1
|
Pachner AR, Pike SC, Smith AD, Gilli F. The CXCL13 index biomarker predicts success or failure of moderate-efficacy disease-modifying therapies in multiple sclerosis; A real-world study. Mult Scler Relat Disord 2025; 95:106303. [PMID: 39914154 DOI: 10.1016/j.msard.2025.106303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 01/25/2025] [Indexed: 03/08/2025]
Abstract
BACKGROUND AND OBJECTIVES Currently there are no biomarkers that can reliably guide clinicians at the onset of MS, choosing between low-risk moderate efficacy disease-modifying therapies(ME-DMTs) and stronger, but higher-risk high-efficacy disease-modifying therapies(HE-DMTs) . The objective of this work was to analyze whether the CXCL13 index (ICXCL13), a measure of intrathecal synthesis of CXCL13, can predict whether ME-DMTs will be a success or failure in controlling MS activity in a real-world study. METHODS 109 patients with MS at Dartmouth-Hitchcock Medical Center who underwent a lumbar puncture were followed clinically for a minimum of two years. Cerebrospinal fluid(CSF) and serum were banked, tested for CXCL13 concentrations by Luminex and ELISA, and ICXCL13 calculated. RESULTS Patients with clinically isolated syndrome (CIS) were divided into those with a low or high ICXCL13.(LOCIS or HI-CIS). A low ICXCL13 predicted that ME-DMT or no DMT would be successful in achieving NEDA(no evidence of disease activity), while a high ICXCL13 predicted failure of ME-DMTs to achieve NEDA. The ICXCL13 outperformed other potential predictive biomarkers in CIS. DISCUSSION CIS represents a "window of opportunity" for optimal treatment with DMTs, but the optimal strategy is controversial, and what is urgently needed is a biomarker with a high negative and positive predictive value. The data from this study indicates that patients with CIS do well with ME-DMTs or no DMTs if the ICXCL13 is low, but fail treatment with ME-DMTs if the ICXCL13 is high.
Collapse
Affiliation(s)
- Andrew R Pachner
- Department of Neurology, Dartmouth Hitchcock Medical Center, One Medical Center Road, Lebanon, NH 03756, USA.
| | - Steven C Pike
- Department of Neurology, Dartmouth Hitchcock Medical Center, One Medical Center Road, Lebanon, NH 03756, USA; Integrative Neuroscience at Dartmouth, Guarini School of Graduate and Advanced Studies, 1 Rope Ferry Rd, Hanover, NH 03755, USA; Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Rope Ferry Rd, Hanover, NH 03755, USA.
| | - Andrew D Smith
- Department of Neurology, Dartmouth Hitchcock Medical Center, One Medical Center Road, Lebanon, NH 03756, USA.
| | - Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center, One Medical Center Road, Lebanon, NH 03756, USA; Integrative Neuroscience at Dartmouth, Guarini School of Graduate and Advanced Studies, 1 Rope Ferry Rd, Hanover, NH 03755, USA.
| |
Collapse
|
2
|
Valiukevicius P, Kaikaryte K, Gedvilaite-Vaicechauskiene G, Balnyte R, Liutkeviciene R. CXCL12 Gene Polymorphisms and Serum Levels: Associations with Multiple Sclerosis Prevalence and Clinical Parameters in Lithuania. Int J Mol Sci 2024; 25:9554. [PMID: 39273501 PMCID: PMC11395108 DOI: 10.3390/ijms25179554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Our study aimed to investigate the associations between CXCL12 rs1029153, rs1801157, and rs2297630 single-nucleotide polymorphisms (SNPs), CXCL12 protein levels, MS prevalence, and clinical parameters. This study included 250 individuals diagnosed with MS and 250 sex- and age-matched healthy control individuals from Lithuania. The SNPs were genotyped with real-time PCR-based assays. The CXCL12 protein concentration was evaluated in serum using the ELISA method. Of the studied CXCL12 SNPs, we found that the rs1801157 CT genotype in the males was associated with 2.3 times reduced MS odds when compared with the CC genotype according to the overdominant and codominant models (p = 0.011 and p = 0.012, respectively). There was a tendency, which did not reach adjusted statistical significance, for a lower CXCL12 protein concentration in the healthy individuals with the rs1801157 CT genotype (p = 0.028). Sensory symptoms were rarer in the women with the rs1801157 TT genotype (p = 0.004); however, this genotype was also associated with a shorter MS disease duration (p = 0.007). CXCL12 rs1801157 was associated with reduced odds of MS occurrence in the male individuals. In women, rs1801157 was associated with a sensory symptom prevalence.
Collapse
Affiliation(s)
- Paulius Valiukevicius
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus 9, 44307 Kaunas, Lithuania
| | - Kriste Kaikaryte
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania
| | - Greta Gedvilaite-Vaicechauskiene
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania
| | - Renata Balnyte
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Department of Ophthalmology, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania
| |
Collapse
|
3
|
Jie J, Gong Y, Luo S, Yang X, Guo K. Genetically predicted associations between circulating cytokines and autoimmune diseases: a bidirectional two-sample Mendelian randomization. Front Immunol 2024; 15:1404260. [PMID: 38860028 PMCID: PMC11163916 DOI: 10.3389/fimmu.2024.1404260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Objectives Previous studies have indicated a correlation between cytokines and autoimmune diseases. yet the causality remains uncertain. Through Mendelian Randomization (MR) analysis, we aimed to investigate the causal relationships between genetically predicted levels of 91 cytokines and three autoimmune diseases: Multiple Sclerosis (MS), Systemic Lupus Erythematosus (SLE), and Hashimoto's Thyroiditis (HT). Methods A bidirectional two-sample MR approach was utilized to assess the causal relationships between cytokines and MS, SLE, and HT. The datasets included 47,429 MS cases and 68,374 controls, 5,201 SLE cases and 9,066 controls, and 16,191 HT cases with 210,612 controls. Data on 91 cytokines comprised 14,824 participants. Causal analyses primarily employed inverse variance weighted, weighted median, and MR-Egger methods, with sensitivity analyses including heterogeneity and pleiotropy assessment. Results Genetically predicted levels of IL-18 (OR = 0.706; 95% C.I. 0.538-0.925), ADA (OR = 0.808; 95% C.I. 0.673-0.970), and SCF (OR = 0.898; 95% C.I. 0.816-0.987) were associated with a decreased risk of MS. IL-4 (OR = 1.384; 95% C.I. 1.081-1.771), IL-7 (OR = 1.401; 95% C.I. 1.010-1.943), IL-10RA (OR = 1.266; 95% C.I. 1.004-1.596), CXCL5 (OR = 1.170; 95% C.I. 1.021-1.341), NTN (OR = 1.225; 95% C.I. 1.004-1.496), FGF23 (OR = 0.644; 95% C.I. 0.460-0.902), and MCP4 (OR = 0.665; 95% C.I. 0.476-0.929) were associated with SLE risk. CDCP1 (OR = 1.127; 95% C.I. 1.008-1.261), IL-33 (OR = 0.852; 95% C.I. 0.727-0.999), and TRAIL (OR = 0.884; 95% C.I. 0.799-0.979) were associated with HT risk. Bidirectional MR results suggest the involvement of CCL19, IL-13, SLAM, ARTN, Eotaxin, IL-22RA1, ADA, and MMP10 in the downstream development of these diseases. Conclusions Our findings support causal relationships between certain cytokines and the risks of MS, SLE, and HT, identifying potential biomarkers for diagnosis and prevention. Additionally, several cytokines previously unexplored in these autoimmune disease contexts were discovered, laying new groundwork for the study of disease mechanisms and therapeutic potentials.
Collapse
Affiliation(s)
- Jie Jie
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, China
| | | | | | | | | |
Collapse
|
4
|
The Brave New World of Early Treatment of Multiple Sclerosis: Using the Molecular Biomarkers CXCL13 and Neurofilament Light to Optimize Immunotherapy. Biomedicines 2022; 10:biomedicines10092099. [PMID: 36140203 PMCID: PMC9495360 DOI: 10.3390/biomedicines10092099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is a highly heterogeneous disease involving a combination of inflammation, demyelination, and CNS injury. It is the leading cause of non-traumatic neurological disability in younger people. There is no cure, but treatments in the form of immunomodulatory drugs (IMDs) are available. Experience over the last 30 years has shown that IMDs, also sometimes called disease-modifying therapies, are effective in downregulating neuroinflammatory activity. However, there are a number of negatives in IMD therapy, including potential for significant side-effects and adverse events, uncertainty about long-term benefits regarding disability outcomes, and very high and increasing financial costs. The two dozen currently available FDA-approved IMDs also are heterogeneous with respect to efficacy and safety, especially long-term safety, and determining an IMD treatment strategy is therefore challenging for the clinician. Decisions about optimal therapy have been particularly difficult in early MS, at the time of the initial clinical demyelinating event (ICDE), at a time when early, aggressive treatment would best be initiated on patients destined to have a highly inflammatory course. However, given the fact that the majority of ICDE patients have a more benign course, aggressive immunosuppression, with its attendant risks, should not be administered to this group, and should only be reserved for patients with a more neuroinflammatory course, a decision that can only be made in retrospect, months to years after the ICDE. This quandary of moderate vs. aggressive therapy facing clinicians would best be resolved by the use of biomarkers that are predictive of future neuroinflammation. Unfortunately, biomarkers, especially molecular biomarkers, have not thus far been particularly useful in assisting clinicians in predicting the likelihood of future neuroinflammation, and thus guiding therapy. However, the last decade has seen the emergence of two highly promising molecular biomarkers to guide therapy in early MS: the CXCL13 index and neurofilament light. This paper will review the immunological and neuroscientific underpinnings of these biomarkers and the data supporting their use in early MS and will propose how they will likely be used to maximize benefit and minimize risk of IMDs in MS patients.
Collapse
|
5
|
Souza FDS, Freitas NL, Gomes YCP, Torres R, Echevarria-Lima J, da Silva-Filho IL, Leite ACB, de Lima MASD, da Silva MT, Araújo ADQC, Espíndola OM. Following the Clues: Usefulness of Biomarkers of Neuroinflammation and Neurodegeneration in the Investigation of HTLV-1-Associated Myelopathy Progression. Front Immunol 2021; 12:737941. [PMID: 34764955 PMCID: PMC8576432 DOI: 10.3389/fimmu.2021.737941] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a neurodegenerative disease due to axonal damage of the corticospinal secondary to an inflammatory response against infected T-cells. In the present work, we aimed to evaluate biomarkers of neurodegeneration and neuroinflammation in the definition of HAM/TSP prognosis. Neurofilament light (NfL) and phosphorylated heavy (pNfH) chains, total Tau protein, cellular prion protein (PrPc), inflammatory chemokines, and neopterin were quantified in paired cerebrospinal fluid (CSF) and serum samples from HAM/TSP patients (n=21), HTLV-1 asymptomatic carriers (AC) (n=13), and HTLV-1 seronegative individuals with non-inflammatory non-degenerative neurological disease (normal-pressure hydrocephalus) (n=9) as a control group. HTLV-1 proviral load in peripheral blood mononuclear cells and the expression of chemokine receptors CCR4, CCR5, and CXCR3 in infected CD4+ T-cells (HTLV-1 Tax+ cells) were also assessed. CSF levels of Tau, NfL, and pNfH were similar between groups, but PrPc and neopterin were elevated in HAM/TSP patients. Most individuals in the control group and all HTLV-1 AC had CSF/serum neopterin ratio < 1.0, and two-thirds of HAM/TSP patients had ratio values > 1.0, which positively correlated with the speed of disease progression and pNfH levels, indicating active neuroinflammation. HAM/TSP patients showed high serum levels of CXCR3-binding chemokines (CXCL9, CXCL10, and CXCL11) and elevated CSF levels of CCL2, CCL3, CCL4, CCL17, CXCL5, CXCL10, and CXCL11. Indeed, CXCL10 concentration in CSF of HAM/TSP patients was 5.8-fold and 8.7-fold higher in than in HTLV-1 AC and controls, respectively, and correlated with CSF cell counts. HAM/TSP patients with typical/rapid disease progression had CSF/serum CXCL10 ratio > 1.0 and a higher frequency of CXCR3+Tax+CD4+ T-cells in blood, which indicated a positive gradient for the migration of infected cells and infiltration into the central nervous system. In conclusion, the slow progression of HAM/TSP abrogates the usefulness of biomarkers of neuronal injury for the disease prognosis. Thus, markers of inflammation provide stronger evidence for HAM/TSP progression, particularly the CSF/serum neopterin ratio, which may contribute to overcome differences between laboratory assays.
Collapse
Affiliation(s)
- Flávia dos Santos Souza
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Seção de Imunodiagnóstico, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Nicole Lardini Freitas
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Yago Côrtes Pinheiro Gomes
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Rafael Carvalho Torres
- Plataforma de Imunoanálises, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Serviço de Citometria de Fluxo, Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Isaac Lima da Silva-Filho
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Ana Claudia Celestino Bezerra Leite
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marco Antonio Sales Dantas de Lima
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Serviço de Neurologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcus Tulius Teixeira da Silva
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Abelardo de Queiroz Campos Araújo
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Instituto de Neurologia Deolindo Couto (INDC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Otávio Melo Espíndola
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Li Y, Zhang Y, Zeng X. γδ T Cells Participating in Nervous Systems: A Story of Jekyll and Hyde. Front Immunol 2021; 12:656097. [PMID: 33868300 PMCID: PMC8044362 DOI: 10.3389/fimmu.2021.656097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022] Open
Abstract
γδ T cells are distributed in various lymphoid and nonlymphoid tissues, and act as early responders in many conditions. Previous studies have proven their significant roles in infection, cancer, autoimmune diseases and tissue maintenance. Recently, accumulating researches have highlighted the crosstalk between γδ T cells and nervous systems. In these reports, γδ T cells maintain some physiological functions of central nervous system by secreting interleukin (IL) 17, and neurons like nociceptors can in turn regulate the activity of γδ T cells. Moreover, γδ T cells are involved in neuroinflammation such as stroke and multiple sclerosis. This review illustrates the relationship between γδ T cells and nervous systems in physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Donninelli G, Studer V, Brambilla L, Zecca C, Peluso D, Laroni A, Michelis D, Mantegazza R, Confalonieri P, Volpe E. Immune Soluble Factors in the Cerebrospinal Fluid of Progressive Multiple Sclerosis Patients Segregate Into Two Groups. Front Immunol 2021; 12:633167. [PMID: 33777018 PMCID: PMC7988186 DOI: 10.3389/fimmu.2021.633167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
Primary-progressive (PP) and secondary-progressive (SP) multiple sclerosis (MS) are characterized by neurological deficits caused by a permanent neuronal damage, clinically quantified by the expanded disability status scale (EDSS). Neuronal tissue damage is also mediated by immune infiltrates producing soluble factors, such as cytokines and chemokines, which are released in the cerebrospinal fluid (CSF). The mechanisms regulating the production of a soluble factor are not completely defined. Using multiplex bead-based assays, we simultaneously measured 27 immune soluble factors in the CSF collected from 38 patients, 26 with PP-MS and 12 with SP-MS. Then, we performed a correlation matrix of all soluble factors expressed in the CSF. The CSF from patients with PP-MS and SP-MS had similar levels of cytokines and chemokines; however, the stratification of patients according to active or inactive magnetic resonance imaging (MRI) unveils some differences. Correlative studies between soluble factors in the CSF of patients with PP-MS and SP-MS revealed two clusters of immune mediators with pro-inflammatory functions, namely IFN-γ, MCP-1, MIP-1α, MIP-1β, IL-8, IP-10, and TNF-α (group 1), and anti-inflammatory functions, namely IL-9, IL-15, VEGF, and IL-1ra (group 2). However, most of the significant correlations between cytokines of group 1 and of group 2 were lost in patients with more severe disability (EDSS ≥ 4) compared to patients with mild to moderate disability (EDSS < 4). These results suggest a common regulation of cytokines and chemokines belonging to the same group and indicate that, in patients with more severe disability, the production of those factors is less coordinated, possibly due to advanced neurodegenerative mechanisms that interfere with the immune response.
Collapse
Affiliation(s)
- Gloria Donninelli
- Molecular Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Valeria Studer
- Neuroimmunology and Neuromuscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy.,Neurology Department, Martini Hospital, Turin, Italy
| | - Laura Brambilla
- Neuroimmunology and Neuromuscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Zecca
- Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Daniele Peluso
- Bioinformatics e Biostatistics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Alice Laroni
- Department of Neuroscience, Rehabilitation, Opthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy
| | - Daniele Michelis
- Department of Neuroscience, Rehabilitation, Opthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Confalonieri
- Neuroimmunology and Neuromuscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisabetta Volpe
- Molecular Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
8
|
Zailaie SA, Siddiqui JJ, Al Saadi RM, Anbari DM, S Alomari A, Cupler EJ. Serum Based miRNA as a Diagnostic Biomarker for Multiple Sclerosis: a Systematic Review and Meta-Analysis. Immunol Invest 2021; 51:947-962. [PMID: 33660581 DOI: 10.1080/08820139.2021.1887888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This systematic review and meta-analysis aimed to identify deferentially expressed serum miRNAs in multiple sclerosis patients and to evaluate their diagnostic value in multiple sclerosis diagnosis. Studies were identified on PubMed, Google scholar and Saudi digital library up to 30 September 2019. Articles that examined miRNA expression level in MS patients compared to healthy control group were included in the review and the data were extracted by three independent author. The comprehensive Meta-Analysis version 3 software was used for meta-analysis and heterogeneity of studies was identified according to I2 value. Our literatures search identified 9 eligible articles concerning the serum miRNA as a diagnostic biomarker for multiple sclerosis in comparison to healthy control group. 19 serum miRNAs differentially expressed in MS patients were identified (8 downregulated, 11 upregulated and 1 with discordant result). In publications that provided information on specific miRNA diagnostic value, the pooled AUC was 72% (95% CI 0.65-0.78, p-value 0.00) for the overall multiple sclerosis patients and primary progressive MS (PPMS) (95% CI 0.66-0.78 p-value 0.00). A miRNA panel of four miRNAs showed high sensitivity (73%) and specificity (68%) in distinguishing multiple sclerosis from control groups. When using single miRNA (miR-145), the sensitivity increased to 79% and the specificity to 87%. The available data from the literature and this meta-analysis suggests the potential use of serum miRNA as biomarkers for early diagnosis of MS with high sensitivity and specificity in distinguishing multiple sclerosis subtypes from healthy controls.Abbreviation: MS: Multiple sclerosis; IDD: inflammatory demyelinating diseases; RRMS: relapsing-remitting Multiple sclerosis; PPMS: primary progressive Multiple sclerosis; SPMS: secondary progressive Multiple sclerosis; NMO: Neuromyelitis optica; miRNA: microRNA; ECmiRNA: extracellular microRNA; AUC: Area Under the Curve; ROC: Receiver Operator Characteristic.
Collapse
Affiliation(s)
- Samar A Zailaie
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Jumana Jamal Siddiqui
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Rawan Mansour Al Saadi
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Dalia Mohammad Anbari
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Amani S Alomari
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Edward James Cupler
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia.,Neuroscience Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
DiSano KD, Gilli F, Pachner AR. Are CSF CXCL13 concentrations solely dependent on intrathecal production? A commentary on "Chemokine CXCL13 in serum, CSF, and blood-CSF barrier function". Fluids Barriers CNS 2021; 18:9. [PMID: 33632258 PMCID: PMC7905854 DOI: 10.1186/s12987-021-00244-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/13/2021] [Indexed: 12/05/2022] Open
Abstract
Pilz et al. (Fluids Barriers CNS 17:7; 2020) investigated how CSF CXCL13 concentrations are influenced by CXCL13 serum concentrations and blood-CSF barrier (BCSFB) function, comparing the impact of serum CXCL13 levels and Qalbumin (CSF albumin/serum albumin) on CSF CXCL13 among patients with CNS inflammation categorized as CXCL13 negative, low, medium, or high. Among all CXCL13 groups, their results showed no correlation between CSF CXCL13 concentrations and serum CXCL13 or Qalbumin. The authors argue that, in contrast to other proteins, CXCL13 passage across the BCSFB does not occur, regardless of BCSFB function, and is instead solely influenced by intrathecal production. In contrast to the authors’ findings, in our studies including both non-inflammatory neurological disorders (NIND; n = 62) and multiple sclerosis (MS) patients we observed a significant correlation between serum CXCL13 concentrations and CSF CXCL13 concentrations. We review several observations which may underlie these contrasting results, including (1) the impact of serum CXCL13 concentrations on CSF CXCL13 in patients with lower intrathecal CXCL13 production and thus lower CXCL13 concentrations (i.e. NIND and MS), (2) the proposed diffusion dynamics of the small molecule CXCL13 across the BCSFB, and (3) differing definitions of negative versus elevated CSF CXCL13 concentrations determined by an assay’s relative sensitivity. In conclusion, we argue that for patients with moderately elevated CSF CXCL13 concentrations, serum CXCL13 concentrations influence CSF CXCL13 levels, and thus the appropriate corrections including incorporation of CSF/serum ratios and Qalbumin values should be utilized.
Collapse
Affiliation(s)
- Krista D DiSano
- Department of Neurology, Geisel School of Medicine & Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA.
| | - Francesca Gilli
- Department of Neurology, Geisel School of Medicine & Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - Andrew R Pachner
- Department of Neurology, Geisel School of Medicine & Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
| |
Collapse
|
10
|
Pröbstel AK, Zhou X, Baumann R, Wischnewski S, Kutza M, Rojas OL, Sellrie K, Bischof A, Kim K, Ramesh A, Dandekar R, Greenfield AL, Schubert RD, Bisanz JE, Vistnes S, Khaleghi K, Landefeld J, Kirkish G, Liesche-Starnecker F, Ramaglia V, Singh S, Tran EB, Barba P, Zorn K, Oechtering J, Forsberg K, Shiow LR, Henry RG, Graves J, Cree BAC, Hauser SL, Kuhle J, Gelfand JM, Andersen PM, Schlegel J, Turnbaugh PJ, Seeberger PH, Gommerman JL, Wilson MR, Schirmer L, Baranzini SE. Gut microbiota-specific IgA + B cells traffic to the CNS in active multiple sclerosis. Sci Immunol 2020; 5:5/53/eabc7191. [PMID: 33219152 DOI: 10.1126/sciimmunol.abc7191] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/29/2020] [Indexed: 01/04/2023]
Abstract
Changes in gut microbiota composition and a diverse role of B cells have recently been implicated in multiple sclerosis (MS), a central nervous system (CNS) autoimmune disease. Immunoglobulin A (IgA) is a key regulator at the mucosal interface. However, whether gut microbiota shape IgA responses and what role IgA+ cells have in neuroinflammation are unknown. Here, we identify IgA-bound taxa in MS and show that IgA-producing cells specific for MS-associated taxa traffic to the inflamed CNS, resulting in a strong, compartmentalized IgA enrichment in active MS and other neuroinflammatory diseases. Unlike previously characterized polyreactive anti-commensal IgA responses, CNS IgA cross-reacts with surface structures on specific bacterial strains but not with brain tissue. These findings establish gut microbiota-specific IgA+ cells as a systemic mediator in MS and suggest a critical role of mucosal B cells during active neuroinflammation with broad implications for IgA as an informative biomarker and IgA-producing cells as an immune subset to harness for therapeutic interventions.
Collapse
Affiliation(s)
- Anne-Katrin Pröbstel
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA. .,Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland
| | - Xiaoyuan Zhou
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ryan Baumann
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sven Wischnewski
- Department of Neurology and Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Michael Kutza
- Department of Neurology and Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Olga L Rojas
- Department of Immunology, University of Toronto, Toronto, ON M5S 18A, Canada
| | - Katrin Sellrie
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| | - Antje Bischof
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kicheol Kim
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Akshaya Ramesh
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ravi Dandekar
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ariele L Greenfield
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ryan D Schubert
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jordan E Bisanz
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Stephanie Vistnes
- Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Khashayar Khaleghi
- Department of Immunology, University of Toronto, Toronto, ON M5S 18A, Canada
| | - James Landefeld
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gina Kirkish
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Friederike Liesche-Starnecker
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, 81675 Munich, Germany
| | - Valeria Ramaglia
- Department of Neurology and Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Sneha Singh
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Edwina B Tran
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Patrick Barba
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kelsey Zorn
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Johanna Oechtering
- Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland
| | - Karin Forsberg
- Department of Clinical Science, Neurosciences, Umeå University, 90185 Umeå, Sweden
| | - Lawrence R Shiow
- Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Roland G Henry
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer Graves
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bruce A C Cree
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephen L Hauser
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jens Kuhle
- Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland
| | - Jeffrey M Gelfand
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, 90185 Umeå, Sweden
| | - Jürgen Schlegel
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, 81675 Munich, Germany
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| | | | - Michael R Wilson
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lucas Schirmer
- Department of Neurology and Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany.,Interdisciplinary Center for Neurosciences, University of Heidelberg, 69117 Heidelberg, Germany
| | - Sergio E Baranzini
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA. .,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.,Graduate Program in Bioinformatics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
11
|
Andrés-Benito P, Povedano M, Domínguez R, Marco C, Colomina MJ, López-Pérez Ó, Santana I, Baldeiras I, Martínez-Yelámos S, Zerr I, Llorens F, Fernández-Irigoyen J, Santamaría E, Ferrer I. Increased C-X-C Motif Chemokine Ligand 12 Levels in Cerebrospinal Fluid as a Candidate Biomarker in Sporadic Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:ijms21228680. [PMID: 33213069 PMCID: PMC7698527 DOI: 10.3390/ijms21228680] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Sporadic amyotrophic lateral sclerosis (sALS) is a fatal progressive neurodegenerative disease affecting upper and lower motor neurons. Biomarkers are useful to facilitate the diagnosis and/or prognosis of patients and to reveal possible mechanistic clues about the disease. This study aimed to identify and validate selected putative biomarkers in the cerebrospinal fluid (CSF) of sALS patients at early disease stages compared with age-matched controls and with other neurodegenerative diseases including Alzheimer disease (AD), spinal muscular atrophy type III (SMA), frontotemporal dementia behavioral variant (FTD), and multiple sclerosis (MS). SWATH acquisition on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for protein quantitation, and ELISA for validation, were used in CSF samples of sALS cases at early stages of the disease. Analysis of mRNA and protein expression was carried out in the anterior horn of the lumbar spinal cord in post-mortem tissue of sALS cases (terminal stage) and controls using RTq-PCR, and Western blotting, and immunohistochemistry, respectively. SWATH acquisition on liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed 51 differentially expressed proteins in the CSF in sALS. Receiver operating characteristic (ROC) curves showed CXCL12 to be the most valuable candidate biomarker. We validated the values of CXCL12 in CSF with ELISA in two different cohorts. Besides sALS, increased CXCL12 levels were found in MS but were not altered in AD, SMA, and FTD. Therefore, increased CXCL12 levels in the CSF can be useful in the diagnoses of MS and sALS in the context of the clinical settings. CXCL12 immunoreactivity was localized in motor neurons in control and sALS, and in a few glial cells in sALS at the terminal stage; CXCR4 was in a subset of oligodendroglial-like cells and axonal ballooning of motor neurons in sALS; and CXCR7 in motor neurons in control and sALS, and reactive astrocytes in the pyramidal tracts in terminal sALS. CXCL12/CXCR4/CXCR7 axis in the spinal cord probably plays a complex role in inflammation, oligodendroglial and astrocyte signaling, and neuronal and axonal preservation in sALS.
Collapse
Affiliation(s)
- Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
- Correspondence: (P.A.-B.); (I.F.); Tel./Fax: +34-94-403-5808 (P.A.-B. & I.F.)
| | - Mònica Povedano
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Raúl Domínguez
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
| | - Carla Marco
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
| | - Maria J. Colomina
- Anesthesia and Critical Care Department, Bellvitge University Hospital-University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
| | - Óscar López-Pérez
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
| | - Isabel Santana
- Neurology Department, CHUC—Centro Hospitalar e Universitário de Coimbra, CNC—Center for Neuroscience and Cell Biology; and Faculty of Medicine, University of Coimbra, 3000-456 Coimbra, Portugal; (I.S.); (I.B.)
| | - Inês Baldeiras
- Neurology Department, CHUC—Centro Hospitalar e Universitário de Coimbra, CNC—Center for Neuroscience and Cell Biology; and Faculty of Medicine, University of Coimbra, 3000-456 Coimbra, Portugal; (I.S.); (I.B.)
| | - Sergio Martínez-Yelámos
- Multiple Sclerosis Unit, Service of Neurology, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Franc Llorens
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- IDISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (J.F.-I.); (E.S.)
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
| | - Enrique Santamaría
- IDISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (J.F.-I.); (E.S.)
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
- Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Correspondence: (P.A.-B.); (I.F.); Tel./Fax: +34-94-403-5808 (P.A.-B. & I.F.)
| |
Collapse
|
12
|
Highly sensitive quantification of optic neuritis intrathecal biomarker CXCL13. Mult Scler Relat Disord 2020; 44:102281. [PMID: 32570180 DOI: 10.1016/j.msard.2020.102281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Elevation of CXCL13, a key regulator of B-cell recruitment in cerebrospinal fluid (CSF) is implicated in multiple sclerosis (MS). OBJECTIVE to evaluate if measurement of CXCL13 using a highly sensitive assay is of value in acute optic neuritis (ON) patients for the prediction of later MS. METHOD CXCL13 was measured by Simoa in two independent treatment-naïve ON cohorts, a training cohort (TC, n = 33) originating from a population-based cohort, a validation cohort (VC, n = 30) consecutively collected following principles for population studies. Prospectively, 14/33 TC and 12/30 VC patients progressed to MS (MS-ON) while 19/33 TC and 18/30 VC patients, remained as isolated ON (ION). RESULTS CXCL13 was detectable in all samples and were higher in ON compared with healthy controls (HC) (p = 0.012). In the TC, CSF levels in MS-ON were higher compared with ION patients and HC (p = 0.0001 and p<0.0001). In the VC, we confirmed the increase of CXCL13 in MS-ON compared to ION (p = 0.0091). Logistic regression analysis revealed an area under receiver operating characteristic curve of 0.83 [95% C.I: 0.73-0.93]. CONCLUSIONS The highly sensitive CXCL13 Simoa assay demonstrated ability to identify ON patients and separate MS-ON from ION, and predictive diagnostic values indicates a promising potential of this assay.
Collapse
|
13
|
Zarobkiewicz MK, Kowalska W, Roliński J, Bojarska-Junak AA. γδ T lymphocytes in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 2019; 330:67-73. [PMID: 30831520 DOI: 10.1016/j.jneuroim.2019.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/07/2019] [Accepted: 02/17/2019] [Indexed: 12/18/2022]
Abstract
The aim of the current review is to summarize the results of studies on the role of γδ T cells in the pathogenesis of multiple sclerosis and its animal model - the experimental autoimmune encephalomyelitis. Despite the fact that numerous studies have been performed, the role of γδ T is still not fully understood. It seems that there are two distinct subpopulations - one exacerbating the disease (IL-17-producing) and the other playing a protective role (IFN-γ-secreting). Nevertheless, future studies are required for an understanding of γδ T cells role in multiple sclerosis.
Collapse
Affiliation(s)
| | - Wioleta Kowalska
- Chair and Department of Clinical Immunology, Medical University of Lublin, Poland
| | - Jacek Roliński
- Chair and Department of Clinical Immunology, Medical University of Lublin, Poland
| | | |
Collapse
|
14
|
Wang J, Wang J, Wang J, Yang B, Weng Q, He Q. Targeting Microglia and Macrophages: A Potential Treatment Strategy for Multiple Sclerosis. Front Pharmacol 2019; 10:286. [PMID: 30967783 PMCID: PMC6438858 DOI: 10.3389/fphar.2019.00286] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease of the central nervous system (CNS). The early stage is characterized by relapses and the later stage, by progressive disability. Results from experimental and clinical investigations have demonstrated that microglia and macrophages play a key part in the disease course. These cells actively initiate immune infiltration and the demyelination cascade during the early phase of the disease; however, they promote remyelination and alleviate disease in later stages. This review aims to provide a comprehensive overview of the existing knowledge regarding the neuromodulatory function of macrophages and microglia in the healthy and injured CNS, and it discusses the feasibility of harnessing microglia and macrophage physiology to treat MS. The review encourages further investigations into macrophage-targeted therapy, as well as macrophage-based drug delivery, for realizing efficient treatment strategies for MS.
Collapse
Affiliation(s)
- Jiaying Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Center for Drug Safety Evaluation and Research, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Center for Drug Safety Evaluation and Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Sursiakova NV, Baidina TV, Kuklina EM, Trushnikova TN, Ozhgibesova TV. Factors regulating the activity of b-lymphocytes, as potential biomarkers of multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:24-27. [DOI: 10.17116/jnevro20191192224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Pachner AR, DiSano K, Royce DB, Gilli F. Clinical utility of a molecular signature in inflammatory demyelinating disease. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 6:e520. [PMID: 30568998 PMCID: PMC6278854 DOI: 10.1212/nxi.0000000000000520] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022]
Abstract
Objective We sought to develop molecular biomarkers of intrathecal inflammation to assist neurologists in identifying patients most likely to benefit from a range of immune therapies. Methods We used Luminex technology and index determination to search for an inflammatory activity molecular signature (IAMS) in patients with inflammatory demyelinating disease (IDD), other neuroinflammatory diagnoses, and noninflammatory controls. We then followed the clinical characteristics of these patients to find how the presence of the signature might assist in diagnosis and prognosis. Results A CSF molecular signature consisting of elevated CXCL13, elevated immunoglobulins, normal albumin CSF/serum ratio (Qalbumin), and minimal elevation of cytokines other than CXCL13 provided diagnostic and prognostic value; absence of the signature in IDD predicted lack of subsequent inflammatory events. The signature outperformed oligoclonal bands, which were frequently false positive for active neuroinflammation. Conclusions A CSF IAMS may prove useful in the diagnosis and management of patients with IDD and other neuroinflammatory syndromes. Classification of evidence This study provides Class IV evidence that a CSF IAMS identifies patients with IDD.
Collapse
Affiliation(s)
- Andrew R Pachner
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH
| | - Krista DiSano
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH
| | - Darlene B Royce
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH
| | - Francesca Gilli
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH
| |
Collapse
|
17
|
Mizutani H, Nakane S, Ikeda T, Nakamura H, Takamatsu K, Makino K, Tawara N, Mukaino A, Watari M, Matsui H, Mukasa A, Ando Y. CSF TACI and BAFF levels in patients with primary CNS lymphoma as novel diagnostic biomarkers. Ann Clin Transl Neurol 2018; 5:1611-1616. [PMID: 30564626 PMCID: PMC6292192 DOI: 10.1002/acn3.668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/24/2022] Open
Abstract
We used an enzyme‐linked immunosorbent assay to measure pretreatment B cell‐activating factor belonging to the tumour necrosis factor family (BAFF) and transmembrane activator and CAML‐interactor (TACI) levels in CSF and serum collected from patients with primary central nervous system lymphoma (PCNSL) and control groups. The decision tree analysis of CSF TACI and BAFF levels for patients with a PCNSL diagnosis showed 100% sensitivity and 100% specificity when we attempted to differentiate PCNSL from glioblastoma and CNS inflammatory diseases. The combination of CSF TACI and BAFF levels may thus be a novel and useful diagnostic biomarker of PCNSL.
Collapse
Affiliation(s)
- Hironori Mizutani
- Department of Neurology Graduate School of Medical Sciences Kumamoto University Kumamoto Japan
| | - Shunya Nakane
- Department of Neurology Graduate School of Medical Sciences Kumamoto University Kumamoto Japan.,Department of Molecular Neurology and Therapeutics Kumamoto University Hospital Kumamoto Japan
| | - Tokunori Ikeda
- Department of Neurology Graduate School of Medical Sciences Kumamoto University Kumamoto Japan.,Department of Clinical Investigation (Biostatistics) Kumamoto University Hospital Kumamoto Japan
| | - Hideo Nakamura
- Department of Neurosurgery Graduate School of Medical Sciences Kumamoto University Kumamoto Japan
| | - Koutaro Takamatsu
- Department of Neurology Graduate School of Medical Sciences Kumamoto University Kumamoto Japan
| | - Keishi Makino
- Department of Neurosurgery Graduate School of Medical Sciences Kumamoto University Kumamoto Japan
| | - Nozomu Tawara
- Department of Neurology Graduate School of Medical Sciences Kumamoto University Kumamoto Japan.,Department of Molecular Neurology and Therapeutics Kumamoto University Hospital Kumamoto Japan
| | - Akihiro Mukaino
- Department of Neurology Graduate School of Medical Sciences Kumamoto University Kumamoto Japan.,Department of Molecular Neurology and Therapeutics Kumamoto University Hospital Kumamoto Japan
| | - Mari Watari
- Department of Neurology Graduate School of Medical Sciences Kumamoto University Kumamoto Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine Graduate School of Medical Sciences Kumamoto University Kumamoto Japan
| | - Akitake Mukasa
- Department of Neurosurgery Graduate School of Medical Sciences Kumamoto University Kumamoto Japan
| | - Yukio Ando
- Department of Neurology Graduate School of Medical Sciences Kumamoto University Kumamoto Japan
| |
Collapse
|
18
|
Abreu CM, Soares-Dos-Reis R, Melo PN, Relvas JB, Guimarães J, Sá MJ, Cruz AP, Mendes Pinto I. Emerging Biosensing Technologies for Neuroinflammatory and Neurodegenerative Disease Diagnostics. Front Mol Neurosci 2018; 11:164. [PMID: 29867354 PMCID: PMC5964192 DOI: 10.3389/fnmol.2018.00164] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/30/2018] [Indexed: 01/02/2023] Open
Abstract
Neuroinflammation plays a critical role in the onset and progression of many neurological disorders, including Multiple Sclerosis, Alzheimer's and Parkinson's diseases. In these clinical conditions the underlying neuroinflammatory processes are significantly heterogeneous. Nevertheless, a common link is the chronic activation of innate immune responses and imbalanced secretion of pro and anti-inflammatory mediators. In light of this, the discovery of robust biomarkers is crucial for screening, early diagnosis, and monitoring of neurological diseases. However, the difficulty to investigate biochemical processes directly in the central nervous system (CNS) is challenging. In recent years, biomarkers of CNS inflammatory responses have been identified in different body fluids, such as blood, cerebrospinal fluid, and tears. In addition, progress in micro and nanotechnology has enabled the development of biosensing platforms capable of detecting in real-time, multiple biomarkers in clinically relevant samples. Biosensing technologies are approaching maturity where they will become deployed in community settings, at which point screening programs and personalized medicine will become a reality. In this multidisciplinary review, our goal is to highlight both clinical and recent technological advances toward the development of multiplex-based solutions for effective neuroinflammatory and neurodegenerative disease diagnostics and monitoring.
Collapse
Affiliation(s)
- Catarina M Abreu
- International Iberian Nanotechnology Laboratory, Braga, Portugal.,Medical School, Swansea University, Swansea, United Kingdom
| | - Ricardo Soares-Dos-Reis
- Neurology Department, Centro Hospitalar de São João, Porto, Portugal.,Department of Clinical Neurosciences and Mental Health, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Pedro N Melo
- Graduate Programme in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Joana Guimarães
- Neurology Department, Centro Hospitalar de São João, Porto, Portugal.,Department of Clinical Neurosciences and Mental Health, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Universidade do Porto, Porto, Portugal
| | - Maria José Sá
- Neurology Department, Centro Hospitalar de São João, Porto, Portugal.,Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Porto, Portugal.,Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - Andrea P Cruz
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | |
Collapse
|
19
|
Relation of intrathecal oligoclonal band production to inflammatory mediator and immunotherapy response in 208 children with OMS. J Neuroimmunol 2018; 321:150-156. [PMID: 29685330 DOI: 10.1016/j.jneuroim.2018.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022]
Abstract
In 208 children with opsoclonus-myoclonus syndrome (OMS), CSF IgG oligoclonal bands (OCB) and 22 immunomarkers in CSF and 21 in serum/blood were measured. In 36 untreated OMS, 58% were OCB(+), whereas 55% of treated OMS were OCB(-). OCB positivity or negativity did not alter concentrations or frequencies of immunomarkers. The phenotypes of OCB(+) and OCB(-) patients were not distinctive. CSF B cells were expanded in untreated OMS regardless of OCB positivity. These data reveal a much higher frequency of OCB positivity in untreated OMS than previously realized and a disconnect between intrathecal OCB and inflammatory mediator production.
Collapse
|
20
|
Pranzatelli MR. Advances in Biomarker-Guided Therapy for Pediatric- and Adult-Onset Neuroinflammatory Disorders: Targeting Chemokines/Cytokines. Front Immunol 2018; 9:557. [PMID: 29670611 PMCID: PMC5893838 DOI: 10.3389/fimmu.2018.00557] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 12/26/2022] Open
Abstract
The concept and recognized components of “neuroinflammation” are expanding at the intersection of neurobiology and immunobiology. Chemokines (CKs), no longer merely necessary for immune cell trafficking and positioning, have multiple physiologic, developmental, and modulatory functionalities in the central nervous system (CNS) through neuron–glia interactions and other mechanisms affecting neurotransmission. They issue the “help me” cry of neurons and astrocytes in response to CNS injury, engaging invading lymphoid cells (T cells and B cells) and myeloid cells (dendritic cells, monocytes, and neutrophils) (adaptive immunity), as well as microglia and macrophages (innate immunity), in a cascade of events, some beneficial (reparative), others destructive (excitotoxic). Human cerebrospinal fluid (CSF) studies have been instrumental in revealing soluble immunobiomarkers involved in immune dysregulation, their dichotomous effects, and the cells—often subtype specific—that produce them. CKs/cytokines continue to be attractive targets for the pharmaceutical industry with varying therapeutic success. This review summarizes the developing armamentarium, complexities of not compromising surveillance/physiologic functions, and insights on applicable strategies for neuroinflammatory disorders. The main approach has been using a designer monoclonal antibody to bind directly to the chemo/cytokine. Another approach is soluble receptors to bind the chemo/cytokine molecule (receptor ligand). Recombinant fusion proteins combine a key component of the receptor with IgG1. An additional approach is small molecule antagonists (protein therapeutics, binding proteins, and protein antagonists). CK neutralizing molecules (“neutraligands”) that are not receptor antagonists, high-affinity neuroligands (“decoy molecules”), as well as neutralizing “nanobodies” (single-domain camelid antibody fragment) are being developed. Simultaneous, more precise targeting of more than one cytokine is possible using bispecific agents (fusion antibodies). It is also possible to inhibit part of a signaling cascade to spare protective cytokine effects. “Fusokines” (fusion of two cytokines or a cytokine and CK) allow greater synergistic bioactivity than individual cytokines. Another promising approach is experimental targeting of the NLRP3 inflammasome, amply expressed in the CNS and a key contributor to neuroinflammation. Serendipitous discovery is not to be discounted. Filling in knowledge gaps between pediatric- and adult-onset neuroinflammation by systematic collection of CSF data on CKs/cytokines in temporal and clinical contexts and incorporating immunobiomarkers in clinical trials is a challenge hereby set forth for clinicians and researchers.
Collapse
Affiliation(s)
- Michael R Pranzatelli
- National Pediatric Neuroinflammation Organization, Inc., Orlando, FL, United States.,College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
21
|
Ranger A, Ray S, Szak S, Dearth A, Allaire N, Murray R, Gardner R, Cadavid D, Mi S. Anti-LINGO-1 has no detectable immunomodulatory effects in preclinical and phase 1 studies. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 5:e417. [PMID: 29259995 PMCID: PMC5732005 DOI: 10.1212/nxi.0000000000000417] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/21/2017] [Indexed: 01/23/2023]
Abstract
Objective: To evaluate whether the anti-LINGO-1 antibody has immunomodulatory effects. Methods: Human peripheral blood mononuclear cells (hPBMCs), rat splenocytes, and rat CD4+ T cells were assessed to determine whether LINGO-1 was expressed and was inducible. Anti-LINGO-1 Li81 (0.1–30 μg/mL) effect on proliferation/cytokine production was assessed in purified rat CD4+ T cells and hPBMCs stimulated with antibodies to CD3 +/– CD28. In humans, the effect of 2 opicinumab (anti-LINGO-1/BIIB033; 30, 60, and 100 mg/kg) or placebo IV administrations was evaluated in RNA from blood and CSF samples taken before and after administration in phase 1 clinical trials; paired samples were assessed for differentially expressed genes by microarray. RNA from human CSF cell pellets was analyzed by quantitative real-time PCR for changes in transcripts representative of cell types, activation markers, and soluble proteins of the adaptive/innate immune systems. ELISA quantitated the levels of CXCL13 protein in human CSF supernatants. Results: LINGO-1 is not expressed in hPBMCs, rat splenocytes, or rat CD4+ T cells; LINGO-1 blockade with Li81 did not affect T-cell proliferation or cytokine production from purified rat CD4+ T cells or hPBMCs. LINGO-1 blockade with opicinumab resulted in neither significant changes in immune system gene expression in blood and CSF, nor changes in CXCL13 CSF protein levels (clinical studies). Conclusions: These data support the hypothesis that LINGO-1 blockade does not affect immune function. Classification of evidence: This study provides Class II evidence that in patients with MS, opicinumab does not have immunomodulatory effects detected by changes in immune gene transcript expression.
Collapse
Affiliation(s)
- Ann Ranger
- Biogen (A.R., S.R., S.S., A.D., N.A., D.C., S.M.), Cambridge, MA; MS Clinic of Colorado and IMMUNOe International Research Centers (R.M.), Centennial; and Excel Scientific Solutions (R.G.), Horsham, UK. Dr. Ranger, Dr. Ray, Ms. Dearth, and Dr. Cadavid were employees of Biogen at the time of the studies but have since left the company
| | - Soma Ray
- Biogen (A.R., S.R., S.S., A.D., N.A., D.C., S.M.), Cambridge, MA; MS Clinic of Colorado and IMMUNOe International Research Centers (R.M.), Centennial; and Excel Scientific Solutions (R.G.), Horsham, UK. Dr. Ranger, Dr. Ray, Ms. Dearth, and Dr. Cadavid were employees of Biogen at the time of the studies but have since left the company
| | - Suzanne Szak
- Biogen (A.R., S.R., S.S., A.D., N.A., D.C., S.M.), Cambridge, MA; MS Clinic of Colorado and IMMUNOe International Research Centers (R.M.), Centennial; and Excel Scientific Solutions (R.G.), Horsham, UK. Dr. Ranger, Dr. Ray, Ms. Dearth, and Dr. Cadavid were employees of Biogen at the time of the studies but have since left the company
| | - Andrea Dearth
- Biogen (A.R., S.R., S.S., A.D., N.A., D.C., S.M.), Cambridge, MA; MS Clinic of Colorado and IMMUNOe International Research Centers (R.M.), Centennial; and Excel Scientific Solutions (R.G.), Horsham, UK. Dr. Ranger, Dr. Ray, Ms. Dearth, and Dr. Cadavid were employees of Biogen at the time of the studies but have since left the company
| | - Norm Allaire
- Biogen (A.R., S.R., S.S., A.D., N.A., D.C., S.M.), Cambridge, MA; MS Clinic of Colorado and IMMUNOe International Research Centers (R.M.), Centennial; and Excel Scientific Solutions (R.G.), Horsham, UK. Dr. Ranger, Dr. Ray, Ms. Dearth, and Dr. Cadavid were employees of Biogen at the time of the studies but have since left the company
| | - Ronald Murray
- Biogen (A.R., S.R., S.S., A.D., N.A., D.C., S.M.), Cambridge, MA; MS Clinic of Colorado and IMMUNOe International Research Centers (R.M.), Centennial; and Excel Scientific Solutions (R.G.), Horsham, UK. Dr. Ranger, Dr. Ray, Ms. Dearth, and Dr. Cadavid were employees of Biogen at the time of the studies but have since left the company
| | - Rebecca Gardner
- Biogen (A.R., S.R., S.S., A.D., N.A., D.C., S.M.), Cambridge, MA; MS Clinic of Colorado and IMMUNOe International Research Centers (R.M.), Centennial; and Excel Scientific Solutions (R.G.), Horsham, UK. Dr. Ranger, Dr. Ray, Ms. Dearth, and Dr. Cadavid were employees of Biogen at the time of the studies but have since left the company
| | - Diego Cadavid
- Biogen (A.R., S.R., S.S., A.D., N.A., D.C., S.M.), Cambridge, MA; MS Clinic of Colorado and IMMUNOe International Research Centers (R.M.), Centennial; and Excel Scientific Solutions (R.G.), Horsham, UK. Dr. Ranger, Dr. Ray, Ms. Dearth, and Dr. Cadavid were employees of Biogen at the time of the studies but have since left the company
| | - Sha Mi
- Biogen (A.R., S.R., S.S., A.D., N.A., D.C., S.M.), Cambridge, MA; MS Clinic of Colorado and IMMUNOe International Research Centers (R.M.), Centennial; and Excel Scientific Solutions (R.G.), Horsham, UK. Dr. Ranger, Dr. Ray, Ms. Dearth, and Dr. Cadavid were employees of Biogen at the time of the studies but have since left the company
| |
Collapse
|
22
|
Sellebjerg F, Börnsen L, Ammitzbøll C, Nielsen JE, Vinther-Jensen T, Hjermind LE, von Essen M, Ratzer RL, Soelberg Sørensen P, Romme Christensen J. Defining active progressive multiple sclerosis. Mult Scler 2017; 23:1727-1735. [DOI: 10.1177/1352458517726592] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: It is unknown whether disease activity according to consensus criteria (magnetic resonance imaging activity or clinical relapses) associate with cerebrospinal fluid (CSF) changes in progressive multiple sclerosis (MS). Objective: To compare CSF biomarkers in active and inactive progressive MS according to consensus criteria. Methods: Neurofilament light chain (NFL), myelin basic protein (MBP), IgG-index, chitinase-3-like-1 (CHI3L1), matrix metalloproteinase-9 (MMP-9), chemokine CXCL13, terminal complement complex, leukocyte counts and nitric oxide metabolites were measured in primary ( n = 26) and secondary progressive MS ( n = 26) and healthy controls ( n = 24). Results: Progressive MS patients had higher CSF cell counts, IgG-index, CHI3L1, MMP-9, CXCL13, NFL and MBP concentrations. Active patients were younger and had higher NFL, CXCL13 and MMP-9 concentrations than inactive patients. Patients with active disease according to consensus criteria or detectable CXCL13 or MMP-9 in CSF were defined as having combined active progressive MS. These patients had increased CSF cell counts, IgG-index and MBP, NFL and CHI3L1 concentrations. Combined inactive patients only had increased IgG-index and MBP concentrations. Conclusion: Patients with combined active progressive MS show evidence of inflammation, demyelination and neuronal/axonal damage, whereas the remaining patients mainly show evidence of active demyelination. This challenges the idea that neurodegeneration independent of inflammation is crucial in disease progression.
Collapse
Affiliation(s)
- Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lars Börnsen
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Ammitzbøll
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Erik Nielsen
- Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tua Vinther-Jensen
- Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lena Elisabeth Hjermind
- Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marina von Essen
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Lenhard Ratzer
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Per Soelberg Sørensen
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe Romme Christensen
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Promise, Progress, and Pitfalls in the Search for Central Nervous System Biomarkers in Neuroimmunological Diseases: A Role for Cerebrospinal Fluid Immunophenotyping. Semin Pediatr Neurol 2017; 24:229-239. [PMID: 29103430 PMCID: PMC5697729 DOI: 10.1016/j.spen.2017.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biomarkers are central to the translational medicine strategic focus, though strict criteria need to be applied to their designation and utility. They are one of the most promising areas of medical research, but the "biomarker life-cycle" must be understood to avoid false-positive and false-negative results. Molecular biomarkers will revolutionize the treatment of neurological diseases, but the rate of progress depends on a bold, visionary stance by neurologists, as well as scientists, biotech and pharmaceutical industries, funding agencies, and regulators. One important tool in studying cell-specific biomarkers is multiparameter flow cytometry. Cerebrospinal fluid immunophenotyping, or immune phenotypic subsets, captures the biology of intrathecal inflammatory processes, and has the potential to guide personalized immunotherapeutic selection and monitor treatment efficacy. Though data exist for some disorders, they are surprisingly lacking in many others, identifying a serious deficit to be overcome. Flow cytometric immunophenotyping provides a valuable, available, and feasible "window" into both adaptive and innate components of neuroinflammation that is currently underutilized.
Collapse
|
24
|
Veenstra M, Williams DW, Calderon TM, Anastos K, Morgello S, Berman JW. Frontline Science: CXCR7 mediates CD14 +CD16 + monocyte transmigration across the blood brain barrier: a potential therapeutic target for NeuroAIDS. J Leukoc Biol 2017; 102:1173-1185. [PMID: 28754798 DOI: 10.1189/jlb.3hi0517-167r] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/22/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
CD14+CD16+ monocytes transmigrate into the CNS of HIV-positive people in response to chemokines elevated in the brains of infected individuals, including CXCL12. Entry of these cells leads to viral reservoirs, neuroinflammation, and neuronal damage. These may eventually lead to HIV-associated neurocognitive disorders. Although antiretroviral therapy (ART) has significantly improved the lives of HIV-infected people, the prevalence of cognitive deficits remains unchanged despite ART, still affecting >50% of infected individuals. There are no therapies to reduce these deficits or to prevent CNS entry of CD14+CD16+ monocytes. The goal of this study was to determine whether CXCR7, a receptor for CXCL12, is expressed on CD14+CD16+ monocytes and whether a small molecule CXCR7 antagonist (CCX771) can prevent CD14+CD16+ monocyte transmigration into the CNS. We showed for the first time that CXCR7 is on CD14+CD16+ monocytes and that it may be a therapeutic target to reduce their entry into the brain. We demonstrated that CD14+CD16+ monocytes and not the more abundant CD14+CD16- monocytes or T cells transmigrate to low homeostatic levels of CXCL12. This may be a result of increased CXCR7 on CD14+CD16+ monocytes. We showed that CCX771 reduced transmigration of CD14+CD16+ monocytes but not of CD14+CD16- monocytes from uninfected and HIV-infected individuals and that it reduced CXCL12-mediated chemotaxis of CD14+CD16+ monocytes. We propose that CXCR7 is a therapeutic target on CD14+CD16+ monocytes to limit their CNS entry, thereby reducing neuroinflammation, neuronal damage, and HIV-associated neurocognitive disorders. Our data also suggest that CCX771 may reduce CD14+CD16+ monocyte-mediated inflammation in other disorders.
Collapse
Affiliation(s)
- Mike Veenstra
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kathryn Anastos
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Susan Morgello
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; and
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA; .,Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
25
|
CXCL10 and CXCL13 chemokines in patients with relapsing remitting and primary progressive multiple sclerosis. J Neurol Sci 2017; 380:22-26. [PMID: 28870573 DOI: 10.1016/j.jns.2017.06.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system characterized by a variable clinical course. Different pathogenic mechanisms responsible for relapsing remitting (RRMS) and primary progressive multiple sclerosis (PPMS) are modulated by immunological process with important role of chemokine network. CXCL10 and CXCL13 chemokines act as chemoattractants and modulators of proinflammatory reactions promoting process of demyelination. In the present study, we investigated the concentrations of CXCL10 and CXCL13 in serum and cerebrospinal fluid (CSF) of patients with RRMS and PPMS. MATERIALS AND METHODS The study groups comprised 25 RRMS patients (39,5±12years), 24 PPMS patients (49,9±10,5years), 31 healthy individuals (36±10,4years) with tension headache without symptoms of inflammatory diseases. A quantitive test kit based on ELISA has been used for chemokines measurement. Correlations analysis between the levels of CXCL10, CXCL13 and patient age, duration of MS, EDSS and IgG index were done. RESULTS The mean concentration of CXCL10 in the CSF was statistically significantly higher in RRMS in comparison with the control group. The mean concentration of CXCL13 in the CSF was significantly higher in RRMS and PPMS than in the control group. The results have shown that in the stable phase of MS without relapse, mean concentration of CXCL10 and CXCL13 in CSF did not differ significantly between RRMS and PPMS. In PPMS a positive correlation between IgG index and CSF CXCL10 level or CSF CXCL13 level was observed. In RRMS a positive correlation between IgG index and CSF CXCL13 level was observed. CONCLUSIONS These data indicate involvement of CXCL10 and CXCL13 chemokines in immunopathogenetic mechanisms in MS. There was no significant difference between mean CXCL10 or CXCL13 concentrations in the CSF in both RRMS and PPMS patients. No significant correlations were found between patient age and chemokines levels in theCSF in all groups. It suggest that these chemokines play similar role in inflammatory process despite more pronounced neurodegenerative process in PPMS.
Collapse
|
26
|
Sellebjerg F, Cadavid D, Steiner D, Villar LM, Reynolds R, Mikol D. Exploring potential mechanisms of action of natalizumab in secondary progressive multiple sclerosis. Ther Adv Neurol Disord 2016; 9:31-43. [PMID: 26788129 DOI: 10.1177/1756285615615257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a common and chronic central nervous system (CNS) demyelinating disease and a leading cause of permanent disability. Patients most often present with a relapsing-remitting disease course, typically progressing over time to a phase of relentless advancement in secondary progressive MS (SPMS), for which approved disease-modifying therapies are limited. In this review, we summarize the pathophysiological mechanisms involved in the development of SPMS and the rationale and clinical potential for natalizumab, which is currently approved for the treatment of relapsing forms of MS, to exert beneficial effects in reducing disease progression unrelated to relapses in SPMS. In both forms of MS, active brain-tissue injury is associated with inflammation; but in SPMS, the inflammatory response occurs at least partly behind the blood-brain barrier and is followed by a cascade of events, including persistent microglial activation that may lead to chronic demyelination and neurodegeneration associated with irreversible disability. In patients with relapsing forms of MS, natalizumab therapy is known to significantly reduce intrathecal inflammatory responses which results in reductions in brain lesions and brain atrophy as well as beneficial effects on clinical measures, such as reduced frequency and severity of relapse and reduced accumulation of disability. Natalizumab treatment also reduces levels of cerebrospinal fluid chemokines and other biomarkers of intrathecal inflammation, axonal damage and demyelination, and has demonstrated the ability to reduce innate immune activation and intrathecal immunoglobulin synthesis in patients with MS. The efficacy of natalizumab therapy in SPMS is currently being investigated in a randomized, double-blind, placebo-controlled trial.
Collapse
Affiliation(s)
- Finn Sellebjerg
- Danish Multiple Sclerosis Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Luisa Maria Villar
- Department of Immunology, Ramón y Cajal University Hospital, Institute Ramón y Cajal for Biomedical Research, Madrid, Spain
| | - Richard Reynolds
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | |
Collapse
|
27
|
Stilund M, Gjelstrup MC, Petersen T, Møller HJ, Rasmussen PV, Christensen T. Biomarkers of inflammation and axonal degeneration/damage in patients with newly diagnosed multiple sclerosis: contributions of the soluble CD163 CSF/serum ratio to a biomarker panel. PLoS One 2015; 10:e0119681. [PMID: 25860354 PMCID: PMC4393241 DOI: 10.1371/journal.pone.0119681] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/15/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Expression of soluble CD163 (sCD163), a macrophage/microglia biomarker, is increased in inflammatory conditions, and sCD163 levels in the cerebrospinal fluid (CSF) have recently been shown to be elevated in patients with multiple sclerosis (MS): the sCD163 CSF/serum ratio was elevated in patients with relapsing-remitting MS (RRMS), primary progressive MS (PPMS), and clinically isolated syndrome (CIS) compared with symptomatic controls. OBJECTIVE To investigate the contributions of the sCD163 CSF/serum ratio to a biomarker panel focusing on inflammation and axonal degeneration in newly diagnosed MS; thus optimising a diagnostic biomarker panel for MS. METHODS After a full MS diagnostic work-up, including collection of paired samples of CSF and serum, 125 patients were included in this study. Patients were divided into groups based on their diagnosis, and patients with normal clinical and paraclinical findings were defined as symptomatic controls. Serum and CSF levels, ratios, and indices of sCD163, CXCL13, osteopontin, neopterin, and CSF levels of neurofilament light polypeptide were determined by enzyme-linked immunosorbent assays (ELISAs). For sCD163 the results constitute a post-hoc analysis of already published data. RESULTS All tested biomarkers, notably the sCD163 ratio, the CXCL13 ratio, the NEO ratio, the CSF level of NfL, the IgG index, and the serum level of OPN, were significantly correlated to RRMS, PPMS, and/or CIS. The individual biomarkers in single tests had a lower performance than the IgG index, however, their combined receiver operating characteristic (ROC) curve demonstrated excellent diagnostic discriminatory power. CONCLUSION The biomarker panel showed distinct profiles for each patient group and could be a valuable tool for clinical differentiation of MS subgroups. The combined ROC analysis showed that sCD163 contributes positively as a diagnostic marker to a panel of established MS biomarkers. Patients with PPMS were demonstrated to have significantly elevated levels of both inflammatory and degenerative markers.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Antigens, CD/analysis
- Antigens, CD/blood
- Antigens, CD/cerebrospinal fluid
- Antigens, Differentiation, Myelomonocytic/analysis
- Antigens, Differentiation, Myelomonocytic/blood
- Antigens, Differentiation, Myelomonocytic/cerebrospinal fluid
- Area Under Curve
- Axons/metabolism
- Biomarkers/analysis
- Biomarkers/blood
- Biomarkers/cerebrospinal fluid
- Chemokine CXCL13/blood
- Chemokine CXCL13/cerebrospinal fluid
- Enzyme-Linked Immunosorbent Assay
- Female
- Humans
- Inflammation/metabolism
- Linear Models
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Microglia/metabolism
- Middle Aged
- Multiple Sclerosis/cerebrospinal fluid
- Multiple Sclerosis/diagnosis
- Multiple Sclerosis, Chronic Progressive/cerebrospinal fluid
- Multiple Sclerosis, Chronic Progressive/diagnosis
- Multiple Sclerosis, Relapsing-Remitting/cerebrospinal fluid
- Multiple Sclerosis, Relapsing-Remitting/diagnosis
- Neopterin/blood
- Neopterin/cerebrospinal fluid
- Osteopontin/blood
- Osteopontin/cerebrospinal fluid
- ROC Curve
- Receptors, Cell Surface/analysis
- Receptors, Cell Surface/blood
- Young Adult
Collapse
Affiliation(s)
- Morten Stilund
- Department of Neurology, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
- Department of Biomedicine, Bartholin Building, Wilhelm Meyers Allé 4, Aarhus University, DK-8000 Aarhus C, Denmark
- * E-mail:
| | - Mikkel Carstensen Gjelstrup
- Department of Biomedicine, Bartholin Building, Wilhelm Meyers Allé 4, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Thor Petersen
- Department of Neurology, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
| | | | - Tove Christensen
- Department of Biomedicine, Bartholin Building, Wilhelm Meyers Allé 4, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
28
|
Si MY, Fan ZC, Li YZ, Chang XL, Xie QD, Jiao XY. The prognostic significance of serum and cerebrospinal fluid MMP-9, CCL2 and sVCAM-1 in leukemia CNS metastasis. J Neurooncol 2015; 122:229-44. [PMID: 25630624 DOI: 10.1007/s11060-014-1707-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/24/2014] [Indexed: 02/05/2023]
Abstract
Metastasis to the central nervous system (CNS) is the primary obstacle in leukemia treatment. Matrix metalloproteinase-9 (MMP-9), chemokine ligand-2 (CCL2) and soluble vascular adhesion molecule-1 (sVCAM-1) play crucial roles in tumor cell adhesion, motivation and survival, but their roles in leukemia CNS metastasis remain to be elucidated. We investigated the prognostic significance of serum and cerebrospinal fluid (CSF) MMP-9, CCL2 and sVCAM-1 in leukemia patients to explore their potential as predictive biomarkers of the development of CNS leukemia (CNSL). MMP-9, CCL2 and sVCAM-1 were measured in paired CSF and serum samples collecting from 33 leukemia patients with or without CNS metastasis. Other risk factors related to CNSL prognosis were also analyzed. sVCAM-1Serum and CCL2Serum/CSF were significantly higher in the CNSL group than in the non-CNSL group and the controls (p < 0.05). MMP-9Serum was insignificantly lower in the CNSL group than in the non-CNSL group and the controls (p > 0.05). No differences were found for the sVCAM-1Serum, CCL2Serum, and MMP-9Serum levels between non-CNSL patients and controls (p > 0.05). MMP-9CSF was significantly higher in the CNSL group than both the non-CNSL and the control groups (p < 0.05). The indexes of sVCAM-1, CCL2, and MMP-9 in the CNSL group were lower than in the controls (p < 0.05). Positive correlations were determined between the MMP-9CSF and the ALBCSF/BBB value/WBCCSF, between sVCAM-1Serum and the WBCCSF/BBB value. Negative correlations existed between MMP-9Serum and the ALBCSF/BBB value/WBCCSF, and between the CCL2 index and ALBCSF. sVCAM-1Serum was positively associated with event-free survival (EFS), and patients with higher levels of ALBCSF, MMP-9CSF/Serum, CCL2CSF/Serum, and sVCAM-1CSF/Serum had shorter EFS. MMP-9CSF, CCL2CSF and sVCAM-1CSF are the first three principal components analyzed by cluster and principal component analysis. Our data suggest that MMP-9, CCL2 and sVCAM-1 in the CSF may be more potent than serum in predicting the possibility of leukemia metastatic CNS and the outcome of CNSL patients.
Collapse
Affiliation(s)
- Meng-Ya Si
- Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, China
| | | | | | | | | | | |
Collapse
|
29
|
Bonechi E, Aldinucci A, Mazzanti B, di Gioia M, Repice AM, Manuelli C, Saccardi R, Massacesi L, Ballerini C. Increased CXCL10 expression in MS MSCs and monocytes is unaffected by AHSCT. Ann Clin Transl Neurol 2014; 1:650-8. [PMID: 25493279 PMCID: PMC4241792 DOI: 10.1002/acn3.92] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/25/2014] [Accepted: 07/15/2014] [Indexed: 01/04/2023] Open
Abstract
Objective To confirm CXCL10 over production in bone marrow mesenchymal stem cells (MSCs) and circulating monocytes isolated from multiple sclerosis patients (MS) and identify predate cell molecular signature; to extend this analysis after autologous hematopoietic stem cell transplantation (AHSCT) to test if therapy has modifying effects on MSCs and circulating monocytes. Methods MSCs and monocytes were isolated from 19 MS patients who undergone AHSCT before and seven of them at least 3 years after transplant. CXCL10 production was detected after LPS/IFN-γ stimulation. TLR4 signaling pathways were investigated by means of transcription factors phosphorylation/activation level. RT-PCR of activated transcription factors was performed to quantify their expression. All experiments were conducted in parallel with 24 matched healthy donors (HD). Results CXCL10 expression was significantly increased in both peripheral circulating monocytes and BM MSCs compared to HD. We showed that CXCL10 production is determined by an altered signaling pathway downstream TLR4, with the involvement of STAT-1, NF-κB, p38, JNK, and CREB. All upregulated transcription factors are more phosphorylated in MS patient sample. These features are not modified after AHSCT. Interpretation We demonstrated that in MS two different cell lineages are characterized by significantly increased production of CXCL10, due to altered signaling pathways of innate immune reaction mediated by TLR4, probably associated with disease phenotype. This characteristic is not modified by AHSCT, suggesting that when T and B lymphocytes are reset, other possible components of MS pathology, such as CXCL10 over production, do not determine therapy outcome.
Collapse
Affiliation(s)
- Elena Bonechi
- Dept. NEUROFARBA, University of Florence Florence, Italy
| | | | | | | | | | | | | | - Luca Massacesi
- Dept. NEUROFARBA, University of Florence Florence, Italy
| | | |
Collapse
|
30
|
Cristofanilli M, Rosenthal H, Cymring B, Gratch D, Pagano B, Xie B, Sadiq SA. Progressive multiple sclerosis cerebrospinal fluid induces inflammatory demyelination, axonal loss, and astrogliosis in mice. Exp Neurol 2014; 261:620-32. [PMID: 25111532 DOI: 10.1016/j.expneurol.2014.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 01/10/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory demyelination and neurodegeneration throughout the CNS, which lead over time to a condition of irreversible functional decline known as progressive MS. Currently, there are no satisfactory treatments for this condition because the mechanisms that underlie disease progression are not well understood. This is partly due to the lack of a specific animal model that represents progressive MS. We investigated the effects of intracerebroventricular injections of cerebrospinal fluid (CSF) derived from untreated primary progressive (PPMS), secondary progressive (SPMS), and relapsing/remitting (RRMS) MS patients into mice. We found discrete inflammatory demyelinating lesions containing macrophages, B cell and T cell infiltrates in the brains of animals injected with CSF from patients with progressive MS. These lesions were rarely found in animals injected with RRMS-CSF and never in those treated with control-CSF. Animals that developed brain lesions also presented extensive inflammation in their spinal cord. However, discrete spinal cord lesions were rare and only seen in animals injected with PPMS-CSF. Axonal loss and astrogliosis were seen within the lesions following the initial demyelination. In addition, Th17 cell activity was enhanced in the CNS and in lymph nodes of progressive MS-CSF injected animals compared to controls. Furthermore, CSF derived from MS patients who were clinically stable following therapy had greatly diminished capacity to induce CNS lesions in mice. Finally, we provided evidence suggesting that differential expression of pro-inflammatory cytokines present in the progressive MS CSF might be involved in the observed mouse pathology. Our data suggests that the agent(s) responsible for the demyelination and neurodegeneration characteristic of progressive MS is present in patient CSF and is amenable to further characterization in experimental models of the disease.
Collapse
Affiliation(s)
| | | | - Barbara Cymring
- Tisch MS Research Center of New York, New York, NY 10019, USA
| | - Daniel Gratch
- Tisch MS Research Center of New York, New York, NY 10019, USA
| | - Benjamin Pagano
- Tisch MS Research Center of New York, New York, NY 10019, USA
| | - Boxun Xie
- Tisch MS Research Center of New York, New York, NY 10019, USA
| | - Saud A Sadiq
- Tisch MS Research Center of New York, New York, NY 10019, USA.
| |
Collapse
|
31
|
Bogie JFJ, Stinissen P, Hendriks JJA. Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol 2014; 128:191-213. [PMID: 24952885 DOI: 10.1007/s00401-014-1310-2] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/10/2014] [Accepted: 06/15/2014] [Indexed: 12/11/2022]
Abstract
Along with microglia and monocyte-derived macrophages, macrophages in the perivascular space, choroid plexus, and meninges are the principal effector cells in neuroinflammatory and neurodegenerative disorders. These phagocytes are highly heterogeneous cells displaying spatial- and temporal-dependent identities in the healthy, injured, and inflamed CNS. In the last decade, researchers have debated on whether phagocytes subtypes and phenotypes are pathogenic or protective in CNS pathologies. In the context of this dichotomy, we summarize and discuss the current knowledge on the spatiotemporal physiology of macrophage subsets and microglia in the healthy and diseased CNS, and elaborate on factors regulating their behavior. In addition, the impact of macrophages present in lymphoid organs on CNS pathologies is defined. The prime focus of this review is on multiple sclerosis (MS), which is characterized by inflammation, demyelination, neurodegeneration, and CNS repair, and in which microglia and macrophages have been extensively scrutinized. On one hand, microglia and macrophages promote neuroinflammatory and neurodegenerative events in MS by releasing inflammatory mediators and stimulating leukocyte activity and infiltration into the CNS. On the other hand, microglia and macrophages assist in CNS repair through the production of neurotrophic factors and clearance of inhibitory myelin debris. Finally, we define how microglia and macrophage physiology can be harnessed for new therapeutics aimed at suppressing neuroinflammatory and cytodegenerative events, as well as promoting CNS repair. We conclude that microglia and macrophages are highly dynamic cells displaying disease stage and location-specific fates in neurological disorders. Changing the physiology of divergent phagocyte subsets at particular disease stages holds promise for future therapeutics for CNS pathologies.
Collapse
Affiliation(s)
- Jeroen F J Bogie
- Hasselt University, Biomedisch Onderzoeksinstituut and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | | | | |
Collapse
|
32
|
Bsibsi M, Peferoen LAN, Holtman IR, Nacken PJ, Gerritsen WH, Witte ME, van Horssen J, Eggen BJL, van der Valk P, Amor S, van Noort JM. Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol 2014; 128:215-29. [PMID: 24997049 DOI: 10.1007/s00401-014-1317-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 01/08/2023]
Abstract
Activated microglia and macrophages play a key role in driving demyelination during multiple sclerosis (MS), but the factors responsible for their activation remain poorly understood. Here, we present evidence for a dual-trigger role of IFN-γ and alpha B-crystallin (HSPB5) in this context. In MS-affected brain tissue, accumulation of the molecular chaperone HSPB5 by stressed oligodendrocytes is a frequent event. We have shown before that this triggers a TLR2-mediated protective response in surrounding microglia, the molecular signature of which is widespread in normal-appearing brain tissue during MS. Here, we show that IFN-γ, which can be released by infiltrated T cells, changes the protective response of microglia and macrophages to HSPB5 into a robust pro-inflammatory classical response. Exposure of cultured microglia and macrophages to IFN-γ abrogated subsequent IL-10 induction by HSPB5, and strongly promoted HSPB5-triggered release of TNF-α, IL-6, IL-12, IL-1β and reactive oxygen and nitrogen species. In addition, high levels of CXCL9, CXCL10, CXL11, several guanylate-binding proteins and the ubiquitin-like protein FAT10 were induced by combined activation with IFN-γ and HSPB5. As immunohistochemical markers for microglia and macrophages exposed to both IFN-γ and HSPB5, these latter factors were found to be selectively expressed in inflammatory infiltrates in areas of demyelination during MS. In contrast, they were absent from activated microglia in normal-appearing brain tissue. Together, our data suggest that inflammatory demyelination during MS is selectively associated with IFN-γ-induced re-programming of an otherwise protective response of microglia and macrophages to the endogenous TLR2 agonist HSPB5.
Collapse
Affiliation(s)
- Malika Bsibsi
- Delta Crystallon, Zernikedreef 9, 2333, CK Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|