1
|
Kwok JJN, Chen MK, Ong CW, Chen L. Antidiabetic Potential of Bananas (Musa spp.): A Systematic Review of Bioactive Compounds and Antihyperglycemic Activities. Curr Nutr Rep 2025; 14:38. [PMID: 40011287 DOI: 10.1007/s13668-025-00629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2025] [Indexed: 02/28/2025]
Abstract
PURPOSE OF REVIEW Bananas (Musa spp.), a staple fruit crop in Southeast Asia, are widely recognised for their nutritional value and potential medicinal properties, including the management of diabetes. To address the diabetes pandemic, various studies have explored the efficacy of many natural foods in reducing blood glucose, preventing complications that arise from the chronic illness. However, a comprehensive overview of bioactive compounds and their antidiabetic effects across different banana species in recent years is lacking. This review provides a comprehensive overview of bioactive compounds in various parts of the bananas that have demonstrated antihyperglycemic activities. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a thorough literature search using ScienceDirect, Scopus, and PubMed databases, resulting in the inclusion of 27 relevant articles. RECENT FINDINGS Emerging evidence suggests that different parts of the banana plant contain various bioactive compounds with antihyperglycemic activities, offering promising benefits for diabetes management. The findings reveal that the antihyperglycemic effects of bananas can be attributed to specific bioactive compounds, such as phenols, saponins, alkaloids, sterols, and flavonoids, through mechanisms like inhibition of α-glucosidase, β-glucosidase, α-amylase and sucrase enzymes, glucose uptake assay, and inhibition of formation of advanced glycation end-products. Liver glycogen content and fasting blood glucose in rat models, along with HbA1c measurements in human subjects, were also assessed to evaluate invivo antidiabetic activity, which has yielded positive outcomes. The results support the potential medicinal and pharmaceutical benefits of bananas in clinical diabetes management and suggest that incorporating banana-derived compounds could enhance the cost-effectiveness of antidiabetic treatments.
Collapse
Affiliation(s)
- Jessiree Jie Ning Kwok
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Michelle Kaixuan Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Chi Wei Ong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore.
| | - Lin Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore.
| |
Collapse
|
2
|
Mbo Nkoulou LF, Nkouandou YF, Ngalle HB, Cros D, Martin G, Molo T, Eya'a C, Essome C, Zandjanakou-Tachin M, Degbey H, Bell J, Achigan-Dako EG. Screening of Triploid Banana Population Under Natural and Controlled Black Sigatoka Disease for Genomic Selection. PLANT DISEASE 2024; 108:2006-2016. [PMID: 38243182 DOI: 10.1094/pdis-04-23-0741-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Black sigatoka disease (BSD) is the most important foliar threat in banana production, and breeding efforts against it should take advantage of genomic selection (GS), which has become one of the most explored tools to increase genetic gain, save time, and reduce selection costs. To evaluate the potential of GS in banana for BSD, 210 triploid accessions were obtained from the African Banana and Plantain Research Center to constitute a training population. The variability in the population was assessed at the phenotypic level using BSD- and agronomic-related traits and at the molecular level using single-nucleotide polymorphisms (SNPs). The analysis of variance showed a significant difference between accessions for almost all traits measured, although at the genomic group level, there was no significant difference for BSD-related traits. The index of non-spotted leaves among accessions ranged from 0.11 to 0.8. The accessions screening in controlled conditions confirmed the susceptibility of all genomic groups to BSD. The principal components analysis with phenotypic data revealed no clear diversity partition of the population. However, the structure analysis and the hierarchical clustering analysis with SNPs grouped the population into four clusters and two subpopulations, respectively. The field and laboratory screening of the banana GS training population confirmed that all genomic groups are susceptible to BSD but did not reveal any genetic structure, whereas SNP markers exhibited clear genetic structure and provided useful information in the perspective of applying GS.
Collapse
Affiliation(s)
- Luther Fort Mbo Nkoulou
- Genetics, Biotechnology, and Seed Science Unit (GBioS), Laboratory of Crop Production, Physiology, Genetics and Plant Breeding (PAGEV), University of Abomey-Calavi, Abomey-Calavi, School of Plant Sciences, Cotonou, Republic of Benin
- Unit of genetics and plant Breeding (UGAP), Department of Plant Biology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
- Institute of Agricultural Research for Development, Mbalmayo Agricultural Research Centre (CRA-MB) Mbalmayo, Mbalmayo, Cameroon
- Centre de Recherche et d'Accompagnement des Producteurs Agro-pastoraux du Cameroun, Boumyebel, Cameroun
| | - Yacouba Fifen Nkouandou
- Unit of genetics and plant Breeding (UGAP), Department of Plant Biology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Hermine Bille Ngalle
- Unit of genetics and plant Breeding (UGAP), Department of Plant Biology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - David Cros
- Unité Mixte de Recherche (UMR), Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP) Institut, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Montpellier, France
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche (UMR), Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP) Institut, F-34398 Montpellier, France
| | - Guillaume Martin
- Unité Mixte de Recherche (UMR), Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP) Institut, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Montpellier, France
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche (UMR), Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP) Institut, F-34398 Montpellier, France
| | - Thierry Molo
- Unit of genetics and plant Breeding (UGAP), Department of Plant Biology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
- Centre de Recherche et d'Accompagnement des Producteurs Agro-pastoraux du Cameroun, Boumyebel, Cameroun
| | - Clement Eya'a
- Unit of genetics and plant Breeding (UGAP), Department of Plant Biology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
- Lipids analysis Laboratory, Institute of Agricultural Research for Development, Specialized Station for Oil Palm of La Dibamba, Douala, Cameroon
| | - Charles Essome
- Laboratory of Phytopathology and Crop Protection, Department of Plant Biology, University of Yaoundé I, 812, Yaoundé, Cameroon
| | - Martine Zandjanakou-Tachin
- School of Horticulture and Landscape Management (UNA), National University of Agriculture, Ketou, Republic of Benin
| | - Hervé Degbey
- Genetics, Biotechnology, and Seed Science Unit (GBioS), Laboratory of Crop Production, Physiology, Genetics and Plant Breeding (PAGEV), University of Abomey-Calavi, Abomey-Calavi, School of Plant Sciences, Cotonou, Republic of Benin
| | - Joseph Bell
- Unit of genetics and plant Breeding (UGAP), Department of Plant Biology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Enoch G Achigan-Dako
- Genetics, Biotechnology, and Seed Science Unit (GBioS), Laboratory of Crop Production, Physiology, Genetics and Plant Breeding (PAGEV), University of Abomey-Calavi, Abomey-Calavi, School of Plant Sciences, Cotonou, Republic of Benin
| |
Collapse
|
3
|
Higgins J, Osorio-Guarín JA, Olave-Achury C, Toloza-Moreno DL, Enriquez A, Di Palma F, Yockteng R, De Vega JJ. Characterizing subgenome recombination and chromosomal imbalances in banana varietal lineages. ANNALS OF BOTANY 2024; 133:349-364. [PMID: 38097270 PMCID: PMC11005773 DOI: 10.1093/aob/mcad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 04/11/2024]
Abstract
BACKGROUND Bananas and plantains (Musa spp.) are among the most important crops worldwide. The cultivated varieties are vegetatively propagated, so their genetic diversity is essentially fixed over time. Musa acuminata, M. balbisiana and M. schizocarpa have provided the named A, B and S subgenomes that predominantly constitute these varieties. Here we aimed to characterize intergenetic recombination and chromosomal imbalances between these A/B/S subgenomes, which often result in copy-number variants (CNVs) leading to changes in gene dosage and phenotype, in a diverse panel of bananas and plantains. This will allow us to characterize varietal lineages better and identify sources of genetic variation. METHODS We delimited population structure and clonal lineages in a diverse panel of 188 banana and plantain accessions from the most common cultivars using admixture, principal component and phylogenetic analyses. We used new scalable alignment-based methods, Relative Averaged Alignment (RAA) and Relative Coverage, to infer subgenome composition (AA, AAB, etc.) and interspecific recombination. RESULTS In our panel, we identified ten varietal lineages composed of somatic clones, plus three groups of tetraploid accessions. We identified chromosomal exchanges resulting in gains/losses in chromosomal segments (CNVs), particularly in AAB and ABB varieties. CONCLUSIONS We demonstrated alignment-based RAA and Relative Coverage can identify subgenome composition and introgressions with similar results to more complex approaches based on single nucleotide polymorphism (SNP) databases. These ab initio species-agnostic methods can be used without sequencing a panel of wild ancestors to find private SNPs, or in recently diverged pools where private SNPs are uncommon. The extensive A/B/S exchanges and the variation in the length of some introgressions between lineages further support multiple foundational events of hybridization and residual backcrossing. Imbalances between A/B/S may have resulted in CNVs and gene dosage variation. Since most edible banana genomes are fixed on time, these CNVs are stable genetic variations probably associated with phenotypic variation for future genetic studies.
Collapse
Affiliation(s)
- Janet Higgins
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Jaime Andrés Osorio-Guarín
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, km 14 vía Mosquera, Bogotá, Colombia
| | | | - Deisy Lisseth Toloza-Moreno
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, km 14 vía Mosquera, Bogotá, Colombia
| | - Ayda Enriquez
- Centro de Investigación Palmira, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Palmira, Colombia
| | | | - Roxana Yockteng
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, km 14 vía Mosquera, Bogotá, Colombia
- Muséum National d’Histoire Naturelle, UMR-CNRS 7205, Paris, France
| | - Jose J De Vega
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| |
Collapse
|
4
|
Mbo Nkoulou LF, Ngalle HB, Cros D, Adje COA, Fassinou NVH, Bell J, Achigan-Dako EG. Perspective for genomic-enabled prediction against black sigatoka disease and drought stress in polyploid species. FRONTIERS IN PLANT SCIENCE 2022; 13:953133. [PMID: 36388523 PMCID: PMC9650417 DOI: 10.3389/fpls.2022.953133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Genomic selection (GS) in plant breeding is explored as a promising tool to solve the problems related to the biotic and abiotic threats. Polyploid plants like bananas (Musa spp.) face the problem of drought and black sigatoka disease (BSD) that restrict their production. The conventional plant breeding is experiencing difficulties, particularly phenotyping costs and long generation interval. To overcome these difficulties, GS in plant breeding is explored as an alternative with a great potential for reducing costs and time in selection process. So far, GS does not have the same success in polyploid plants as with diploid plants because of the complexity of their genome. In this review, we present the main constraints to the application of GS in polyploid plants and the prospects for overcoming these constraints. Particular emphasis is placed on breeding for BSD and drought-two major threats to banana production-used in this review as a model of polyploid plant. It emerges that the difficulty in obtaining markers of good quality in polyploids is the first challenge of GS on polyploid plants, because the main tools used were developed for diploid species. In addition to that, there is a big challenge of mastering genetic interactions such as dominance and epistasis effects as well as the genotype by environment interaction, which are very common in polyploid plants. To get around these challenges, we have presented bioinformatics tools, as well as artificial intelligence approaches, including machine learning. Furthermore, a scheme for applying GS to banana for BSD and drought has been proposed. This review is of paramount impact for breeding programs that seek to reduce the selection cycle of polyploids despite the complexity of their genome.
Collapse
Affiliation(s)
- Luther Fort Mbo Nkoulou
- Genetics, Biotechnology, and Seed Science Unit (GBioS), Department of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey Calavi, Cotonou, Benin
- Unit of Genetics and Plant Breeding (UGAP), Department of Plant Biology, Faculty of Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- Institute of Agricultural Research for Development, Centre de Recherche Agricole de Mbalmayo (CRAM), Mbalmayo, Cameroon
| | - Hermine Bille Ngalle
- Unit of Genetics and Plant Breeding (UGAP), Department of Plant Biology, Faculty of Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - David Cros
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche (UMR) Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP) Institut, Montpellier, France
- Unité Mixte de Recherche (UMR) Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP) Institut, University of Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Agro, Montpellier, France
| | - Charlotte O. A. Adje
- Genetics, Biotechnology, and Seed Science Unit (GBioS), Department of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey Calavi, Cotonou, Benin
| | - Nicodeme V. H. Fassinou
- Genetics, Biotechnology, and Seed Science Unit (GBioS), Department of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey Calavi, Cotonou, Benin
| | - Joseph Bell
- Unit of Genetics and Plant Breeding (UGAP), Department of Plant Biology, Faculty of Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Enoch G. Achigan-Dako
- Genetics, Biotechnology, and Seed Science Unit (GBioS), Department of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey Calavi, Cotonou, Benin
| |
Collapse
|
5
|
Prakoso AB, Joko T, Soffan A, Sari JP, Ray JD, Drenth A, Subandiyah S. Draft Genome Sequence of Ralstonia syzygii subsp. celebesensis from Indonesia, the Causal Agent of Blood Disease of Banana. PHYTOPATHOLOGY 2022; 112:1584-1586. [PMID: 35522569 DOI: 10.1094/phyto-10-21-0443-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Ady B Prakoso
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Tri Joko
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Alan Soffan
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Juli P Sari
- Dinas Pangan, Tanaman Pangan dan Hortikultura Provinsi Riau, Pekanbaru, 28142, Indonesia
| | - Jane D Ray
- Centre for Horticultural Science, University of Queensland, Brisbane, 4001, Australia
| | - André Drenth
- Centre for Horticultural Science, University of Queensland, Brisbane, 4001, Australia
| | - Siti Subandiyah
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
6
|
Šimoníková D, Němečková A, Čížková J, Brown A, Swennen R, Doležel J, Hřibová E. Chromosome Painting in Cultivated Bananas and Their Wild Relatives ( Musa spp.) Reveals Differences in Chromosome Structure. Int J Mol Sci 2020; 21:ijms21217915. [PMID: 33114462 PMCID: PMC7672600 DOI: 10.3390/ijms21217915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Edible banana cultivars are diploid, triploid, or tetraploid hybrids, which originated by natural cross hybridization between subspecies of diploid Musa acuminata, or between M. acuminata and diploid Musa balbisiana. The participation of two other wild diploid species Musa schizocarpa and Musa textilis was also indicated by molecular studies. The fusion of gametes with structurally different chromosome sets may give rise to progenies with structural chromosome heterozygosity and reduced fertility due to aberrant chromosome pairing and unbalanced chromosome segregation. Only a few translocations have been classified on the genomic level so far, and a comprehensive molecular cytogenetic characterization of cultivars and species of the family Musaceae is still lacking. Fluorescence in situ hybridization (FISH) with chromosome-arm-specific oligo painting probes was used for comparative karyotype analysis in a set of wild Musa species and edible banana clones. The results revealed large differences in chromosome structure, discriminating individual accessions. These results permitted the identification of putative progenitors of cultivated clones and clarified the genomic constitution and evolution of aneuploid banana clones, which seem to be common among the polyploid banana accessions. New insights into the chromosome organization and structural chromosome changes will be a valuable asset in breeding programs, particularly in the selection of appropriate parents for cross hybridization.
Collapse
Affiliation(s)
- Denisa Šimoníková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (A.N.); (J.Č.); (J.D.)
| | - Alžběta Němečková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (A.N.); (J.Č.); (J.D.)
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (A.N.); (J.Č.); (J.D.)
| | - Allan Brown
- International Institute of Tropical Agriculture, Banana Breeding, PO Box 447 Arusha, Tanzania; (A.B.); (R.S.)
| | - Rony Swennen
- International Institute of Tropical Agriculture, Banana Breeding, PO Box 447 Arusha, Tanzania; (A.B.); (R.S.)
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (A.N.); (J.Č.); (J.D.)
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (A.N.); (J.Č.); (J.D.)
- Correspondence: ; Tel.: +420-585-238-713
| |
Collapse
|
7
|
Dhivya S, Ashutosh S, Gowtham I, Baskar V, Harini AB, Mukunthakumar S, Sathishkumar R. Molecular identification and evolutionary relationships between the subspecies of Musa by DNA barcodes. BMC Genomics 2020; 21:659. [PMID: 32972362 PMCID: PMC7513480 DOI: 10.1186/s12864-020-07036-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/30/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The banana (Musa sp., AAA) genome is constantly increasing due to high-frequency of somaclonal variations. Due to its large diversity, a conventional numerical and morphological based taxonomic identification of banana cultivars is laborious, difficult and often leads to subject of disagreements. RESULTS Hence, in the present study, we used universal DNA barcode ITS2 region to identify and to find the genetic relationship between the cultivars and varieties of banana. Herein, a total of 16 banana cultivars were PCR amplified using ITS2 primer pair. In addition, 321 sequences which were retrieved from GenBank, USA, were used in this study. The sequences were then aligned using Clustal W and genetic distances were computed using MEGA V5.1. The study showed significant divergence between the intra- and inter-specific genetic distances in ITS2 region. BLAST1 and Distance methods proved that ITS2 DNA barcode region successfully identified and distinguished the cultivar and varieties of banana. CONCLUSION Thus, from the results of the present study, it is clear that ITS2 is not only an efficient DNA barcode to identify the banana species but also a potential candidate for enumerating the phylogenetic relationships between the subspecies and cultivars. This is the first comprehensive study to categorically distinguish the economically important banana subspecies and varieties using DNA barcodes and to understand its evolutionary relationship.
Collapse
Affiliation(s)
- S Dhivya
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - S Ashutosh
- Technologico de Monterrey, Centre of Bioengineering, Epigmenio Gonzalez #500, Fracc. San Pablo, Campus Queretaro, Santiago de Querétaro, Queretaro, Mexico
| | - I Gowtham
- Plant Biofarming Laboratory, DRDO-BU Centre for Life Sciences, Bharathiar University, Coimbatore, 641046, India
| | - V Baskar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - A Baala Harini
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - S Mukunthakumar
- Biotechnology and Bioinformatics Division, Jawaharlal Nehru Tropical Botanic Garden & Research Institute, Palode, Thiruvananthapuram, Kerala, 695 562, India
| | - R Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
8
|
Abdullah, Henriquez CL, Mehmood F, Shahzadi I, Ali Z, Waheed MT, Croat TB, Poczai P, Ahmed I. Comparison of Chloroplast Genomes among Species of Unisexual and Bisexual Clades of the Monocot Family Araceae. PLANTS (BASEL, SWITZERLAND) 2020; 9:E737. [PMID: 32545339 PMCID: PMC7355861 DOI: 10.3390/plants9060737] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022]
Abstract
The chloroplast genome provides insight into the evolution of plant species. We de novo assembled and annotated chloroplast genomes of four genera representing three subfamilies of Araceae: Lasia spinosa (Lasioideae), Stylochaeton bogneri, Zamioculcas zamiifolia (Zamioculcadoideae), and Orontium aquaticum (Orontioideae), and performed comparative genomics using these chloroplast genomes. The sizes of the chloroplast genomes ranged from 163,770 bp to 169,982 bp. These genomes comprise 113 unique genes, including 79 protein-coding, 4 rRNA, and 30 tRNA genes. Among these genes, 17-18 genes are duplicated in the inverted repeat (IR) regions, comprising 6-7 protein-coding (including trans-splicing gene rps12), 4 rRNA, and 7 tRNA genes. The total number of genes ranged between 130 and 131. The infA gene was found to be a pseudogene in all four genomes reported here. These genomes exhibited high similarities in codon usage, amino acid frequency, RNA editing sites, and microsatellites. The oligonucleotide repeats and junctions JSB (IRb/SSC) and JSA (SSC/IRa) were highly variable among the genomes. The patterns of IR contraction and expansion were shown to be homoplasious, and therefore unsuitable for phylogenetic analyses. Signatures of positive selection were seen in three genes in S. bogneri, including ycf2, clpP, and rpl36. This study is a valuable addition to the evolutionary history of chloroplast genome structure in Araceae.
Collapse
Affiliation(s)
- Abdullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.); (F.M.); (I.S.); (Z.A.); (M.T.W.)
| | - Claudia L. Henriquez
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA;
| | - Furrukh Mehmood
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.); (F.M.); (I.S.); (Z.A.); (M.T.W.)
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014 Helsinki, Finland
| | - Iram Shahzadi
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.); (F.M.); (I.S.); (Z.A.); (M.T.W.)
| | - Zain Ali
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.); (F.M.); (I.S.); (Z.A.); (M.T.W.)
- Alpha Genomics Private Limited, Islamabad 45710, Pakistan
| | - Mohammad Tahir Waheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.); (F.M.); (I.S.); (Z.A.); (M.T.W.)
| | - Thomas B. Croat
- Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, MO 63110, USA;
| | - Peter Poczai
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014 Helsinki, Finland
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad 45710, Pakistan
| |
Collapse
|
9
|
Henriquez CL, Ahmed I, Carlsen MM, Zuluaga A, Croat TB, McKain MR. Molecular evolution of chloroplast genomes in Monsteroideae (Araceae). PLANTA 2020; 251:72. [PMID: 32112137 DOI: 10.1007/s00425-020-03365-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/14/2020] [Indexed: 05/02/2023]
Abstract
This study provides broad insight into the chloroplast genomes of the subfamily Monsteroideae. The identified polymorphic regions may be suitable for designing unique and robust molecular markers for phylogenetic inference. Monsteroideae is the third largest subfamily (comprises 369 species) and one of the early diverging lineages of the monocot plant family Araceae. The phylogeny of this important subfamily is not well resolved at the species level due to scarcity of genomic resources and suitable molecular markers. Here, we report annotated chloroplast genome sequences of four Monsteroideae species: Spathiphyllum patulinervum, Stenospermation multiovulatum, Monstera adansonii, and Rhaphidophora amplissima. The quadripartite chloroplast genomes (size range 163,335-164,751 bp) consist of a pair of inverted repeats (25,270-25,931 bp), separating a small single copy region (21,448-22,346 bp) from a large single copy region (89,714-91,841 bp). The genomes contain 114 unique genes, including four rRNA genes, 80 protein-coding genes, and 30 tRNA genes. Gene features, amino acid frequencies, codon usage, GC contents, oligonucleotide repeats, and inverted repeats dynamics exhibit similarities among the four genomes. Higher rate of synonymous substitutions was observed as compared to non-synonymous substitutions in 76 protein-coding genes. Positive selection was observed in seven protein-coding genes, including psbK, ndhK, ndhD, rbcL, accD, rps8, and ycf2. Our included species of Araceae showed the monophyly in Monsteroideae and other subfamilies. We report 30 suitable polymorphic regions. The polymorphic regions identified here might be suitable for designing unique and robust markers for inferring the phylogeny and phylogeography among closely related species within the genus Spathiphyllum and among distantly related species within the subfamily Monsteroideae. The chloroplast genomes presented here are a valuable contribution towards understanding the molecular evolutionary dynamics in the family Araceae.
Collapse
Affiliation(s)
- Claudia L Henriquez
- University of California, Department of Ecology and Evolutionary Biology, Los Angeles, USA.
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, 45710, Pakistan
| | | | - Alejandro Zuluaga
- Departamento de Biología, Universidad del Valle, Calle 13, 100-00, Cali, Colombia
| | | | - Michael R McKain
- The University of Alabama, Department of Biological Sciences, Tuscaloosa, AL, USA
| |
Collapse
|
10
|
Chen A, Sun J, Matthews A, Armas-Egas L, Chen N, Hamill S, Mintoff S, Tran-Nguyen LTT, Batley J, Aitken EAB. Assessing Variations in Host Resistance to Fusarium oxysporum f sp. cubense Race 4 in Musa Species, With a Focus on the Subtropical Race 4. Front Microbiol 2019; 10:1062. [PMID: 31156584 PMCID: PMC6529558 DOI: 10.3389/fmicb.2019.01062] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
Fusarium oxysporum f. sp. cubense (Foc) has severely curtailed banana production in the tropical regions of the world. The tropical race 4 (TR4) of Foc was detected in Australia in the 1990s and it is virulent to all Cavendish type banana cultivars, which represents the majority of banana production in Australia. Genetic resistance to Foc race 4 is urgently needed. To characterize sources of resistance, we have assessed the Foc resistance response of 34 Musa cultivars with plants grown under controlled settings. Amongst diploid banana cultivars carrying the AA genome, resistance is found in Musa acuminata sub-species including malaccensis ‘Pahang’ and burmannica ‘Calcutta4.’ In the polyploid group, the hybrids such as ‘FHIA-18’ and ‘FHIA-25’ are highly resistant against both Foc-TR4 and subtropical race 4 (Foc-STR4). Interestingly, ‘FHIA-2’ and ‘CAM020’ appear to be resistant to Foc-TR4 but susceptible to Foc-STR4, suggesting potential differences in the resistance mechanisms against the different race 4 strains. Using a GFP tagged Foc-STR4 strain challenged onto both resistant and susceptible M. a. malaccensis lines, a high inoculum dosage rapidly induced vascular wilt in the susceptible M. a. malaccensis lines at 2.5 weeks. This was associated with an accumulation of micro-conidia in the rhizome and the movement of the fungus through the xylem vessels. In contrast, the fungal movement was restrained in the rhizome of the resistant M. a. malaccensis lines and no sporulation was observed. Overall, this research suggests that the resistance response is dependent to an extent on inoculum dosage and that the plant host’s response, in the rhizome, plays an important role in inhibiting the fungus from spreading to the rest of the plant. Identifying race 4 resistant accessions can help to understand mechanisms of resistance and provide banana breeders with the genetic resources to integrate resistance genes into commercial varieties.
Collapse
Affiliation(s)
- Andrew Chen
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Jiaman Sun
- Guangxi Crop Genetic Improvement and Biotechnology Key Lab, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Andrea Matthews
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Liz Armas-Egas
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Ning Chen
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Sharon Hamill
- Department of Agriculture and Fisheries, Maroochy Research Facility, Nambour, QLD, Australia
| | - Sharl Mintoff
- Department of Primary Industry and Resources, Northern Territory Government, Darwin, NT, Australia
| | - Lucy T T Tran-Nguyen
- Department of Primary Industry and Resources, Northern Territory Government, Darwin, NT, Australia
| | - Jaqueline Batley
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia.,School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Elizabeth A B Aitken
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Steensels J, Gallone B, Voordeckers K, Verstrepen KJ. Domestication of Industrial Microbes. Curr Biol 2019; 29:R381-R393. [DOI: 10.1016/j.cub.2019.04.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Drapal M, de Carvalho EB, Rouard M, Amah D, Sardos J, Van den Houwe I, Brown A, Roux N, Swennen R, Fraser PD. Metabolite profiling characterises chemotypes of Musa diploids and triploids at juvenile and pre-flowering growth stages. Sci Rep 2019; 9:4657. [PMID: 30874619 PMCID: PMC6420674 DOI: 10.1038/s41598-019-41037-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/22/2019] [Indexed: 11/16/2022] Open
Abstract
Bananas (Musa spp.) are consumed worldwide as dessert and cooking types. Edible banana varieties are for the most part seedless and sterile and therefore vegetatively propagated. This confers difficulties for breeding approaches against pressing biotic and abiotic threats and for the nutritional enhancement of banana pulp. A panel of banana accessions, representative of the diversity of wild and cultivated bananas, was analysed to assess the range of chemotypes available globally. The focus of this assessment was banana leaves at two growth stages (juvenile and pre-flowering), to see when during the plant growth metabolic differences can be established. The metabolic data corresponded to genomic trends reported in previous studies and demonstrated a link between metabolites/pathways and the genomes of M. acuminata and M. balbisiana. Furthermore, the vigour and resistance traits of M. balbisiana was connected to the phenolic composition and showed differences with the number of B genes in the hybrid accessions. Differences in the juvenile and pre-flowering data led to low correlation between the growth stages for prediction purposes.
Collapse
Affiliation(s)
- Margit Drapal
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | | | - Mathieu Rouard
- Bioversity France, Parc Scientifique Agropolis II, 34397, Montpellier, Cedex 5, France
| | - Delphine Amah
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Julie Sardos
- Bioversity France, Parc Scientifique Agropolis II, 34397, Montpellier, Cedex 5, France
| | | | - Allan Brown
- International Institute of Tropical Agriculture, Arusha, Tanzania
| | - Nicolas Roux
- Bioversity France, Parc Scientifique Agropolis II, 34397, Montpellier, Cedex 5, France
| | - Rony Swennen
- International Institute of Tropical Agriculture, Arusha, Tanzania.,Bioversity International, W. De Croylaan 42, 3001, Heverlee, Belgium.,Department of Biosystem, KU Leuven University, Oude Markt 13 - bus 5005, 3000, Leuven, Belgium
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
13
|
Santos AS, Amorim EP, Ferreira CF, Pirovani CP. Water stress in Musa spp.: A systematic review. PLoS One 2018; 13:e0208052. [PMID: 30507957 PMCID: PMC6277099 DOI: 10.1371/journal.pone.0208052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/09/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The cultivation of bananas and other plants is limited by environmental stresses caused by climate change. In order to recognize physiological, biochemical and molecular components indicated to confer tolerance to water stress in Musa spp. we present the first systematic review on the topic. METHODS A systematic literature review was conducted using four databases for academic research (Google Academic, Springer, CAPES Journal Portal and PubMed Central). In order to avoid publication bias, a previously established protocol and inclusion and exclusion criteria were used. RESULTS The drought tolerance response is genotype-dependent, therefore the most studied varieties are constituted by the "B" genome. Tolerant plants are capable of super-expressing genes related to reisistance and defense response, maintaining the osmotic equilibrium and elimination of free radicals. Furthermore, they have higher amounts of water content, chlorophyll levels, stomatic conductance and dry root matter, when compared to susceptible plants. CONCLUSIONS In recent years, few integrated studies on the effects of water stress on bananas have been carried out and none related to flood stress. Therefore, we highlight the need for new studies on the mechanisms of differentially expressed proteins in response to stress regulation, post-translational mechanisms and epigenetic inheritance in bananas.
Collapse
Affiliation(s)
- Adriadna Souza Santos
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | | | | | | |
Collapse
|
14
|
Němečková A, Christelová P, Čížková J, Nyine M, Van den houwe I, Svačina R, Uwimana B, Swennen R, Doležel J, Hřibová E. Molecular and Cytogenetic Study of East African Highland Banana. FRONTIERS IN PLANT SCIENCE 2018; 9:1371. [PMID: 30337933 PMCID: PMC6180188 DOI: 10.3389/fpls.2018.01371] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 08/29/2018] [Indexed: 05/20/2023]
Abstract
East African highland bananas (EAHBs) are staple food crop in Uganda, Tanzania, Burundi, and other countries in the African Great Lakes region. Even though several morphologically different types exist, all EAHBs are triploid and display minimal genetic variation. To provide more insights into the genetic variation within EAHBs, genotyping using simple sequence repeat (SSR) markers, molecular analysis of ITS1-5.8S-ITS2 region of ribosomal DNA locus, and the analysis of chromosomal distribution of ribosomal DNA sequences were done. A total of 38 triploid EAHB accessions available in the Musa germplasm collection (International Transit Centre, Leuven, Belgium) were characterized. Six diploid accessions of Musa acuminata ssp. zebrina, ssp. banksii, and ssp. malaccensis representing putative parents of EAHBs were included in the study. Flow cytometric estimation of 2C nuclear DNA content revealed small differences (max ~6.5%) in genome size among the EAHB clones. While no differences in the number of 45S and 5S rDNA loci were found, genotyping using 19 SSR markers resulted in grouping the EAHB accessions into four clusters. The DNA sequence analysis of the internal transcribed spacer region indicated a relation of EAHB clones with M. acuminata and, surprisingly, also with M. schizocarpa. The results suggest that EAHB cultivars originated from a single hybrid clone with M. acuminata ssp. zebrina and ssp. banksii being its most probable parents. However, M. schizocarpa seems to have contributed to the formation of this group of banana.
Collapse
Affiliation(s)
- Alžběta Němečková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Pavla Christelová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Jana Čížková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Moses Nyine
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- International Institute of Tropical Agriculture, Banana Breeding, Kampala, Uganda
| | | | - Radim Svačina
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Brigitte Uwimana
- International Institute of Tropical Agriculture, Banana Breeding, Kampala, Uganda
| | - Rony Swennen
- Bioversity International, Banana Genetic Resources, Heverlee, Belgium
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, Katholieke Universiteit Leuven, Leuven, Belgium
- International Institute of Tropical Agriculture, Banana Breeding, Arusha, Tanzania
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Eva Hřibová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
15
|
Němečková A, Christelová P, Čížková J, Nyine M, Van den Houwe I, Svačina R, Uwimana B, Swennen R, Doležel J, Hřibová E. Molecular and Cytogenetic Study of East African Highland Banana. FRONTIERS IN PLANT SCIENCE 2018; 9:1371. [PMID: 30337933 DOI: 10.3389/fpls.2018.01371/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 08/29/2018] [Indexed: 05/24/2023]
Abstract
East African highland bananas (EAHBs) are staple food crop in Uganda, Tanzania, Burundi, and other countries in the African Great Lakes region. Even though several morphologically different types exist, all EAHBs are triploid and display minimal genetic variation. To provide more insights into the genetic variation within EAHBs, genotyping using simple sequence repeat (SSR) markers, molecular analysis of ITS1-5.8S-ITS2 region of ribosomal DNA locus, and the analysis of chromosomal distribution of ribosomal DNA sequences were done. A total of 38 triploid EAHB accessions available in the Musa germplasm collection (International Transit Centre, Leuven, Belgium) were characterized. Six diploid accessions of Musa acuminata ssp. zebrina, ssp. banksii, and ssp. malaccensis representing putative parents of EAHBs were included in the study. Flow cytometric estimation of 2C nuclear DNA content revealed small differences (max ~6.5%) in genome size among the EAHB clones. While no differences in the number of 45S and 5S rDNA loci were found, genotyping using 19 SSR markers resulted in grouping the EAHB accessions into four clusters. The DNA sequence analysis of the internal transcribed spacer region indicated a relation of EAHB clones with M. acuminata and, surprisingly, also with M. schizocarpa. The results suggest that EAHB cultivars originated from a single hybrid clone with M. acuminata ssp. zebrina and ssp. banksii being its most probable parents. However, M. schizocarpa seems to have contributed to the formation of this group of banana.
Collapse
Affiliation(s)
- Alžběta Němečková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Pavla Christelová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Jana Čížková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Moses Nyine
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- International Institute of Tropical Agriculture, Banana Breeding, Kampala, Uganda
| | | | - Radim Svačina
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Brigitte Uwimana
- International Institute of Tropical Agriculture, Banana Breeding, Kampala, Uganda
| | - Rony Swennen
- Bioversity International, Banana Genetic Resources, Heverlee, Belgium
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, Katholieke Universiteit Leuven, Leuven, Belgium
- International Institute of Tropical Agriculture, Banana Breeding, Arusha, Tanzania
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Eva Hřibová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
16
|
Pedrosa HC, Clement CR, Schietti J. The Domestication of the Amazon Tree Grape ( Pourouma cecropiifolia) Under an Ecological Lens. FRONTIERS IN PLANT SCIENCE 2018; 9:203. [PMID: 29593750 PMCID: PMC5861524 DOI: 10.3389/fpls.2018.00203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Domestication studies traditionally focus on the differences in morphological characteristics between wild and domesticated populations that are under direct selection, the components of the domestication syndrome. Here, we consider that other aspects can be modified, because of the interdependence between plant characteristics and the forces of natural selection. We investigated the ongoing domestication of Pourouma cecropiifolia populations cultivated by the Ticuna people in Western Amazonia, using traditional and ecological approaches. We compared fruit characteristics between wild and domesticated populations to quantify the direct effects of domestication. To examine the characteristics that are not under direct selection and the correlated effects of human selection and natural selection, we investigated the differences in vegetative characteristics, changes in seed:fruit allometric relations and the relations of these characteristics with variation in environmental conditions summarized in a principal component analysis. Domestication generated great changes in fruit characteristics, as expected in fruit crops. The fruits of domesticated plants had 20× greater mass and twice as much edible pulp as wild fruits. The plant height:DBH ratio and wood density were, respectively, 42% and 22% smaller in domesticated populations, probably in response to greater luminosity and higher sand content of the cultivated landscapes. Seed:fruit allometry was modified by domestication: although domesticated plants have heavier seeds, the domesticated fruits have proportionally (46%) smaller seed mass compared to wild fruits. The high light availability and poor soils of cultivated landscapes may have contributed to seed mass reduction, while human selection promoted seed mass increase in correlation with fruit mass increase. These contrasting effects generated a proportionately smaller increase in seed mass in domesticated plants. In this study, it was not possible to clearly dissociate the environmental effects from the domestication effects in changes in morphological characteristics, because the environmental conditions were intensively modified by human management, showing that plant domestication is intrinsically related to landscape domestication. Our results suggest that evaluation of environmental conditions together with human selection on domesticated phenotypes provide a better understanding of the changes generated by domestication in plants.
Collapse
Affiliation(s)
- Hermísia C. Pedrosa
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Charles R. Clement
- Coordenação de Tecnologia e Inovação, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Juliana Schietti
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| |
Collapse
|
17
|
Muiruri KS, Britt A, Amugune NO, Nguu E, Chan S, Tripathi L. Dominant Allele Phylogeny and Constitutive Subgenome Haplotype Inference in Bananas Using Mitochondrial and Nuclear Markers. Genome Biol Evol 2017; 9:2510-2521. [PMID: 28992303 PMCID: PMC5629815 DOI: 10.1093/gbe/evx167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2017] [Indexed: 12/22/2022] Open
Abstract
Cultivated bananas (Musa spp.) have undergone domestication patterns involving crosses of wild progenitors followed by long periods of clonal propagation. Majority of cultivated bananas are polyploids with different constitutive subgenomes and knowledge on phylogenies to their progenitors at the species and subspecies levels is essential. Here, the mitochondrial (NAD1) and nuclear (CENH3) markers were used to phylogenetically position cultivated banana genotypes to diploid progenitors. The CENH3 nuclear marker was used to identify a minimum representative haplotype number in polyploids and diploid bananas based on single nucleotide polymorphisms. The mitochondrial marker NAD1 was observed to be ideal in differentiating bananas of different genomic constitutions based on size of amplicons as well as sequence. The genotypes phylogenetically segregated based on the dominant genome; AAB genotypes grouped with AA and AAA, and the ABB together with BB. Both markers differentiated banana sections, but could not differentiate subspecies within the A genomic group. On the basis of CENH3 marker, a total of 13 haplotypes (five in both diploid and triploid, three in diploids, and rest unique to triploids) were identified from the genotypes tested. The presence of haplotypes, which were common in diploids and triploids, stipulate possibility of a shared ancestry in the genotypes involved in this study. Furthermore, the presence of multiple haplotypes in some diploid bananas indicates their being heterozygous. The haplotypes identified in this study are of importance because they can be used to check the level of homozygozity in breeding lines as well as to track segregation in progenies.
Collapse
Affiliation(s)
- Kariuki Samwel Muiruri
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- School of Biological Sciences, University of Nairobi, Kenya
| | - Anne Britt
- Department of Plant Biology, University of California, Davis
| | | | - Edward Nguu
- Department of Biochemistry, University of Nairobi, Kenya
| | - Simon Chan
- Department of Plant Biology, University of California, Davis
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| |
Collapse
|
18
|
Complete Chloroplast Genomes of Erianthus arundinaceus and Miscanthus sinensis: Comparative Genomics and Evolution of the Saccharum Complex. PLoS One 2017; 12:e0169992. [PMID: 28125648 PMCID: PMC5268433 DOI: 10.1371/journal.pone.0169992] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/27/2016] [Indexed: 11/19/2022] Open
Abstract
The genera Erianthus and Miscanthus, both members of the Saccharum complex, are of interest as potential resources for sugarcane improvement and as bioenergy crops. Recent studies have mainly focused on the conservation and use of wild accessions of these genera as breeding materials. However, the sequence data are limited, which hampers the studies of phylogenetic relationships, population structure, and evolution of these grasses. Here, we determined the complete chloroplast genome sequences of Erianthus arundinaceus and Miscanthus sinensis by using 454 GS FLX pyrosequencing and Sanger sequencing. Alignment of the E. arundinaceus and M. sinensis chloroplast genome sequences with the known sequence of Saccharum officinarum demonstrated a high degree of conservation in gene content and order. Using the data sets of 76 chloroplast protein-coding genes, we performed phylogenetic analysis in 40 taxa including E. arundinaceus and M. sinensis. Our results show that S. officinarum is more closely related to M. sinensis than to E. arundinaceus. We estimated that E. arundinaceus diverged from the subtribe Sorghinae before the divergence of Sorghum bicolor and the common ancestor of S. officinarum and M. sinensis. This is the first report of the phylogenetic and evolutionary relationships inferred from maternally inherited variation in the Saccharum complex. Our study provides an important framework for understanding the phylogenetic relatedness of the economically important genera Erianthus, Miscanthus, and Saccharum.
Collapse
|
19
|
Sardos J, Perrier X, Doležel J, Hřibová E, Christelová P, Van den Houwe I, Kilian A, Roux N. DArT whole genome profiling provides insights on the evolution and taxonomy of edible Banana (Musa spp.). ANNALS OF BOTANY 2016; 118:1269-1278. [PMID: 27590334 PMCID: PMC5155597 DOI: 10.1093/aob/mcw170] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/20/2016] [Accepted: 06/17/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Dessert and cooking bananas are vegetatively propagated crops of great importance for both the subsistence and the livelihood of people in developing countries. A wide diversity of diploid and triploid cultivars including AA, AB, AS, AT, AAA, AAB, ABB, AAS and AAT genomic constitutions exists. Within each of this genome groups, cultivars are classified into subgroups that are reported to correspond to varieties clonally derived from each other after a single sexual event. The number of those founding events at the basis of the diversity of bananas is a matter of debate. METHODS We analysed a large panel of 575 accessions, 94 wild relatives and 481 cultivated accessions belonging to the section Musa with a set of 498 DArT markers previously developed. KEY RESULTS DArT appeared successful and accurate to describe Musa diversity and help in the resolution of cultivated banana genome constitution and taxonomy, and highlighted discrepancies in the acknowledged classification of some accessions. This study also argues for at least two centres of domestication corresponding to South-East Asia and New Guinea, respectively. Banana domestication in New Guinea probably followed different schemes that those previously reported where hybridization underpins the emergence of edible banana. In addition, our results suggest that not all wild ancestors of bananas are known, especially in M. acuminata subspecies. We also estimate the extent of the two consecutive bottlenecks in edible bananas by evaluating the number of sexual founding events underlying our sets of edible diploids and triploids, respectively. CONCLUSIONS The attribution of clone identity to each sample of the sets allowed the detection of subgroups represented by several sets of clones. Although morphological characterization of some of the accessions is needed to correct potentially erroneous classifications, some of the subgroups seem polyclonal.
Collapse
Affiliation(s)
- J Sardos
- Bioversity International, Parc Scientifique Agropolis II, 1990 boulevard de la Lironde, 34397 Montpellier Cedex 5, France
| | - X Perrier
- CIRAD, UMR AGAP, 34398 Montpellier, France
| | - J Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - E Hřibová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - P Christelová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - I Van den Houwe
- Bioversity International, Willem De Croylaan 42, 3001 Leuven, Belgium
| | - A Kilian
- Diversity Arrays Technology Pty Ltd, Building 3, University of Canberra, Bruce, ACT 2617, Australia
| | - N Roux
- Bioversity International, Parc Scientifique Agropolis II, 1990 boulevard de la Lironde, 34397 Montpellier Cedex 5, France
| |
Collapse
|
20
|
Shetty SM, Md Shah MU, Makale K, Mohd-Yusuf Y, Khalid N, Othman RY. Complete Chloroplast Genome Sequence of Corroborates Structural Heterogeneity of Inverted Repeats in Wild Progenitors of Cultivated Bananas and Plantains. THE PLANT GENOME 2016; 9. [PMID: 27898825 DOI: 10.3835/plantgenome2015.09.0089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Complete genome sequencing of cytoplasmically inherited chloroplast DNA provides novel insights into the origins of clonally propagated crops such as banana and plantain ( spp.). This study describes the structural organization of the chloroplast genome of Colla and its phylogenetic relationship with other wild progenitors of the domesticated banana cultivars. The chloroplast genome was sequenced using Illumina HiSeq 2000 platform, followed by a combination of de novo short-read assembly and reference-guided mapping of contigs to generate complete plastome sequence. The chloroplast genome is 169,503 bp in length, exhibits a typical quadripartite structural organization with a large single-copy (LSC; 87,828 bp) region and a small single-copy (SSC; 11,547 bp) region interspersed between inverted repeat (IRa/b; 35,064 bp) regions. Overall, its gene content, size, and gene order were identical to that of Colla with extensive expansion of the inverted repeat-small single-copy (IR-SSC) junctions. Comparative analyses revealed the conserved IRa-SSC expansion in three wild species and members of the order Zingiberales. In contrast, IRb-SSC expansion was conspicuously absent in the sister taxon Nee and related species of Zingiberales. Interestingly, phylogenomic assessment based on whole-plastome and protein-coding gene sets have provided robust support for the association of and as a sister group, despite the variation in IRb-SSC expansion. Although the current study substantiates the infrageneric IRb-SSC fluctuations in Musaceae, extensive taxon sampling is necessary to confirm whether the accessions of section have undergone independent IRb-SSC expansion relative to section .
Collapse
|
21
|
Kitavi M, Downing T, Lorenzen J, Karamura D, Onyango M, Nyine M, Ferguson M, Spillane C. The triploid East African Highland Banana (EAHB) genepool is genetically uniform arising from a single ancestral clone that underwent population expansion by vegetative propagation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:547-61. [PMID: 26743524 DOI: 10.1007/s00122-015-2647-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/30/2015] [Indexed: 05/04/2023]
Abstract
All East African Highland Banana varieties are genetically uniform having arisen from a single clone introduced to Africa. East African Highland bananas (EAHBs) are a subgroup of triploid (AAA genome) bananas of importance to food security in the Great Lakes region of Africa. Little is known about their genetic variation, population structure and evolutionary history. Ninety phenotypically diverse EAHB cultivars were genotyped at 100 SSR microsatellite markers to investigate population genetic diversity, the correlation of genetic variability with morphological classes, and evolutionary origins since introduction to Africa. Population-level statistics were compared to those for plantain (AAB) and dessert (AAA) cultivars representing other M. acuminata subgroups. EAHBs displayed minimal genetic variation and are largely genetically uniform, irrespective of whether they were derived from the distinct Ugandan or Kenyan germplasm collections. No association was observed between EAHB genetic diversity and currently employed morphological taxonomic systems for EAHB germplasm. Population size dynamics indicated that triploid EAHBs arose as a single hybridization event, which generated a genetic bottleneck during foundation of the EAHB genepool. As EAHB triploids are sterile, subsequent asexual vegetative propagation of EAHBs allowed a recent rapid expansion in population size. This provided a basis for emergence of genetically near-isogenic somatic mutants selected across farmers and environments in East Africa over the past 2000 years since EAHBs were first introduced to the African continent.
Collapse
Affiliation(s)
- Mercy Kitavi
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), School of Natural Sciences, C306 Aras de Brun, National University of Ireland Galway, University Road, Galway, Ireland
- International Institute for Tropical Agriculture (IITA), Biosciences Eastern and Central Africa (BecA-ILRI), P.O. Box 30709-00100, Nairobi, Kenya
| | - Tim Downing
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, University Road, Galway, Ireland
| | - Jim Lorenzen
- International Institute for Tropical Agriculture (IITA), Biosciences Eastern and Central Africa (BecA-ILRI), P.O. Box 30709-00100, Nairobi, Kenya
- Bill and Melinda Gates Foundation, 500 5th Ave N, Seattle, WA, 98102, USA
| | - Deborah Karamura
- Bioversity International, PLOT 106, Katalima Road, P.O. Box 24384, Kampala, Uganda
| | - Margaret Onyango
- Kenya Agricultural Research Institute (KARI), KARI, Kisii Centre, P.O. Box 523-40200, Kisii, Kenya
| | - Moses Nyine
- International Institute for Tropical Agriculture (IITA), Biosciences Eastern and Central Africa (BecA-ILRI), P.O. Box 30709-00100, Nairobi, Kenya
| | - Morag Ferguson
- International Institute for Tropical Agriculture (IITA), Biosciences Eastern and Central Africa (BecA-ILRI), P.O. Box 30709-00100, Nairobi, Kenya
| | - Charles Spillane
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), School of Natural Sciences, C306 Aras de Brun, National University of Ireland Galway, University Road, Galway, Ireland.
| |
Collapse
|
22
|
Li MR, Shi FX, Zhou YX, Li YL, Wang XF, Zhang C, Wang XT, Liu B, Xiao HX, Li LF. Genetic and Epigenetic Diversities Shed Light on Domestication of Cultivated Ginseng (Panax ginseng). MOLECULAR PLANT 2015; 8:1612-22. [PMID: 26278367 DOI: 10.1016/j.molp.2015.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 05/12/2023]
Abstract
Chinese ginseng (Panax ginseng) is a medically important herb within Panax and has crucial cultural values in East Asia. As the symbol of traditional Chinese medicine, Chinese ginseng has been used as a herbal remedy to restore stamina and capacity in East Asia for thousands of years. To address the evolutionary origin and domestication history of cultivated ginseng, we employed multiple molecular approaches to investigate the genetic structures of cultivated and wild ginseng across their distribution ranges in northeastern Asia. Phylogenetic and population genetic analyses revealed that the four cultivated ginseng landraces, COMMON, BIANTIAO, SHIZHU, and GAOLI (also known as Korean ginseng), were not domesticated independently and Fusong Town is likely one of the primary domestication centers. In addition, our results from population genetic and epigenetic analyses demonstrated that cultivated ginseng maintained high levels of genetic and epigenetic diversity, but showed distinct cytosine methylation patterns compared with wild ginseng. The patterns of genetic and epigenetic variation revealed by this study have shed light on the domestication history of cultivated ginseng, which may serve as a framework for future genetic improvements.
Collapse
Affiliation(s)
- Ming-Rui Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, #5268 Renmin Street, Changchun 130024, China; Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Feng-Xue Shi
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, #5268 Renmin Street, Changchun 130024, China; Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Yu-Xin Zhou
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, #5268 Renmin Street, Changchun 130024, China; Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Ya-Ling Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, #5268 Renmin Street, Changchun 130024, China
| | - Xin-Feng Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, #5268 Renmin Street, Changchun 130024, China; Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Cui Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, #5268 Renmin Street, Changchun 130024, China; Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Xu-Tong Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, #5268 Renmin Street, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, #5268 Renmin Street, Changchun 130024, China
| | - Hong-Xing Xiao
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| | - Lin-Feng Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, #5268 Renmin Street, Changchun 130024, China.
| |
Collapse
|
23
|
Gross BL, Henk AD, Richards CM, Fazio G, Volk GM. Genetic diversity in Malus ×domestica (Rosaceae) through time in response to domestication. AMERICAN JOURNAL OF BOTANY 2014; 101:1770-9. [PMID: 25326619 DOI: 10.3732/ajb.1400297] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY Patterns of genetic diversity in domesticated plants are affected by geographic region of origin and cultivation, intentional artificial selection, and unintentional genetic bottlenecks. While bottlenecks are mainly associated with the initial domestication process, they can also affect diversity during crop improvement. Here, we investigate the impact of the improvement process on the genetic diversity of domesticated apple in comparison with other perennial and annual fruit crops.• METHODS Apple cultivars that were developed at various times (ranging from the 13th through the 20th century) and 11 of the 15 apple cultivars that are used for 90% of the apple production in the United States were surveyed for genetic diversity based on either 9 or 19 simple sequence repeats (SSRs). Diversity was compared using standard metrics and model-based approaches based on expected heterozygosity (He) at equilibrium. Improvement bottleneck data for fruit crops were also collected from the literature.• KEY RESULTS Domesticated apples showed no significant reduction in genetic diversity through time across the last eight centuries. Diversity was generally high, with an average He > 0.7 for apples from all centuries. However, diversity of the apples currently used for the bulk of commercial production was lower.• CONCLUSIONS The improvement bottleneck in domesticated apples appears to be mild or nonexistent, in contrast to improvement bottlenecks in many annual and perennial fruit crops, as documented from the literature survey. The low diversity of the subset of cultivars used for commercial production, however, indicates that an improvement bottleneck may be in progress for this perennial crop.
Collapse
Affiliation(s)
- Briana L Gross
- Biology Department, University of Minnesota Duluth, 207 Swenson Science Building, 1035 Kirby Drive, Duluth, Minnesota 55812 USA
| | - Adam D Henk
- USDA-ARS, National Center for Genetic Resource Preservation, 1111 S. Mason Street, Fort Collins, Colorado 80521 USA
| | - Christopher M Richards
- USDA-ARS, National Center for Genetic Resource Preservation, 1111 S. Mason Street, Fort Collins, Colorado 80521 USA
| | - Gennaro Fazio
- USDA-ARS, Plant Genetic Resources Unit, Geneva, New York 14456 USA
| | - Gayle M Volk
- USDA-ARS, National Center for Genetic Resource Preservation, 1111 S. Mason Street, Fort Collins, Colorado 80521 USA
| |
Collapse
|
24
|
AHMAD FAJARUDIN, MEGIA RITA, POERBA YUYUSURYASARI. Genetic Diversity of Musa balbisiana Colla in Indonesia Based on AFLP Marker. HAYATI JOURNAL OF BIOSCIENCES 2014. [DOI: 10.4308/hjb.21.1.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|