1
|
Damiano OM, Stevens AJ, Kenwright DN, Seddon AR. Chronic Inflammation to Cancer: The Impact of Oxidative Stress on DNA Methylation. FRONT BIOSCI-LANDMRK 2025; 30:26142. [PMID: 40152377 DOI: 10.31083/fbl26142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 03/29/2025]
Abstract
The genomic landscape of cancer cells is complex and heterogeneous, with aberrant DNA methylation being a common observation. Growing evidence indicates that oxidants produced from immune cells may interact with epigenetic processes, and this may represent a mechanism for the initiation of altered epigenetic patterns observed in both precancerous and cancerous cells. Around 20% of cancers are linked to chronic inflammatory conditions, yet the precise mechanisms connecting inflammation with cancer progression remain unclear. During chronic inflammation, immune cells release oxidants in response to stimuli, which, in high concentrations, can cause cytotoxic effects. Oxidants are known to damage DNA and proteins and disrupt normal signalling pathways, potentially initiating a sequence of events that drives carcinogenesis. While research on the impact of immune cell-derived oxidants on DNA methylation remains limited, this mechanism may represent a crucial link between chronic inflammation and cancer development. This review examines current evidence on inflammation-associated DNA methylation changes in cancers related to chronic inflammation.
Collapse
Affiliation(s)
- Olivia M Damiano
- Genetics and Epigenetics Research Group, Department of Pathology and Molecular Medicine, University of Otago, 6021 Wellington, New Zealand
| | - Aaron J Stevens
- Genetics and Epigenetics Research Group, Department of Pathology and Molecular Medicine, University of Otago, 6021 Wellington, New Zealand
| | - Diane N Kenwright
- Genetics and Epigenetics Research Group, Department of Pathology and Molecular Medicine, University of Otago, 6021 Wellington, New Zealand
| | - Annika R Seddon
- Genetics and Epigenetics Research Group, Department of Pathology and Molecular Medicine, University of Otago, 6021 Wellington, New Zealand
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, 8011 Christchurch, New Zealand
| |
Collapse
|
2
|
Russo C, Valle MS, D’Angeli F, Surdo S, Giunta S, Barbera AC, Malaguarnera L. Beneficial Effects of Manilkara zapota-Derived Bioactive Compounds in the Epigenetic Program of Neurodevelopment. Nutrients 2024; 16:2225. [PMID: 39064669 PMCID: PMC11280255 DOI: 10.3390/nu16142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diet has a long-dated effect not only on the disease risk in offspring but also on the occurrence of future neurological diseases. During ontogeny, changes in the epigenetic state that shape morphological and functional differentiation of several brain areas can affect embryonic fetal development. Many epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs control brain gene expression, both in the course of neurodevelopment and in adult brain cognitive functions. Epigenetic alterations have been linked to neuro-evolutionary disorders with intellectual disability, plasticity, and memory and synaptic learning disorders. Epigenetic processes act specifically, affecting different regions based on the accessibility of chromatin and cell-specific states, facilitating the establishment of lost balance. Recent insights have underscored the interplay between epigenetic enzymes active during embryonic development and the presence of bioactive compounds, such as vitamins and polyphenols. The fruit of Manilkara zapota contains a rich array of these bioactive compounds, which are renowned for their beneficial properties for health. In this review, we delve into the action of each bioactive micronutrient found in Manilkara zapota, elucidating their roles in those epigenetic mechanisms crucial for neuronal development and programming. Through a comprehensive understanding of these interactions, we aim to shed light on potential avenues for harnessing dietary interventions to promote optimal neurodevelopment and mitigate the risk of neurological disorders.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Salvatore Giunta
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Carlo Barbera
- Section of Agronomy and Field Crops, Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| |
Collapse
|
3
|
Mathew AR, Di Matteo G, La Rosa P, Barbati SA, Mannina L, Moreno S, Tata AM, Cavallucci V, Fidaleo M. Vitamin B12 Deficiency and the Nervous System: Beyond Metabolic Decompensation-Comparing Biological Models and Gaining New Insights into Molecular and Cellular Mechanisms. Int J Mol Sci 2024; 25:590. [PMID: 38203763 PMCID: PMC10778862 DOI: 10.3390/ijms25010590] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Vitamin B12 (VitB12) is a micronutrient and acts as a cofactor for fundamental biochemical reactions: the synthesis of succinyl-CoA from methylmalonyl-CoA and biotin, and the synthesis of methionine from folic acid and homocysteine. VitB12 deficiency can determine a wide range of diseases, including nervous system impairments. Although clinical evidence shows a direct role of VitB12 in neuronal homeostasis, the molecular mechanisms are yet to be characterized in depth. Earlier investigations focused on exploring the biochemical shifts resulting from a deficiency in the function of VitB12 as a coenzyme, while more recent studies propose a broader mechanism, encompassing changes at the molecular/cellular levels. Here, we explore existing study models employed to investigate the role of VitB12 in the nervous system, including the challenges inherent in replicating deficiency/supplementation in experimental settings. Moreover, we discuss the potential biochemical alterations and ensuing mechanisms that might be modified at the molecular/cellular level (such as epigenetic modifications or changes in lysosomal activity). We also address the role of VitB12 deficiency in initiating processes that contribute to nervous system deterioration, including ROS accumulation, inflammation, and demyelination. Consequently, a complex biological landscape emerges, requiring further investigative efforts to grasp the intricacies involved and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Aimee Rachel Mathew
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (A.M.T.)
| | - Giacomo Di Matteo
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy; (G.D.M.); (L.M.)
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy;
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Saviana Antonella Barbati
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Luisa Mannina
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy; (G.D.M.); (L.M.)
| | - Sandra Moreno
- Department of Science, University Roma Tre, 00146 Rome, Italy;
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Ada Maria Tata
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (A.M.T.)
- Research Centre of Neurobiology “Daniel Bovet”, Sapienza University of Rome, 00185 Rome, Italy
| | - Virve Cavallucci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco Fidaleo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (A.M.T.)
- Research Center for Nanotechnology Applied to Engineering (CNIS), Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
4
|
Beatriz Cristina Biz T, Carolina de Sousa CS, Frank John S, Miriam Galvonas J. LncRNAs in melanoma phenotypic plasticity: emerging targets for promising therapies. RNA Biol 2024; 21:81-93. [PMID: 39498940 PMCID: PMC11540095 DOI: 10.1080/15476286.2024.2421672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have received growing attention due to their diverse regulatory roles in cancer, including in melanoma, an aggressive type of skin cancer. The plasticity and phenotypic adaptability of melanoma cells are crucial factors contributing to therapeutic resistance. The identification of molecules playing key roles in melanoma cell plasticity could unravel novel and more effective therapeutic targets. This review presents current concepts of melanoma cell plasticity, illustrating its fluidity and dismissing the outdated notion of epithelial-mesenchymal-like transition as a simplistic binary process. Emphasis is placed on the pivotal role of lncRNAs in orchestrating cell plasticity, employing various mechanisms recently elucidated and unveiling their potential as promising targets for novel therapeutic strategies. Insights into the molecular mechanisms coordinated by lncRNAs in melanoma pave the way for the development of RNA-based therapies, holding great promise for enhancing treatment outcomes and offering a glimpse into a more effective approach to melanoma treatment.
Collapse
Affiliation(s)
- Tonin Beatriz Cristina Biz
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Slack Frank John
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Jasiulionis Miriam Galvonas
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Eller-Borges R, Rodrigues EG, Teodoro ACS, Moraes MS, Arruda DC, Paschoalin T, Curcio MF, da Costa PE, Do Nascimento IR, Calixto LA, Stern A, Monteiro HP, Batista WL. Bradykinin promotes murine melanoma cell migration and invasion through endogenous production of superoxide and nitric oxide. Nitric Oxide 2023; 132:15-26. [PMID: 36736618 DOI: 10.1016/j.niox.2023.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Spatial confinement and temporal regulation of signaling by nitric oxide (NO) and reactive oxygen species (ROS) occurs in cancer cells. Signaling mediated by NO and ROS was investigated in two sub clones of the murine melanoma B16F10-Nex2 cell line, Nex10C and Nex8H treated or not with bradykinin (BK). The sub clone Nex10C, similar to primary site cells, has a low capacity for colonizing the lungs, whereas the sub clone Nex8H, similar to metastatic cells, corresponds to a highly invasive melanoma. BK-treated Nex10C cells exhibited a transient increase in NO and an inhibition in basal O2- levels. Inhibition of endogenous NO production by l-NAME resulted in detectable levels of O2-. l-NAME promoted Rac1 activation and enhanced Rac1-PI3K association. l-NAME in the absence of BK resulted in Nex10C cell migration and invasion, suggesting that NO is a negative regulator of O2- mediated cell migration and cell invasion. BK-treated Nex8H cells sustained endogenous NO production through the activation of NOS3. NO activated Rac1 and promoted Rac1-PI3K association. NO stimulated cell migration and cell invasion through a signaling axis involving Ras, Rac1 and PI3K. In conclusion, a role for O2- and NO as positive regulators of Rac1-PI3K signaling associated with cell migration and cell invasion is proposed respectively for Nex10C and Nex8H murine melanoma cells.
Collapse
Affiliation(s)
- Roberta Eller-Borges
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Elaine G Rodrigues
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Caroline S Teodoro
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Miriam S Moraes
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Denise C Arruda
- Núcleo Integrado de Biotecnologia (NIB), Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, São Paulo, Brazil
| | - Thaysa Paschoalin
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marli F Curcio
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paulo E da Costa
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Igor R Do Nascimento
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Leandro A Calixto
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Arnold Stern
- New York University Grossman School of Medicine, New York, NY, USA
| | - Hugo P Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Wagner L Batista
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil.
| |
Collapse
|
6
|
Zhang X, Li H, Liu C, Yuan X. Role of ROS‑mediated autophagy in melanoma (Review). Mol Med Rep 2022; 26:303. [PMID: 35946460 PMCID: PMC9434998 DOI: 10.3892/mmr.2022.12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/22/2022] [Indexed: 11/06/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer with the poorest prognosis and its pathogenesis has yet to be fully elucidated. As key factors that regulate cellular homeostasis, both reactive oxygen species (ROS) and autophagy are involved in the development of melanoma, from melanomagenesis to progression and drug resistance. However, the interaction between ROS and autophagy in the etiology and treatment of melanoma is not well characterized. The present review examined the production of ROS and the role of oxidative stress in melanoma, and summarized the role of ROS‑mediated autophagy in melanomagenesis and melanoma cell fate decision following treatment with various anticancer drugs. The present findings may lead to a better understanding of the pathogenesis and progression of melanoma, and suggest promising treatment options for this disease.
Collapse
Affiliation(s)
- Xuebing Zhang
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Huaijun Li
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Chengxiang Liu
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Xingxing Yuan
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
7
|
Soares JPM, Gonçalves DA, de Sousa RX, Mouro MG, Higa EMS, Sperandio LP, Vitoriano CM, Rosa EBS, dos Santos FO, de Queiroz GN, Yamaguchi RSS, Pereira G, Icimoto MY, de Melo FHM. Disruption of Redox Homeostasis by Alterations in Nitric Oxide Synthase Activity and Tetrahydrobiopterin along with Melanoma Progression. Int J Mol Sci 2022; 23:5979. [PMID: 35682659 PMCID: PMC9181279 DOI: 10.3390/ijms23115979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Cutaneous melanoma emerges from the malignant transformation of melanocytes and is the most aggressive type of skin cancer. The progression can occur in different stages: radial growth phase (RGP), vertical growth phase (VGP), and metastasis. Reactive oxygen species contribute to all phases of melanomagenesis through the modulation of oncogenic signaling pathways. Tetrahydrobiopterin (BH4) is an important cofactor for NOS coupling, and an uncoupled enzyme is a source of superoxide anion (O2•-) rather than nitric oxide (NO), altering the redox homeostasis and contributing to melanoma progression. In the present work, we showed that the BH4 amount varies between different cell lines corresponding to distinct stages of melanoma progression; however, they all presented higher O2•- levels and lower NO levels compared to melanocytes. Our results showed increased NOS expression in melanoma cells, contributing to NOS uncoupling. BH4 supplementation of RGP cells, and the DAHP treatment of metastatic melanoma cells reduced cell growth. Finally, Western blot analysis indicated that both treatments act on the PI3K/AKT and MAPK pathways of these melanoma cells in different ways. Disruption of cellular redox homeostasis by the altered BH4 concentration can be explored as a therapeutic strategy according to the stage of melanoma.
Collapse
Affiliation(s)
- Jaqueline Pereira Moura Soares
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo 01224-001, Brazil; (J.P.M.S.); (R.X.d.S.); (R.S.S.Y.)
| | - Diego Assis Gonçalves
- Department of Parasitology, Microbiology and Immunology, Juiz de Fora Federal University, Juiz de Fora 36036-900, Brazil;
- Micro-Imuno-Parasitology Department, Federal University of Sao Paulo, São Paulo 05508-090, Brazil
| | - Ricardo Xisto de Sousa
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo 01224-001, Brazil; (J.P.M.S.); (R.X.d.S.); (R.S.S.Y.)
| | - Margareth Gori Mouro
- Nefrology Discipline, Federal University of Sao Paulo, São Paulo 05508-090, Brazil; (M.G.M.); (E.M.S.H.)
| | - Elisa M. S. Higa
- Nefrology Discipline, Federal University of Sao Paulo, São Paulo 05508-090, Brazil; (M.G.M.); (E.M.S.H.)
| | - Letícia Paulino Sperandio
- Department of Pharmacology, Federal University of Sao Paulo, São Paulo 05508-090, Brazil; (L.P.S.); (G.P.)
| | - Carolina Moraes Vitoriano
- Department of Pharmacology, Institute of Biomedical Science, Universidade de São Paulo, São Paulo 05505-000, Brazil; (C.M.V.); (E.B.S.R.); (F.O.d.S.); (G.N.d.Q.)
| | - Elisa Bachir Santa Rosa
- Department of Pharmacology, Institute of Biomedical Science, Universidade de São Paulo, São Paulo 05505-000, Brazil; (C.M.V.); (E.B.S.R.); (F.O.d.S.); (G.N.d.Q.)
| | - Fernanda Oliveira dos Santos
- Department of Pharmacology, Institute of Biomedical Science, Universidade de São Paulo, São Paulo 05505-000, Brazil; (C.M.V.); (E.B.S.R.); (F.O.d.S.); (G.N.d.Q.)
| | - Gustavo Nery de Queiroz
- Department of Pharmacology, Institute of Biomedical Science, Universidade de São Paulo, São Paulo 05505-000, Brazil; (C.M.V.); (E.B.S.R.); (F.O.d.S.); (G.N.d.Q.)
| | - Roberta Sessa Stilhano Yamaguchi
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo 01224-001, Brazil; (J.P.M.S.); (R.X.d.S.); (R.S.S.Y.)
| | - Gustavo Pereira
- Department of Pharmacology, Federal University of Sao Paulo, São Paulo 05508-090, Brazil; (L.P.S.); (G.P.)
| | - Marcelo Yudi Icimoto
- Biophysics Department, Federal University of Sao Paulo, São Paulo 05508-090, Brazil;
| | - Fabiana Henriques Machado de Melo
- Department of Pharmacology, Institute of Biomedical Science, Universidade de São Paulo, São Paulo 05505-000, Brazil; (C.M.V.); (E.B.S.R.); (F.O.d.S.); (G.N.d.Q.)
- Institute of Medical Assistance to Public Servants of the State (IAMSPE), São Paulo 04039-000, Brazil
| |
Collapse
|
8
|
De Beck L, Awad RM, Basso V, Casares N, De Ridder K, De Vlaeminck Y, Gnata A, Goyvaerts C, Lecocq Q, San José-Enériz E, Verhulst S, Maes K, Vanderkerken K, Agirre X, Prosper F, Lasarte JJ, Mondino A, Breckpot K. Inhibiting Histone and DNA Methylation Improves Cancer Vaccination in an Experimental Model of Melanoma. Front Immunol 2022; 13:799636. [PMID: 35634329 PMCID: PMC9134079 DOI: 10.3389/fimmu.2022.799636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has improved the treatment of malignant skin cancer of the melanoma type, yet overall clinical response rates remain low. Combination therapies could be key to meet this cogent medical need. Because epigenetic hallmarks represent promising combination therapy targets, we studied the immunogenic potential of a dual inhibitor of histone methyltransferase G9a and DNA methyltransferases (DNMTs) in the preclinical B16-OVA melanoma model. Making use of tumor transcriptomic and functional analyses, methylation-targeted epigenetic reprogramming was shown to induce tumor cell cycle arrest and apoptosis in vitro coinciding with transient tumor growth delay and an IFN-I response in immune-competent mice. In consideration of a potential impact on immune cells, the drug was shown not to interfere with dendritic cell maturation or T-cell activation in vitro. Notably, the drug promoted dendritic cell and, to a lesser extent, T-cell infiltration in vivo, yet failed to sensitize tumor cells to programmed cell death-1 inhibition. Instead, it increased therapeutic efficacy of TCR-redirected T cell and dendritic cell vaccination, jointly increasing overall survival of B16-OVA tumor-bearing mice. The reported data confirm the prospect of methylation-targeted epigenetic reprogramming in melanoma and sustain dual G9a and DNMT inhibition as a strategy to tip the cancer-immune set-point towards responsiveness to active and adoptive vaccination against melanoma.
Collapse
Affiliation(s)
- Lien De Beck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Veronica Basso
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Noelia Casares
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
| | - Kirsten De Ridder
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Alessandra Gnata
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Edurne San José-Enériz
- Hemato-Oncology Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ken Maes
- Laboratory of Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Center for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Karin Vanderkerken
- Laboratory of Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Xabier Agirre
- Hemato-Oncology Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
- Laboratory of Cancer Epigenetics, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Felipe Prosper
- Hemato-Oncology Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
- Laboratory of Cancer Epigenetics, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
9
|
Mani S, Swargiary G, Ralph SJ. Targeting the redox imbalance in mitochondria: A novel mode for cancer therapy. Mitochondrion 2021; 62:50-73. [PMID: 34758363 DOI: 10.1016/j.mito.2021.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Changes in reactive oxygen species (ROS) levels affect many aspects of cell behavior. During carcinogenesis, moderate ROS production modifies gene expression to alter cell function, elevating metabolic activity and ROS. To avoid extreme ROS-activated death, cancer cells increase antioxidative capacity, regulating sustained ROS levels that promote growth. Anticancer therapies are exploring inducing supranormal, cytotoxic oxidative stress levels either inhibiting antioxidative capacity or promoting excess ROS to selectively destroy cancer cells, triggering mechanisms such as apoptosis, autophagy, necrosis, or ferroptosis. This review exemplifies pro-oxidants (natural/synthetic/repurposed drugs) and their clinical significance as cancer therapies providing revolutionary approaches.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India.
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Stephen J Ralph
- School of Medical Science, Griffith University, Southport, Australia.
| |
Collapse
|
10
|
de Melo FHM, Gonçalves DA, de Sousa RX, Icimoto MY, Fernandes DDC, Laurindo FRM, Jasiulionis MG. Metastatic Melanoma Progression Is Associated with Endothelial Nitric Oxide Synthase Uncoupling Induced by Loss of eNOS:BH4 Stoichiometry. Int J Mol Sci 2021; 22:9556. [PMID: 34502464 PMCID: PMC8430733 DOI: 10.3390/ijms22179556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
Melanoma is the most aggressive type of skin cancer due to its high capability of developing metastasis and acquiring chemoresistance. Altered redox homeostasis induced by increased reactive oxygen species is associated with melanomagenesis through modulation of redox signaling pathways. Dysfunctional endothelial nitric oxide synthase (eNOS) produces superoxide anion (O2-•) and contributes to the establishment of a pro-oxidant environment in melanoma. Although decreased tetrahydrobiopterin (BH4) bioavailability is associated with eNOS uncoupling in endothelial and human melanoma cells, in the present work we show that eNOS uncoupling in metastatic melanoma cells expressing the genes from de novo biopterin synthesis pathway Gch1, Pts, and Spr, and high BH4 concentration and BH4:BH2 ratio. Western blot analysis showed increased expression of Nos3, altering the stoichiometry balance between eNOS and BH4, contributing to NOS uncoupling. Both treatment with L-sepiapterin and eNOS downregulation induced increased nitric oxide (NO) and decreased O2• levels, triggering NOS coupling and reducing cell growth and resistance to anoikis and dacarbazine chemotherapy. Moreover, restoration of eNOS activity impaired tumor growth in vivo. Finally, NOS3 expression was found to be increased in human metastatic melanoma samples compared with the primary site. eNOS dysfunction may be an important mechanism supporting metastatic melanoma growth and hence a potential target for therapy.
Collapse
Affiliation(s)
- Fabiana Henriques Machado de Melo
- Pharmacology Department, Universidade Federal de São Paulo, São Paulo 05508-090, Brazil
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-060, Brazil
| | - Diego Assis Gonçalves
- Micro-Imuno-Parasitology Department, Universidade Federal de São Paulo, São Paulo 05508-090, Brazil;
- Parasitology Department, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Ricardo Xisto de Sousa
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo 01221-020, Brazil;
| | - Marcelo Yudi Icimoto
- Biophysics Department, Universidade Federal de São Paulo, São Paulo 05508-090, Brazil;
| | - Denise de Castro Fernandes
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo 05508-060, Brazil; (D.d.C.F.); (F.R.M.L.)
| | - Francisco R. M. Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo 05508-060, Brazil; (D.d.C.F.); (F.R.M.L.)
| | | |
Collapse
|
11
|
Transcriptional signatures underlying dynamic phenotypic switching and novel disease biomarkers in a linear cellular model of melanoma progression. Neoplasia 2021; 23:439-455. [PMID: 33845354 PMCID: PMC8042650 DOI: 10.1016/j.neo.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/21/2021] [Accepted: 03/12/2021] [Indexed: 11/23/2022] Open
Abstract
Despite advances in therapeutics, the progression of melanoma to metastasis still confers a poor outcome to patients. Nevertheless, there is a scarcity of biological models to understand cellular and molecular changes taking place along disease progression. Here, we characterized the transcriptome profiles of a multi-stage murine model of melanoma progression comprising a nontumorigenic melanocyte lineage (melan-a), premalignant melanocytes (4C), nonmetastatic (4C11-) and metastasis-prone (4C11+) melanoma cells. Clustering analyses have grouped the 4 cell lines according to their differentiated (melan-a and 4C11+) or undifferentiated/"mesenchymal-like" (4C and 4C11-) morphologies, suggesting dynamic gene expression patterns associated with the transition between these phenotypes. The cell plasticity observed in the murine melanoma progression model was corroborated by molecular markers described during stepwise human melanoma differentiation, as the differentiated cell lines in our model exhibit upregulation of transitory and melanocytic markers, whereas "mesenchymal-like" cells show increased expression of undifferentiated and neural crest-like markers. Sets of differentially expressed genes (DEGs) were detected at each transition step of tumor progression, and transcriptional signatures related to malignancy, metastasis and epithelial-to-mesenchymal transition were identified. Finally, DEGs were mapped to their human orthologs and evaluated in uni- and multivariate survival analyses using gene expression and clinical data of 703 drug-naïve primary melanoma patients, revealing several independent candidate prognostic markers. Altogether, these results provide novel insights into the molecular mechanisms underlying the phenotypic switch taking place during melanoma progression, reveal potential drug targets and prognostic biomarkers, and corroborate the translational relevance of this unique sequential model of melanoma progression.
Collapse
|
12
|
Li AL, Zhu YM, Gao LQ, Wei SY, Wang MT, Ma Q, Zheng YY, Li JH, Wang QF. Exploration of the Immune-Related Signatures and Immune Infiltration Analysis in Melanoma. Anal Cell Pathol (Amst) 2021; 2021:4743971. [PMID: 33511023 PMCID: PMC7826228 DOI: 10.1155/2021/4743971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022] Open
Abstract
In the present study, we aimed to investigate immune-related signatures and immune infiltration in melanoma. The transcriptome profiling and clinical data of melanoma were downloaded from The Cancer Genome Atlas database, and their matched normal samples were obtained from the Genotype-Tissue Expression database. After merging the genome expression data using Perl, the limma package was used for data normalization. We screened the differentially expressed genes (DEGs) and obtained immune signatures associated with melanoma by an immune-related signature list from the InnateDB database. Univariate Cox regression analysis was used to identify potential prognostic immune genes, and LASSO analysis was used to identify the hub genes. Next, based on the results of multivariate Cox regression analysis, we constructed a risk model for melanoma. We investigated the correlation between risk score and clinical characteristics and overall survival (OS) of patients. Based on the TIMER database, the association between selected immune signatures and immune cell distribution was evaluated. Next, the Wilcoxon rank-sum test was performed using CIBERSORT, which confirmed the differential distribution of immune-infiltrating cells between different risk groups. We obtained a list of 91 differentially expressed immune-related signatures. Functional enrichment analysis indicated that these immune-related DEGs participated in several areas of immune-related crosstalk, including cytokine-cytokine receptor interactions, JAK-STAT signaling pathway, chemokine signaling pathway, and Th17 cell differentiation pathway. A risk model was established based on multivariate Cox analysis results, and Kaplan-Meier analysis was performed. The Kruskal-Wallis test suggested that a high risk score indicated a poorer OS and correlated with higher American Joint Committee on Cancer-TNM (AJCC-TNM) stages and advanced pathological stages (P < 0.01). Furthermore, the association between hub immune signatures and immune cell distribution was evaluated in specific tumor samples. The Wilcoxon rank-sum test was used to estimate immune infiltration density in the two groups, and results showed that the high-risk group exhibited a lower infiltration density, and the dominant immune cells included M0 macrophages (P = 0.023) and activated mast cells (P = 0.005).
Collapse
Affiliation(s)
- Ai-lan Li
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Yong-mei Zhu
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Lai-qiang Gao
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Shu-yue Wei
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Ming-tao Wang
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Qiang Ma
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - You-you Zheng
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Jian-hua Li
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Qing-feng Wang
- College of Integrated Chinese and Western Medicine, Liaoning University of traditional Chinese Medicine, Shenyang 110079, China
| |
Collapse
|
13
|
Miao Y, Li B, Ding L, Zhu H, Luo C, Wang J, Luo C, Chen J. PTPN11 mutation with additional somatic alteration indicates unfavorable outcome in juvenile myelomonocytic leukemia: a retrospective clinical study from a single center. Eur J Pediatr 2020; 179:463-472. [PMID: 31807902 PMCID: PMC7028800 DOI: 10.1007/s00431-019-03468-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 11/16/2022]
Abstract
Juvenile myelomonocytic leukemia (JMML) is a heterogeneous childhood leukemia. The management of patients with JMML requires accurate assessment of genetic and clinical features to help in patient risk stratification. This study aimed to investigate the association between genomic alterations and prognosis in children with JMML. Genomic DNA was extracted from a total of 93 patients with JMML for targeted sequencing. Univariable and multivariable analysis were used to evaluate the correlation between gene mutations and prognosis of the patients. Patients with PTPN11 mutation exhibited significantly lower event-free survival (EFS) compared with non-PTPN11 mutations (P = 0.005). Patients without or with one somatic alteration at diagnosis showed significantly better prognosis in comparison with those with more than two alterations (P = 0.009). PTPN11 mutation with additional alterations showed significantly the poorest outcome in comparison with those with only one non-PTPN11 mutation, only one PTPN11 mutation, and combined mutations without PTPN11, respectively (P < 0.0001).Conclusion: Both PTPN11 mutation and the number of somatic alterations detected at diagnosis are likely to be the major determinant of outcome in JMML. The subgroup of patients with PTPN11 mutation showed the shortest survival which was even worsened when a secondary mutation was present.
Collapse
Affiliation(s)
- Yan Miao
- Department of Hematology and Oncology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Dongfang Road 1678, Shanghai, 200127 China
| | - Benshang Li
- Department of Hematology and Oncology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Dongfang Road 1678, Shanghai, 200127 China
| | - Lixia Ding
- Department of Hematology and Oncology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Dongfang Road 1678, Shanghai, 200127 China
| | - Hua Zhu
- Department of Hematology and Oncology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Dongfang Road 1678, Shanghai, 200127 China
| | - Changying Luo
- Department of Hematology and Oncology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Dongfang Road 1678, Shanghai, 200127 China
| | - Jianmin Wang
- Department of Hematology and Oncology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Dongfang Road 1678, Shanghai, 200127 China
| | - Chengjuan Luo
- Department of Hematology and Oncology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Dongfang Road 1678, Shanghai, 200127 China
| | - Jing Chen
- Department of Hematology and Oncology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Dongfang Road 1678, Shanghai, 200127 China
| |
Collapse
|
14
|
Payen VL, Zampieri LX, Porporato PE, Sonveaux P. Pro- and antitumor effects of mitochondrial reactive oxygen species. Cancer Metastasis Rev 2020; 38:189-203. [PMID: 30820778 DOI: 10.1007/s10555-019-09789-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In cancer, mitochondrial functions are commonly altered. Directly involved in metabolic reprogramming, mitochondrial plasticity confers to cancer cells a high degree of adaptability to a wide range of stresses and to the harsh tumor microenvironment. Lack of nutrients or oxygen caused by altered perfusion, metabolic needs of proliferating cells, co-option of the microenvironment, control of the immune system, cell migration and metastasis, and evasion of exogenous stress (e.g., chemotherapy) are all, at least in part, influenced by mitochondria. Mitochondria are undoubtedly one of the key contributors to cancer development and progression. Understanding their protumoral (dys)functions may pave the way to therapeutic strategies capable of turning them into innocent entities. Here, we will focus on the production and detoxification of mitochondrial reactive oxygen species (mtROS), on their impact on tumorigenesis (genetic, prosurvival, and microenvironmental effects and their involvement in autophagy), and on tumor metastasis. We will also summarize the latest therapeutic approaches involving mtROS.
Collapse
Affiliation(s)
- Valéry L Payen
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200, Brussels, Belgium.,Pole of Pediatrics, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium.,Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Luca X Zampieri
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200, Brussels, Belgium
| | - Paolo E Porporato
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Centre, University of Torino, Torino, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200, Brussels, Belgium.
| |
Collapse
|
15
|
Gonçalves DA, Xisto R, Gonçalves JD, da Silva DB, Moura Soares JP, Icimoto MY, Sant’Anna C, Gimenez M, de Angelis K, Llesuy S, Fernandes DC, Laurindo F, Jasiulionis MG, Melo FHMD. Imbalance between nitric oxide and superoxide anion induced by uncoupled nitric oxide synthase contributes to human melanoma development. Int J Biochem Cell Biol 2019; 115:105592. [DOI: 10.1016/j.biocel.2019.105592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/20/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022]
|
16
|
Koch A, Schwab A. Cutaneous pH landscape as a facilitator of melanoma initiation and progression. Acta Physiol (Oxf) 2019; 225:e13105. [PMID: 29802798 DOI: 10.1111/apha.13105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022]
Abstract
Melanoma incidence is on the rise and currently causes the majority of skin cancer-related deaths. Yet, therapies for metastatic melanoma are still insufficient so that new concepts are essential. Malignant transformation of melanocytes and melanoma progression are intimately linked to the cutaneous pH landscape and its dysregulation in tumour lesions. The pH landscape of normal skin is characterized by a large pH gradient of up to 3 pH units between surface and dermis. The Na+ /H+ exchanger NHE1 is one of the major contributors of acidity in superficial skin layers. It is also activated by the most frequent mutation in melanoma, BRAFV 600E , thereby causing pH dysregulation during melanoma initiation. Melanoma progression is supported by an extracellular acidification and/or NHE1 activity which promote the escape of single melanoma cells from the primary tumour, migration and metastatic spreading. We propose that viewing melanoma against the background of the acid-base physiology of the skin provides a better understanding of the pathophysiology of this disease and allows the development of novel therapeutic concepts.
Collapse
Affiliation(s)
- A. Koch
- Institute of Physiology II; University of Münster; Münster Germany
| | - A. Schwab
- Institute of Physiology II; University of Münster; Münster Germany
| |
Collapse
|
17
|
Li B, Wang Y, Xu Y, Liu H, Bloomer W, Zhu D, Amos CI, Fang S, Lee JE, Li X, Han J, Wei Q. Genetic variants in RORA and DNMT1 associated with cutaneous melanoma survival. Int J Cancer 2018; 142:2303-2312. [PMID: 29313974 PMCID: PMC5893376 DOI: 10.1002/ijc.31243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023]
Abstract
Cutaneous melanoma (CM) is considered as a steroid hormone-related malignancy. However, few studies have evaluated the roles of genetic variants encoding steroid hormone receptor genes and their related regulators (SHR-related genes) in CM-specific survival (CMSS). Here, we performed a pathway-based analysis to evaluate genetic variants of 191 SHR-related genes in 858 CMSS patients using a dataset from a genome-wide association study (GWAS) from The University of Texas MD Anderson Cancer Center (MDACC), and then validated the results in an additional dataset of 409 patients from the Harvard GWAS. Using multivariate Cox proportional hazards regression analysis, we identified three-independent SNPs (RORA rs782917 G > A, RORA rs17204952 C > T and DNMT1 rs7253062 G > A) as predictors of CMSS, with a variant-allele attributed hazards ratio (HR) and 95% confidence interval of 1.62 (1.25-2.09), 1.60 (1.20-2.13) and 1.52 (1.20-1.94), respectively. Combined analysis of risk genotypes of these three SNPs revealed a decreased CMSS in a dose-response manner as the number of risk genotypes increased (ptrend < 0.001); however, no improvement in the prediction model was observed (area under the curve [AUC] = 79.6-80.8%, p = 0.656), when these risk genotypes were added to the model containing clinical variables. Our findings suggest that genetic variants of RORA and DNMT1 may be promising biomarkers for CMSS, but these results needed to be validated in future larger studies.
Collapse
Affiliation(s)
- Bo Li
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Yanru Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yinghui Xu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wendy Bloomer
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dakai Zhu
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Christopher I. Amos
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey E. Lee
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xin Li
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jiali Han
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
18
|
Jasiulionis MG. Abnormal Epigenetic Regulation of Immune System during Aging. Front Immunol 2018; 9:197. [PMID: 29483913 PMCID: PMC5816044 DOI: 10.3389/fimmu.2018.00197] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
Epigenetics refers to the study of mechanisms controlling the chromatin structure, which has fundamental role in the regulation of gene expression and genome stability. Epigenetic marks, such as DNA methylation and histone modifications, are established during embryonic development and epigenetic profiles are stably inherited during mitosis, ensuring cell differentiation and fate. Under the effect of intrinsic and extrinsic factors, such as metabolic profile, hormones, nutrition, drugs, smoke, and stress, epigenetic marks are actively modulated. In this sense, the lifestyle may affect significantly the epigenome, and as a result, the gene expression profile and cell function. Epigenetic alterations are a hallmark of aging and diseases, such as cancer. Among biological systems compromised with aging is the decline of immune response. Different regulators of immune response have their promoters and enhancers susceptible to the modulation by epigenetic marks, which is fundamental to the differentiation and function of immune cells. Consistent evidence has showed the regulation of innate immune cells, and T and B lymphocytes by epigenetic mechanisms. Therefore, age-dependent alterations in epigenetic marks may result in the decline of immune function and this might contribute to the increased incidence of diseases in old people. In order to maintain health, we need to better understand how to avoid epigenetic alterations related to immune aging. In this review, the contribution of epigenetic mechanisms to the loss of immune function during aging will be discussed, and the promise of new means of disease prevention and management will be pointed.
Collapse
Affiliation(s)
- Miriam G Jasiulionis
- Laboratory of Ontogeny and Epigenetics, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Lipka DB, Witte T, Toth R, Yang J, Wiesenfarth M, Nöllke P, Fischer A, Brocks D, Gu Z, Park J, Strahm B, Wlodarski M, Yoshimi A, Claus R, Lübbert M, Busch H, Boerries M, Hartmann M, Schönung M, Kilik U, Langstein J, Wierzbinska JA, Pabst C, Garg S, Catalá A, De Moerloose B, Dworzak M, Hasle H, Locatelli F, Masetti R, Schmugge M, Smith O, Stary J, Ussowicz M, van den Heuvel-Eibrink MM, Assenov Y, Schlesner M, Niemeyer C, Flotho C, Plass C. RAS-pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. Nat Commun 2017; 8:2126. [PMID: 29259247 PMCID: PMC5736667 DOI: 10.1038/s41467-017-02177-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/13/2017] [Indexed: 01/15/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative disorder of early childhood characterized by mutations activating RAS signaling. Established clinical and genetic markers fail to fully recapitulate the clinical and biological heterogeneity of this disease. Here we report DNA methylome analysis and mutation profiling of 167 JMML samples. We identify three JMML subgroups with unique molecular and clinical characteristics. The high methylation group (HM) is characterized by somatic PTPN11 mutations and poor clinical outcome. The low methylation group is enriched for somatic NRAS and CBL mutations, as well as for Noonan patients, and has a good prognosis. The intermediate methylation group (IM) shows enrichment for monosomy 7 and somatic KRAS mutations. Hypermethylation is associated with repressed chromatin, genes regulated by RAS signaling, frequent co-occurrence of RAS pathway mutations and upregulation of DNMT1 and DNMT3B, suggesting a link between activation of the DNA methylation machinery and mutational patterns in JMML.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Biopsy
- Child
- Child, Preschool
- Chromatin/genetics
- Chromatin/metabolism
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation
- DNA Mutational Analysis
- Epigenomics
- Female
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cell Transplantation
- Humans
- Infant
- Leukemia, Myelomonocytic, Juvenile/genetics
- Leukemia, Myelomonocytic, Juvenile/mortality
- Leukemia, Myelomonocytic, Juvenile/pathology
- Leukemia, Myelomonocytic, Juvenile/therapy
- Male
- Mutation
- Noonan Syndrome/genetics
- Noonan Syndrome/pathology
- Prognosis
- Prospective Studies
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Proto-Oncogene Proteins c-cbl
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- Signal Transduction/genetics
- Up-Regulation
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Daniel B Lipka
- Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany.
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke-University, Leipziger Strasse 44, 39120, Magdeburg, Germany.
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | - Tania Witte
- Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
- Cancer Epigenetics Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Reka Toth
- Computational Epigenomics Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Jing Yang
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Manuel Wiesenfarth
- Division of Biostatistics, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Peter Nöllke
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Heiliggeiststrasse 1, 79106, Freiburg, Germany
| | - Alexandra Fischer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Heiliggeiststrasse 1, 79106, Freiburg, Germany
| | - David Brocks
- Cancer Epigenetics Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Zuguang Gu
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Jeongbin Park
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Brigitte Strahm
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Heiliggeiststrasse 1, 79106, Freiburg, Germany
| | - Marcin Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Heiliggeiststrasse 1, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), 79106, Freiburg, Germany
| | - Ayami Yoshimi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Heiliggeiststrasse 1, 79106, Freiburg, Germany
| | - Rainer Claus
- Division of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Michael Lübbert
- Division of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Stefan-Meier-Strasse 17, 79104, Freiburg, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Stefan-Meier-Strasse 17, 79104, Freiburg, Germany
- German Cancer Consortium (DKTK), 79106, Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Mark Hartmann
- Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Maximilian Schönung
- Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Umut Kilik
- Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Jens Langstein
- Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Justyna A Wierzbinska
- Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
- Cancer Epigenetics Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Caroline Pabst
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, INF 410, 69120, Heidelberg, Germany
| | - Swati Garg
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, INF 410, 69120, Heidelberg, Germany
| | - Albert Catalá
- Department of Hematology and Oncology, Hospital Sant Joan de Déu, Passeig de Sant Joan de Déu, 2, 08950, Esplugues de Llobrega, Barcelona, Spain
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Michael Dworzak
- St. Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Palle Juul-Jensens Boulevard 82, 8200, Aarhus, Denmark
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesú Children's Hospital, University of Pavia, Piazza S. Onofrio 4, Rome, 00165, Italy
| | - Riccardo Masetti
- Department of Pediatric Oncology and Hematology, University of Bologna, Via Massarenti 11, 40138, Bologna, Italy
| | - Markus Schmugge
- Department of Hematology and Oncology, University Children's Hospital, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Owen Smith
- Department of Paediatric Oncology and Haematology, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Charles University and University Hospital Motol, V Úvalu 84, 150 06, Prague 5, Czech Republic
| | - Marek Ussowicz
- Department of Pediatric Hematology, Oncology and BMT, Wroclaw Medical University, ul. Borowska 213, 50-556, Wroclaw, Poland
| | | | - Yassen Assenov
- Computational Epigenomics Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
| | - Matthias Schlesner
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany
- Bioinformatics and Omics Data Analytics (B240), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Charlotte Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Heiliggeiststrasse 1, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), 79106, Freiburg, Germany
| | - Christian Flotho
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Heiliggeiststrasse 1, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), 79106, Freiburg, Germany
| | - Christoph Plass
- Cancer Epigenetics Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany.
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
| |
Collapse
|
20
|
SIRT1 regulates Mxd1 during malignant melanoma progression. Oncotarget 2017; 8:114540-114553. [PMID: 29383100 PMCID: PMC5777712 DOI: 10.18632/oncotarget.21457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/13/2017] [Indexed: 12/25/2022] Open
Abstract
In a murine melanoma model, malignant transformation promoted by a sustained stress condition was causally related to increased levels of reactive oxygen species resulting in DNA damage and massive epigenetic alterations. Since the chromatin modifier Sirtuin-1 (SIRT1) is a protein attracted to double-stranded DNA break (DSB) sites and can recruit other components of the epigenetic machinery, we aimed to define the role of SIRT1 in melanomagenesis through our melanoma model. The DNA damage marker, γH2AX was found increased in melanocytes after 24 hours of deadhesion, accompanied by increased SIRT1 expression and decreased levels of its target, H4K16ac. Moreover, SIRT1 started to be associated to DNMT3B during the stress condition, and this complex was maintained along malignant progression. Mxd1 was identified by ChIP-seq among the DNA sequences differentially associated with SIRT1 during deadhesion and was shown to be a common target of both, SIRT1 and DNMT3B. In addition, Mxd1 was found downregulated from pre-malignant melanocytes to metastatic melanoma cells. Treatment with DNMT inhibitor 5AzaCdR reversed the Mxd1 expression. Sirt1 stable silencing increased Mxd1 mRNA expression and led to down-regulation of MYC targets, such as Cdkn1a, Bcl2 and Psen2, whose upregulation is associated with human melanoma aggressiveness and poor prognosis. We demonstrated a novel role of the stress responsive protein SIRT1 in malignant transformation of melanocytes associated with deadhesion. Mxd1 was identified as a new SIRT1 target gene. SIRT1 promoted Mxd1 silencing, which led to increased activity of MYC oncogene contributing to melanoma progression.
Collapse
|
21
|
Ito F, Yamada Y, Shigemitsu A, Akinishi M, Kaniwa H, Miyake R, Yamanaka S, Kobayashi H. Role of Oxidative Stress in Epigenetic Modification in Endometriosis. Reprod Sci 2017; 24:1493-1502. [PMID: 28443478 DOI: 10.1177/1933719117704909] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.
Collapse
Affiliation(s)
- Fuminori Ito
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Yuki Yamada
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Aiko Shigemitsu
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Mika Akinishi
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Hiroko Kaniwa
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Ryuta Miyake
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Shoichiro Yamanaka
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Hiroshi Kobayashi
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| |
Collapse
|
22
|
Micevic G, Theodosakis N, Bosenberg M. Aberrant DNA methylation in melanoma: biomarker and therapeutic opportunities. Clin Epigenetics 2017; 9:34. [PMID: 28396701 PMCID: PMC5381063 DOI: 10.1186/s13148-017-0332-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/24/2017] [Indexed: 12/18/2022] Open
Abstract
Aberrant DNA methylation is an epigenetic hallmark of melanoma, known to play important roles in melanoma formation and progression. Recent advances in genome-wide methylation methods have provided the means to identify differentially methylated genes, methylation signatures, and potential biomarkers. However, despite considerable effort and advances in cataloging methylation changes in melanoma, many questions remain unanswered. The aim of this review is to summarize recent developments, emerging trends, and important unresolved questions in the field of aberrant DNA methylation in melanoma. In addition to reviewing recent developments, we carefully synthesize the findings in an effort to provide a framework for understanding the current state and direction of the field. To facilitate clarity, we divided the review into DNA methylation changes in melanoma, biomarker opportunities, and therapeutic developments. We hope this review contributes to accelerating the utilization of the diagnostic, prognostic, and therapeutic potential of DNA methylation for the benefit of melanoma patients.
Collapse
Affiliation(s)
- Goran Micevic
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520 USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Nicholas Theodosakis
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520 USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Marcus Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520 USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| |
Collapse
|
23
|
Bessler WK, Hudson FZ, Zhang H, Harris V, Wang Y, Mund JA, Downing B, Ingram DA, Case J, Fulton DJ, Stansfield BK. Neurofibromin is a novel regulator of Ras-induced reactive oxygen species production in mice and humans. Free Radic Biol Med 2016; 97:212-222. [PMID: 27266634 PMCID: PMC5765860 DOI: 10.1016/j.freeradbiomed.2016.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/25/2016] [Accepted: 06/02/2016] [Indexed: 12/22/2022]
Abstract
Neurofibromatosis type 1 (NF1) predisposes individuals to early and debilitating cardiovascular disease. Loss of function mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin, leads to accelerated p21(Ras) activity and phosphorylation of multiple downstream kinases, including Erk and Akt. Nf1 heterozygous (Nf1(+/-)) mice develop a robust neointima that mimics human disease. Monocytes/macrophages play a central role in NF1 arterial stenosis as Nf1 mutations in myeloid cells alone are sufficient to reproduce the enhanced neointima observed in Nf1(+/-) mice. Though the molecular mechanisms underlying NF1 arterial stenosis remain elusive, macrophages are important producers of reactive oxygen species (ROS) and Ras activity directly regulates ROS production. Here, we use compound mutant and lineage-restricted mice to demonstrate that Nf1(+/-) macrophages produce excessive ROS, which enhance Nf1(+/-) smooth muscle cell proliferation in vitro and in vivo. Further, use of a specific NADPH oxidase-2 inhibitor to limit ROS production prevents neointima formation in Nf1(+/-) mice. Finally, mononuclear cells from asymptomatic NF1 patients have increased oxidative DNA damage, an indicator of chronic exposure to oxidative stress. These data provide genetic and pharmacologic evidence that excessive exposure to oxidant species underlie NF1 arterial stenosis and provide a platform for designing novels therapies and interventions.
Collapse
Affiliation(s)
- Waylan K Bessler
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, United States
| | - Farlyn Z Hudson
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States
| | - Hanfang Zhang
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States
| | - Valerie Harris
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States
| | - Yusi Wang
- Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States
| | - Julie A Mund
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis 46202, United States
| | - Brandon Downing
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States
| | - David A Ingram
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, United States
| | - Jamie Case
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis 46202, United States; Scripps Clinic Medical Group, Center for Organ and Cell Transplantation, La Jolla, CA 92037, United States
| | - David J Fulton
- Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States
| | - Brian K Stansfield
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
24
|
Yu H, Yang W. MiR-211 is epigenetically regulated by DNMT1 mediated methylation and inhibits EMT of melanoma cells by targeting RAB22A. Biochem Biophys Res Commun 2016; 476:400-405. [PMID: 27237979 DOI: 10.1016/j.bbrc.2016.05.133] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
MiR-211 has strong inhibitive effects on melanoma cell growth, invasion and metastasis. However, how it is downregulated and whether other genes are involved its downstream regulation in melanoma are not clear. In this study, we firstly verified the expression of miR-211 in melanoma cell lines and observed that its downregulation is associated with increased DNMT1 expression. By performing qRT-PCR and MSP analysis, we confirmed that DNMT1 is negatively correlated with miR-211 expression and can modulate DNA methylation in the promoter region of miR-211. By performing bioinformatics analysis, we found that RAB22A is a possible target of miR-211, which has two broadly conversed binding sites with miR-211 in the 3'UTR. Following dual luciferase assay, qRT-PCR and western blot analysis confirmed the direct binding between miR-211 and RAB22A and the suppressive effect of miR-211 on RAB22A expression. Knockdown of RAB22A increased epithelial properties and impaired mesenchymal properties of the melanoma cells, suggesting that miR-211 modulates epithelial mesenchymal transition (EMT) of melanoma cells via downregulating RAB22A. In summary, the present study firstly demonstrated that DNMT1 mediated promoter methylation is a mechanism of miRNA suppression in melanoma and revealed a new tumor suppressor role of the miR-211 by targeting RAB22A in melanoma. The DNMT1/miR-211/RAB22A axis provides a novel insight into the pathogenesis of melanoma, particularly in the EMT process.
Collapse
Affiliation(s)
- Haizhou Yu
- Department of Burn and Plastic Surgery, Yancheng First People's Hospital, Yancheng, 224005, China
| | - Weixi Yang
- Department of Burn and Plastic Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, China.
| |
Collapse
|
25
|
Afanas'ev I. Mechanisms of superoxide signaling in epigenetic processes: relation to aging and cancer. Aging Dis 2015; 6:216-27. [PMID: 26029480 DOI: 10.14336/ad.2014.0924] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/24/2014] [Indexed: 01/09/2023] Open
Abstract
Superoxide is a precursor of many free radicals and reactive oxygen species (ROS) in biological systems. It has been shown that superoxide regulates major epigenetic processes of DNA methylation, histone methylation, and histone acetylation. We suggested that superoxide, being a radical anion and a strong nucleophile, could participate in DNA methylation and histone methylation and acetylation through mechanism of nucleophilic substitution and free radical abstraction. In nucleophilic reactions superoxide is able to neutralize positive charges of methyl donors S-adenosyl-L-methionine (SAM) and acetyl-coenzyme A (AcCoA) enhancing their nucleophilic capacity or to deprotonate cytosine. In the reversed free radical reactions of demethylation and deacetylation superoxide is formed catalytically by the (Tet) family of dioxygenates and converted into the iron form of hydroxyl radical with subsequent oxidation and final eradication of methyl substituents. Double role of superoxide in these epigenetic processes might be of importance for understanding of ROS effects under physiological and pathological conditions including cancer and aging.
Collapse
Affiliation(s)
- Igor Afanas'ev
- Vitamin Research Institute, Moscow, Russia, Porto, Portugal
| |
Collapse
|
26
|
Cellular Mechanisms of Oxidative Stress and Action in Melanoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:481782. [PMID: 26064422 PMCID: PMC4438193 DOI: 10.1155/2015/481782] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/21/2015] [Indexed: 12/14/2022]
Abstract
Most melanomas occur on the skin, but a small percentage of these life-threatening cancers affect other parts of the body, such as the eye and mucous membranes, including the mouth. Given that most melanomas are caused by ultraviolet radiation (UV) exposure, close attention has been paid to the impact of oxidative stress on these tumors. The possibility that key epigenetic enzymes cannot act on a DNA altered by oxidative stress has opened new perspectives. Therefore, much attention has been paid to the alteration of DNA methylation by oxidative stress. We review the current evidence about (i) the role of oxidative stress in melanoma initiation and progression; (ii) the mechanisms by which ROS influence the DNA methylation pattern of transformed melanocytes; (iii) the transformative potential of oxidative stress-induced changes in global and/or local gene methylation and expression; (iv) the employment of this epimutation as a biomarker for melanoma diagnosis, prognosis, and drug resistance evaluation; (v) the impact of this new knowledge in clinical practice for melanoma treatment.
Collapse
|
27
|
Molognoni F, de Melo FHM, da Silva CT, Jasiulionis MG. Correction: Ras and Rac1, frequently mutated in melanomas, are activated by superoxide anion, modulate Dnmt1 level and are causally related to melanocyte malignant transformation. PLoS One 2015; 10:e0124983. [PMID: 25874999 PMCID: PMC4395244 DOI: 10.1371/journal.pone.0124983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0081937.].
Collapse
|
28
|
Amoedo ND, Rodrigues MF, Rumjanek FD. MITOCHONDRIA: Are mitochondria accessory to metastasis? Int J Biochem Cell Biol 2014; 51:53-7. [DOI: 10.1016/j.biocel.2014.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/13/2014] [Accepted: 03/15/2014] [Indexed: 01/09/2023]
|
29
|
Silva CTD, Jasiulionis MG. Relação entre estresse oxidativo, alterações epigenéticas e câncer. ACTA ACUST UNITED AC 2014. [DOI: 10.21800/s0009-67252014000100015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|