure the specificity of biological groups and the specialization of cultures, based on the association of human societies with plant or animal groups. To exemplify the concepts and tools, two data sets were analyzed; 1) a set that included artificial data in order to demonstrate the use of the formulas and calculate the indices, and 2) a set that included published data on the use of 18 mushroom species by people in five villages of eastern India. Analysis of the first data set revealed a clear case of biocultural complexity, whereas that of the second set showed that the villages and the use of biological resources composed a single biocultural unit. Overall, hypothesis testing of the association among cultures and biological species was consistent with the information that was provided by the new indices.
Collapse
Affiliation(s)
- M Humberto Reyes-Valdés
- Universidad Autónoma Agraria Antonio Narro, Graduate Program on Plant Genetic Resources for Arid Lands, Saltillo, Coahuila, 25315, Mexico.
| | - Stella K Kantartzi
- Southern Illinois University, Department of Plant, Soil and Agricultural Systems, Carbondale, IL, 62901, USA
| |
Collapse
|
10
|
Nie G, Huang T, Ma X, Huang L, Peng Y, Yan Y, Li Z, Wang X, Zhang X. Genetic variability evaluation and cultivar identification of tetraploid annual ryegrass using SSR markers. PeerJ 2019; 7:e7742. [PMID: 31579612 PMCID: PMC6756138 DOI: 10.7717/peerj.7742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/25/2019] [Indexed: 11/20/2022] Open
Abstract
Annual ryegrass (Lolium multiflorum) is a widely used cool-season turf and forage grass with high productivity and ornamental characteristics. However, the abundant intra-cultivar genetic variability usually hampers the application of conventional techniques for cultivar identification. The objectives of this study were to: (1) describe an efficient strategy for identification of six tetraploid annual ryegrass cultivars and (2) investigate the genetic diversity based on SSR markers. A total of 242 reliable bands were obtained from 29 SSR primer pairs with an average of 8.3 bands for each primer pair and the average value of polymorphic information content (PIC) was 0.304. The result of analysis of molecular variance (AMOVA) revealed that 81.99% of the genetic variation occurred in within-cultivars and 18.01% among-cultivars. The principal coordinate analysis (PCoA) showed that the first two principal axes explain 8.57% (PC1) and 6.05% (PC2) of total variation, respectively. By using multi-bulk strategy based on different filtering thresholds, the results suggested that bands frequency of 40% could be used as a reliable standard for cultivar identification in annual ryegrass. Under this threshold, 12 SSR primer pairs (00-04A, 02-06G, 02-08C, 03-05A, 04-05B, 10-09E, 12-01A, 13-02H, 13-12D, 14-06F, 15-01C and 17-10D) were detected for direct identification of six tetraploid annual ryegrass cultivars, which could be incorporated into conservation schemes to protect the intellectual property of breeders, ensure purity for consumers, as well as guarantee effective use of cultivars in future.
Collapse
Affiliation(s)
- Gang Nie
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ting Huang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiao Ma
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linkai Huang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanhong Yan
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xia Wang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Reyes-Valdés MH, Burgueño J, Singh S, Martínez O, Sansaloni CP. An informational view of accession rarity and allele specificity in germplasm banks for management and conservation. PLoS One 2018; 13:e0193346. [PMID: 29489873 PMCID: PMC5831390 DOI: 10.1371/journal.pone.0193346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/08/2018] [Indexed: 11/19/2022] Open
Abstract
Germplasm banks are growing in their importance, number of accessions and amount of characterization data, with a large emphasis on molecular genetic markers. In this work, we offer an integrated view of accessions and marker data in an information theory framework. The basis of this development is the mutual information between accessions and allele frequencies for molecular marker loci, which can be decomposed in allele specificities, as well as in rarity and divergence of accessions. In this way, formulas are provided to calculate the specificity of the different marker alleles with reference to their distribution across accessions, accession rarity, defined as the weighted average of the specificity of its alleles, and divergence, defined by the Kullback-Leibler formula. Albeit being different measures, it is demonstrated that average rarity and divergence are equal for any collection. These parameters can contribute to the knowledge of the structure of a germplasm collection and to make decisions about the preservation of rare variants. The concepts herein developed served as the basis for a strategy for core subset selection called HCore, implemented in a publicly available R script. As a proof of concept, the mathematical view and tools developed in this research were applied to a large collection of Mexican wheat accessions, widely characterized by SNP markers. The most specific alleles were found to be private of a single accession, and the distribution of this parameter had its highest frequencies at low levels of specificity. Accession rarity and divergence had largely symmetrical distributions, and had a positive, albeit non-strictly linear relationship. Comparison of the HCore approach for core subset selection, with three state-of-the-art methods, showed it to be superior for average divergence and rarity, mean genetic distance and diversity. The proposed approach can be used for knowledge extraction and decision making in germplasm collections of diploid, inbred or outbred species.
Collapse
Affiliation(s)
- M. Humberto Reyes-Valdés
- Department of Plant Breeding/Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, Mexico
| | - Juan Burgueño
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Sukhwinder Singh
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Octavio Martínez
- Centro de Investigación y Estudios Avanzados/Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| | | |
Collapse
|
12
|
Sohn HB, Kim SJ, Hwang TY, Park HM, Lee YY, Markkandan K, Lee D, Lee S, Hong SY, Song YH, Koo BC, Kim YH. Barcode System for Genetic Identification of Soybean [ Glycine max (L.) Merrill] Cultivars Using InDel Markers Specific to Dense Variation Blocks. FRONTIERS IN PLANT SCIENCE 2017; 8:520. [PMID: 28443113 PMCID: PMC5385371 DOI: 10.3389/fpls.2017.00520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/23/2017] [Indexed: 05/29/2023]
Abstract
For genetic identification of soybean [Glycine max (L.) Merrill] cultivars, insertions/deletions (InDel) markers have been preferred currently because they are easy to use, co-dominant and relatively abundant. Despite their biological importance, the investigation of InDels with proven quality and reproducibility has been limited. In this study, we described soybean barcode system approach based on InDel makers, each of which is specific to a dense variation block (dVB) with non-random recombination due to many variations. Firstly, 2,274 VBs were mined by analyzing whole genome data in six soybean cultivars (Backun, Sinpaldal 2, Shingi, Daepoong, Hwangkeum, and Williams 82) for transferability to dVB-specific InDel markers. Secondly, 73,327 putative InDels in the dVB regions were identified for the development of soybean barcode system. Among them, 202 dVB-specific InDels from all soybean cultivars were selected by gel electrophoresis, which were converted as 2D barcode types according to comparing amplicon polymorphisms in the five cultivars to the reference cultivar. Finally, the polymorphism of the markers were assessed in 147 soybean cultivars, and the soybean barcode system that allows a clear distinction among soybean cultivars is also detailed. In addition, the changing of the dVBs in a chromosomal level can be quickly identified due to investigation of the reshuffling pattern of the soybean cultivars with 27 maker sets. Especially, a backcross-inbred offspring, "Singang" and a recurrent parent, "Sowon" were identified by using the 27 InDel markers. These results indicate that the soybean barcode system enables not only the minimal use of molecular markers but also comparing the data from different sources due to no need of exploiting allele binning in new varieties.
Collapse
Affiliation(s)
- Hwang-Bae Sohn
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration (RDA)Gangwon-do, South Korea
| | - Su-Jeong Kim
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration (RDA)Gangwon-do, South Korea
| | - Tae-Young Hwang
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration (RDA)Chungcheongnam-Do, South Korea
| | - Hyang-Mi Park
- Headquarters, National Institute of Crop Science, Rural Development Administration (RDA)Jeolabuk-Do, South Korea
| | - Yu-Young Lee
- Department of Central Area, National Institute of Crop Science, Rural Development Administration (RDA)Gyeonggi-Do, South Korea
| | | | - Dongwoo Lee
- TheragenEtex Bio Institute, TheragenEtex Inc.Gyeonggi-Do, South Korea
| | - Sunghoon Lee
- EONE-DIAGNOMICS Genome CenterIncheon, South Korea
| | - Su-Young Hong
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration (RDA)Gangwon-do, South Korea
| | - Yun-Ho Song
- Gangwondo Agricultural Research and Extension ServicesGangwon-Do, South Korea
| | - Bon-Cheol Koo
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration (RDA)Gangwon-do, South Korea
| | - Yul-Ho Kim
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration (RDA)Gangwon-do, South Korea
| |
Collapse
|
13
|
Hayano-Kanashiro C, Martínez de la Vega O, Reyes-Valdés MH, Pons-Hernández JL, Hernández-Godinez F, Alfaro-Laguna E, Herrera-Ayala JL, Vega-Sánchez MC, Carrera-Valtierra JA, Simpson J. An SSR-based approach incorporating a novel algorithm for identification of rare maize genotypes facilitates criteria for landrace conservation in Mexico. Ecol Evol 2017. [PMID: 28331579 DOI: 10.5061/dryad.c9086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As maize was domesticated in Mexico around 9,000 years ago, local farmers have selected and maintained seed stocks with particular traits and adapted to local conditions. In the present day, many of these landraces are still cultivated; however, increased urbanization and migration from rural areas implies a risk that this invaluable maize germplasm may be lost. In order to implement an efficient mechanism of conservation in situ, the diversity of these landrace populations must be estimated. Development of a method to select the minimum number of samples that would include the maximum number of alleles and identify germplasm harboring rare combinations of particular alleles will also safeguard the efficient ex-situ conservation of this germplasm. To reach this goal, a strategy based on SSR analysis and a novel algorithm to define a minimum collection and rare genotypes using landrace populations from Puebla State, Mexico, was developed as a "proof of concept" for methodology that could be extended to all maize landrace populations in Mexico and eventually to other native crops. The SSR-based strategy using bulked DNA samples allows rapid processing of large numbers of samples and can be set up in most laboratories equipped for basic molecular biology. Therefore, continuous monitoring of landrace populations locally could easily be carried out. This methodology can now be applied to support incentives for small farmers for the in situ conservation of these traditional cultivars.
Collapse
Affiliation(s)
- Corina Hayano-Kanashiro
- Department of Plant Genetic Engineering CINVESTAV -IrapuatoIrapuato Guanajuato Mexico; Present address: Corina Hayano-Kanashiro, DICTUS Universidad de Sonora. Blvd. Colosio entre Reforma y Sahuaripa Hermosillo Sonora Mexico
| | | | | | - José-Luis Pons-Hernández
- Instituto Nacional de Investigación Forestal Agricola y Pecuaria (INIFAP), Campo Experimental Bajío Celaya Guanajuato Mexico
| | | | - Emigdia Alfaro-Laguna
- Department of Plant Genetic Engineering CINVESTAV -Irapuato Irapuato Guanajuato Mexico
| | | | | | | | - June Simpson
- Department of Plant Genetic Engineering CINVESTAV -Irapuato Irapuato Guanajuato Mexico
| |
Collapse
|
14
|
Hayano-Kanashiro C, Martínez de la Vega O, Reyes-Valdés MH, Pons-Hernández JL, Hernández-Godinez F, Alfaro-Laguna E, Herrera-Ayala JL, Vega-Sánchez MC, Carrera-Valtierra JA, Simpson J. An SSR-based approach incorporating a novel algorithm for identification of rare maize genotypes facilitates criteria for landrace conservation in Mexico. Ecol Evol 2017; 7:1680-1690. [PMID: 28331579 PMCID: PMC5355182 DOI: 10.1002/ece3.2754] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/29/2016] [Accepted: 12/18/2016] [Indexed: 11/09/2022] Open
Abstract
As maize was domesticated in Mexico around 9,000 years ago, local farmers have selected and maintained seed stocks with particular traits and adapted to local conditions. In the present day, many of these landraces are still cultivated; however, increased urbanization and migration from rural areas implies a risk that this invaluable maize germplasm may be lost. In order to implement an efficient mechanism of conservation in situ, the diversity of these landrace populations must be estimated. Development of a method to select the minimum number of samples that would include the maximum number of alleles and identify germplasm harboring rare combinations of particular alleles will also safeguard the efficient ex‐situ conservation of this germplasm. To reach this goal, a strategy based on SSR analysis and a novel algorithm to define a minimum collection and rare genotypes using landrace populations from Puebla State, Mexico, was developed as a “proof of concept” for methodology that could be extended to all maize landrace populations in Mexico and eventually to other native crops. The SSR‐based strategy using bulked DNA samples allows rapid processing of large numbers of samples and can be set up in most laboratories equipped for basic molecular biology. Therefore, continuous monitoring of landrace populations locally could easily be carried out. This methodology can now be applied to support incentives for small farmers for the in situ conservation of these traditional cultivars.
Collapse
Affiliation(s)
- Corina Hayano-Kanashiro
- Department of Plant Genetic Engineering CINVESTAV -IrapuatoIrapuato Guanajuato Mexico; Present address: Corina Hayano-Kanashiro, DICTUS Universidad de Sonora. Blvd. Colosio entre Reforma y Sahuaripa Hermosillo Sonora Mexico
| | | | | | - José-Luis Pons-Hernández
- Instituto Nacional de Investigación Forestal Agricola y Pecuaria (INIFAP), Campo Experimental Bajío Celaya Guanajuato Mexico
| | | | - Emigdia Alfaro-Laguna
- Department of Plant Genetic Engineering CINVESTAV -Irapuato Irapuato Guanajuato Mexico
| | | | | | | | - June Simpson
- Department of Plant Genetic Engineering CINVESTAV -Irapuato Irapuato Guanajuato Mexico
| |
Collapse
|
15
|
Fu K, Guo Z, Zhang X, Fan Y, Wu W, Li D, Peng Y, Huang L, Sun M, Bai S, Ma X. Insight into the genetic variability analysis and cultivar identification of tall fescue by using SSR markers. Hereditas 2016; 153:9. [PMID: 28096771 PMCID: PMC5226091 DOI: 10.1186/s41065-016-0013-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic diversity of 19 forage-type and 2 turf-type cultivars of tall fescue (Festuca arundinacea Schreb.) was revealed using SSR markers in an attempt to explore the genetic relationships among them, and examine potential use of SSR markers to identify cultivars by bulked samples. RESULTS A total of 227 clear band was scored with 14 SSR primers and out of which 201 (88.6 %) were found polymorphic. The percentage of polymorphic bands (PPB) per primer pair varied from 62.5 to 100 % with an average of 86.9 %. The polymorphism information content (PIC) value ranged from 0.116 to 0.347 with an average of 0.257 and the highest PIC value (0.347) was noticed for primer NFA040 followed by NFA113 (0.346) whereas the highest discriminating power (D) of 1 was shown in NFA037 and LMgSSR02-01C. A Neighbor-joining dendrogram and the principal component analysis identified six major clusters and grouped the cultivars in agreement with their breeding histories. STRUCTURE analysis divided these cultivars into 3 sub-clades which correspond to distance based groupings. CONCLUSION These findings indicates that SSR markers by bulking strategy are a useful tool to measure genetic diversity among tall fescue cultivars and could be used to supplement morphological data for plant variety protection.
Collapse
Affiliation(s)
- Kaixin Fu
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Zhihui Guo
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xinquan Zhang
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yan Fan
- Chongqing Municipal Institute of Animal Husbandry, Chongqing, 400039 China
| | - Wendan Wu
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Daxu Li
- Sichuan Academy of Grassland Science, Chengdu, 611731 China
| | - Yan Peng
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Linkai Huang
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ming Sun
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Shiqie Bai
- Sichuan Academy of Grassland Science, Chengdu, 611731 China
| | - Xiao Ma
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
16
|
Linkage disequilibrium and population-structure analysis among Capsicum annuum L. cultivars for use in association mapping. Mol Genet Genomics 2014; 289:513-21. [PMID: 24585251 DOI: 10.1007/s00438-014-0827-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/11/2014] [Indexed: 12/11/2022]
Abstract
Knowledge of population structure and linkage disequilibrium among the worldwide collections of peppers currently classified as hot, mild, sweet and ornamental types is indispensable for applying association mapping and genomic selection to improve pepper. The current study aimed to resolve the genetic diversity and relatedness of Capsicum annuum germplasm by use of simple sequence repeat (SSR) loci across all chromosomes in samples collected in 2011 and 2012. The physical distance covered by the entire set of SSRs used was 2,265.9 Mb from the 3.48-Gb hot-pepper genome size. The model-based program STRUCTURE was used to infer five clusters, which was further confirmed by classical molecular-genetic diversity analysis. Mean heterozygosity of various loci was estimated to be 0.15. Linkage disequilibrium (LD) was used to identify 17 LD blocks across various chromosomes with sizes from 0.154 Kb to 126.28 Mb. CAMS-142 of chromosome 1 was significantly associated with both capsaicin (CA) and dihydrocapsaicin (DCA) levels. Further, CAMS-142 was located in an LD block of 98.18 Mb. CAMS-142 amplified bands of 244, 268, 283 and 326 bp. Alleles 268 and 283 bp had positive effects on both CA and DCA levels, with an average R(2) of 12.15 % (CA) and 12.3 % (DCA). Eight markers from seven different chromosomes were significantly associated with fruit weight, contributing an average effect of 15 %. CAMS-199, HpmsE082 and CAMS-190 are the three major quantitative trait loci located on chromosomes 8, 9, and 10, respectively, and were associated with fruit weight in samples from both years of the study. This research demonstrates the effectiveness of using genome-wide SSR-based markers to assess features of LD and genetic diversity within C. annuum.
Collapse
|