1
|
MERTK-Mediated LC3-Associated Phagocytosis (LAP) of Apoptotic Substrates in Blood-Separated Tissues: Retina, Testis, Ovarian Follicles. Cells 2021; 10:cells10061443. [PMID: 34207717 PMCID: PMC8229618 DOI: 10.3390/cells10061443] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/22/2023] Open
Abstract
Timely and efficient elimination of apoptotic substrates, continuously produced during one’s lifespan, is a vital need for all tissues of the body. This task is achieved by cells endowed with phagocytic activity. In blood-separated tissues such as the retina, the testis and the ovaries, the resident cells of epithelial origin as retinal pigmented epithelial cells (RPE), testis Sertoli cells and ovarian granulosa cells (GC) provide phagocytic cleaning of apoptotic cells and cell membranes. Disruption of this process leads to functional ablation as blindness in the retina and compromised fertility in males and females. To ensure the efficient elimination of apoptotic substrates, RPE, Sertoli cells and GC combine various mechanisms allowing maintenance of tissue homeostasis and avoiding acute inflammation, tissue disorganization and functional ablation. In tight cooperation with other phagocytosis receptors, MERTK—a member of the TAM family of receptor tyrosine kinases (RTK)—plays a pivotal role in apoptotic substrate cleaning from the retina, the testis and the ovaries through unconventional autophagy-assisted phagocytosis process LAP (LC3-associated phagocytosis). In this review, we focus on the interplay between TAM RTKs, autophagy-related proteins, LAP, and Toll-like receptors (TLR), as well as the regulatory mechanisms allowing these components to sustain tissue homeostasis and prevent functional ablation of the retina, the testis and the ovaries.
Collapse
|
2
|
Xie J, Li Y, Dai J, He Y, Sun D, Dai C, Xu H, Yin ZQ. Olfactory Ensheathing Cells Grafted Into the Retina of RCS Rats Suppress Inflammation by Down-Regulating the JAK/STAT Pathway. Front Cell Neurosci 2019; 13:341. [PMID: 31402855 PMCID: PMC6670006 DOI: 10.3389/fncel.2019.00341] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/11/2019] [Indexed: 01/23/2023] Open
Abstract
The inflammatory microenvironment in the retina plays a vital role in the pathogenesis and progression of retinitis pigmentosa (RP). Microglial inflammatory cytokines production leads to gliosis and apoptosis of retinal neurons, and ultimately, visual loss. Cell-based therapies using grafted olfactory ensheathing cells (OECs) have demonstrated modulation of degenerative microenvironments in the central nervous system (CNS), in a number of animal models. However, mechanisms by which grafted OECs can reduce degeneration in the retina are not well understood. In the present study, we set up an in vitro OEC/BV2 microglia co-culture system, and an in vivo royal college of surgeons (RCS) rat model, used cell transplantation, immunohistochemistry, RT-PCR, western blot to explore the mechanisms by which OECs affect expression of pro- or anti-inflammatory cytokines and polarization of M(IL-6) and M(Arg1) type microglial activation in the retina. We found that compared with the LPS (Lipopolysaccharide) and olfactory nerve fibroblast (ONF), the OEC and BV2 co-culture group modulate microglial cytokines releasing toward the anti-inflammation, and away from the pro-inflammation, which was followed by higher IL-4 and IL-10 and lower TNF-a and IL-6 in their expression levels. In vivo, the transplantation group significantly reduced activated resident microglia/infiltrated macrophage, and expression of pro-inflammatory cytokines in RCS rats retina, increased anti-inflammatory cytokines in transplantation area. Additionally, we found that OECs expressed SOCS3 and down-regulated the JAK2/STAT3 (Janus Kinase 2/Signal Transducer and Activator of Transcription 3) pathway. Thirdly, OEC transplantation reduced Caspase-3 expression, protected inner retinal neurons and photoreceptors and therefore, delayed the visual function degeneration. In conclusion, our data suggest that OECs delay retinal degeneration in RP, at least in part through immunomodulation of microglia via the JAK/STAT pathway.
Collapse
Affiliation(s)
- Jing Xie
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Laboratory of Visual Damage, Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yijian Li
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Laboratory of Visual Damage, Regeneration and Restoration of Chongqing, Chongqing, China
| | - Jiaman Dai
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Laboratory of Visual Damage, Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yan He
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Laboratory of Visual Damage, Regeneration and Restoration of Chongqing, Chongqing, China
| | - Dayu Sun
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Laboratory of Visual Damage, Regeneration and Restoration of Chongqing, Chongqing, China
| | - Chao Dai
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Laboratory of Visual Damage, Regeneration and Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Laboratory of Visual Damage, Regeneration and Restoration of Chongqing, Chongqing, China
| | - Zheng Qin Yin
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Laboratory of Visual Damage, Regeneration and Restoration of Chongqing, Chongqing, China
| |
Collapse
|
3
|
Anasagasti A, Ezquerra-Inchausti M, Barandika O, Muñoz-Culla M, Caffarel MM, Otaegui D, López de Munain A, Ruiz-Ederra J. Expression Profiling Analysis Reveals Key MicroRNA-mRNA Interactions in Early Retinal Degeneration in Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 59:2381-2392. [PMID: 29847644 PMCID: PMC5939684 DOI: 10.1167/iovs.18-24091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The aim of this study was to identify differentially expressed microRNAs (miRNAs) that might play an important role in the etiology of retinal degeneration in a genetic mouse model of retinitis pigmentosa (rd10 mice) at initial stages of the disease. Methods miRNAs–mRNA interaction networks were generated for analysis of biological pathways involved in retinal degeneration. Results Of more than 1900 miRNAs analyzed, we selected 19 miRNAs on the basis of (1) a significant differential expression in rd10 retinas compared with control samples and (2) an inverse expression relationship with predicted mRNA targets involved in biological pathways relevant to retinal biology and/or degeneration. Seven of the selected miRNAs have been associated with retinal dystrophies, whereas, to our knowledge, nine have not been previously linked to any disease. Conclusions This study contributes to our understanding of the etiology and progression of retinal degeneration.
Collapse
Affiliation(s)
- Ander Anasagasti
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Maitane Ezquerra-Inchausti
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain.,RETICS OFTARED, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Spain
| | - Olatz Barandika
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Maider Muñoz-Culla
- Neuroscience Area, Multiple Sclerosis Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Spanish Network on Multiple Sclerosis (Red Española de Esclerosis Múltiple)
| | - María M Caffarel
- Oncology Area, Biodonostia Health Research Institute, San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - David Otaegui
- Neuroscience Area, Multiple Sclerosis Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Spanish Network on Multiple Sclerosis (Red Española de Esclerosis Múltiple)
| | - Adolfo López de Munain
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Department of Neurology, Donostia University Hospital, San Sebastian, Spain.,Centro de Investigaciones Biomédicas en Red Sobre Enfermedades Neurodegenerativas, Instituto Carlos III, Ministerio de Economía y Competitividad, Spain.,Department of Neuroscience, University of the Basque Country, San Sebastian, Spain
| | - Javier Ruiz-Ederra
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain.,RETICS OFTARED, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Spain
| |
Collapse
|
4
|
Galán A, Jmaeff S, Barcelona PF, Brahimi F, Sarunic MV, Saragovi HU. In retinitis pigmentosa TrkC.T1-dependent vectorial Erk activity upregulates glial TNF-α, causing selective neuronal death. Cell Death Dis 2017; 8:3222. [PMID: 29242588 PMCID: PMC5870594 DOI: 10.1038/s41419-017-0074-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/26/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
Abstract
In some diseases the TrkC.T1 isoform is upregulated in glia, associated with glial TNF-α production and neuronal death. What remains unknown are the activating signals in glia, and how paracrine signals may be selective for a targeted neuron while sparing other proximate neurons. We studied these questions in the retina, where Müller glia contacts photoreceptors on one side and retinal ganglion cells on the other. In a mutant Rhodopsin mouse model of retinitis pigmentosa (RP) causing progressive photoreceptor death—but sparing retinal ganglion cells—TrkC.T1 and NT-3 ligand are upregulated in Müller glia. TrkC.T1 activity generates p-Erk, which causes increased TNF-α. These sequential events take place predominantly in Müller fibers contacting stressed photoreceptors, and culminate in selective death. Each event and photoreceptor death can be prevented by reduction of TrkC.T1 expression, by pharmacological antagonism of TrkC or by pharmacological inhibition Erk. Unmasking the sequence of non-cell autologous events and mechanisms causing selective neuronal death may help rationalize therapies.
Collapse
Affiliation(s)
- Alba Galán
- Lady Davis Institute-Jewish General Hospital, McGill University, Montréal, QC, H3T 1E2, Canada
| | - Sean Jmaeff
- Lady Davis Institute-Jewish General Hospital, McGill University, Montréal, QC, H3T 1E2, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Pablo F Barcelona
- Lady Davis Institute-Jewish General Hospital, McGill University, Montréal, QC, H3T 1E2, Canada
| | - Fouad Brahimi
- Lady Davis Institute-Jewish General Hospital, McGill University, Montréal, QC, H3T 1E2, Canada
| | - Marinko V Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - H Uri Saragovi
- Lady Davis Institute-Jewish General Hospital, McGill University, Montréal, QC, H3T 1E2, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada. .,Department of Ophthalmology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
5
|
Liu Y, Chen SJ, Li SY, Qu LH, Meng XH, Wang Y, Xu HW, Liang ZQ, Yin ZQ. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem Cell Res Ther 2017; 8:209. [PMID: 28962643 PMCID: PMC5622579 DOI: 10.1186/s13287-017-0661-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/26/2017] [Accepted: 09/06/2017] [Indexed: 01/05/2023] Open
Abstract
Background Retinitis pigmentosa is a common genetic disease that causes retinal degeneration and blindness for which there is currently no curable treatment available. Vision preservation was observed in retinitis pigmentosa animal models after retinal stem cell transplantation. However, long-term safety studies and visual assessment have not been thoroughly tested in retinitis pigmentosa patients. Methods In our pre-clinical study, purified human fetal-derived retinal progenitor cells (RPCs) were transplanted into the diseased retina of Royal College of Surgeons (RCS) rats, a model of retinal degeneration. Based on these results, we conducted a phase I clinical trial to establish the safety and tolerability of transplantation of RPCs in eight patients with advanced retinitis pigmentosa. Patients were studied for 24 months. Results After RPC transplantation in RCS rats, we observed moderate recovery of vision and maintenance of the outer nuclear layer thickness. Most importantly, we did not find tumor formation or immune rejection. In the retinis pigmentosa patients given RPC injections, we also did not observe immunological rejection or tumorigenesis when immunosuppressive agents were not administered. We observed a significant improvement in visual acuity (P < 0.05) in five patients and an increase in retinal sensitivity of pupillary responses in three of the eight patients between 2 and 6 months after the transplant, but this improvement did not appear by 12 months. Conclusion Our study for the first time confirmed the long-term safety and feasibility of vision repair by stem cell therapy in patients blinded by retinitis pigmentosa. Trial registration WHO Trial Registration, ChiCTR-TNRC-08000193. Retrospectively registered on 5 December 2008. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0661-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory of Visual Damage, Regeneration and Repair, Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Shao Jun Chen
- Key Laboratory of Visual Damage, Regeneration and Repair, Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Shi Ying Li
- Key Laboratory of Visual Damage, Regeneration and Repair, Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ling Hui Qu
- Key Laboratory of Visual Damage, Regeneration and Repair, Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiao Hong Meng
- Key Laboratory of Visual Damage, Regeneration and Repair, Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yi Wang
- Key Laboratory of Visual Damage, Regeneration and Repair, Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Hai Wei Xu
- Key Laboratory of Visual Damage, Regeneration and Repair, Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Zhi Qing Liang
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Zheng Qin Yin
- Key Laboratory of Visual Damage, Regeneration and Repair, Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
6
|
White CE, Olabisi RM. Scaffolds for retinal pigment epithelial cell transplantation in age-related macular degeneration. J Tissue Eng 2017; 8:2041731417720841. [PMID: 28794849 PMCID: PMC5524239 DOI: 10.1177/2041731417720841] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/22/2017] [Indexed: 01/18/2023] Open
Abstract
In several retinal degenerative diseases, including age-related macular degeneration, the retinal pigment epithelium, a highly functionalized cell monolayer, becomes dysfunctional. These retinal diseases are marked by early retinal pigment epithelium dysfunction reducing its ability to maintain a healthy retina, hence making the retinal pigment epithelium an attractive target for treatment. Cell therapies, including bolus cell injections, have been investigated with mixed results. Since bolus cell injection does not promote the proper monolayer architecture, scaffolds seeded with retinal pigment epithelium cells and then implanted have been increasingly investigated. Such cell-seeded scaffolds address both the dysfunction of the retinal pigment epithelium cells and age-related retinal changes that inhibit the efficacy of cell-only therapies. Currently, several groups are investigating retinal therapies using seeded cells from a number of cell sources on a variety of scaffolds, such as degradable, non-degradable, natural, and artificial substrates. This review describes the variety of scaffolds that have been developed for the implantation of retinal pigment epithelium cells.
Collapse
Affiliation(s)
- Corina E White
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ronke M Olabisi
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
7
|
Di Pierdomenico J, García-Ayuso D, Pinilla I, Cuenca N, Vidal-Sanz M, Agudo-Barriuso M, Villegas-Pérez MP. Early Events in Retinal Degeneration Caused by Rhodopsin Mutation or Pigment Epithelium Malfunction: Differences and Similarities. Front Neuroanat 2017; 11:14. [PMID: 28321183 PMCID: PMC5337514 DOI: 10.3389/fnana.2017.00014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/17/2017] [Indexed: 01/13/2023] Open
Abstract
To study the course of photoreceptor cell death and macro and microglial reactivity in two rat models of retinal degeneration with different etiologies. Retinas from P23H-1 (rhodopsin mutation) and Royal College of Surgeon (RCS, pigment epithelium malfunction) rats and age-matched control animals (Sprague-Dawley and Pievald Viro Glaxo, respectively) were cross-sectioned at different postnatal ages (from P10 to P60) and rhodopsin, L/M- and S-opsin, ionized calcium-binding adapter molecule 1 (Iba1), glial fibrillary acid protein (GFAP), and proliferating cell nuclear antigen (PCNA) proteins were immunodetected. Photoreceptor nuclei rows and microglial cells in the different retinal layers were quantified. Photoreceptor degeneration starts earlier and progresses quicker in P23H-1 than in RCS rats. In both models, microglial cell activation occurs simultaneously with the initiation of photoreceptor death while GFAP over-expression starts later. As degeneration progresses, the numbers of microglial cells increase in the retina, but decreasing in the inner retina and increasing in the outer retina, more markedly in RCS rats. Interestingly, and in contrast with healthy animals, microglial cells reach the outer nuclei and outer segment layers. The higher number of microglial cells in dystrophic retinas cannot be fully accounted by intraretinal migration and PCNA immunodetection revealed microglial proliferation in both models but more importantly in RCS rats. The etiology of retinal degeneration determines the initiation and pattern of photoreceptor cell death and simultaneously there is microglial activation and migration, while the macroglial response is delayed. The actions of microglial cells in the degeneration cannot be explained only in the basis of photoreceptor death because they participate more actively in the RCS model. Thus, the retinal degeneration caused by pigment epithelium malfunction is more inflammatory and would probably respond better to interventions by inhibiting microglial cells.
Collapse
Affiliation(s)
- Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia, Spain
| | - Isabel Pinilla
- Instituto de Investigación Sanitaria Aragón, Aragon Health Sciences Institute, Lozano Blesa University Hospital Zaragoza, Spain
| | - Nicolás Cuenca
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante Alicante, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia, Spain
| | - María P Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia, Spain
| |
Collapse
|
8
|
Rocco ML, Balzamino BO, Esposito G, Petrella C, Aloe L, Micera A. NGF/anti-VEGF combined exposure protects RCS retinal cells and photoreceptors that underwent a local worsening of inflammation. Graefes Arch Clin Exp Ophthalmol 2016; 255:567-574. [PMID: 28013393 DOI: 10.1007/s00417-016-3567-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/26/2016] [Accepted: 12/06/2016] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Our previous study highlighted the potential nerve growth factor (NGF) effect on damaged photoreceptors from a rat model of spontaneous Retinitis Pigmentosa (RP). Herein, we tested the combined NGF/anti-vascular endothelial growth factor (αVEGF) effect on cultured retinal cells isolated from Royal College of Surgeons (RCS) rats receiving an intravitreal VEGF injection (iv-VEGF) to exacerbate retinal inflammation/neovascularization. METHODS RCS (n = 75) rats were equally grouped as untreated (n = 25), iv-saline (single saline intravitreal injection; n = 25) and iv-VEGF (single VEGF intravitreal injection; n = 25). Morphological and biochemical analysis or in vitro stimulations with the biomolecular investigation were carried out on explanted retinas. Isolated retinal cells were treated with NGF and αVEGF, either alone or in combination, for 6 days and cells were harvested for morphological and biomolecular analyses. RESULTS Infiltrating inflammatory cells were detected in iv-VEGF exposed RCS retinas, indicative of exacerbated inflammation and neovascularization. In cell cultures, NGF/αVEGF significantly increased retinal cell survival as well as rhodopsin expression and neurite outgrowth in photoreceptors. Particularly, NGF/αVEGF upregulated Bcl-2 mRNA, downregulated Bax mRNA, upregulated trkANGFR mRNA and finally upregulated both NGF mRNA and protein. CONCLUSIONS These data confirm and extend our previous findings on NGF-photoreceptor crosstalk, highlighting that the NGF/αVEGF combination might be an interesting approach for improving neuroprotection of RCS retinal cells and likewise photoreceptors in the presence of neovascularization. Further studies are required to translate this in vitro approach into clinical practice.
Collapse
Affiliation(s)
| | - Bijorn Omar Balzamino
- Research Laboratories in Ophthalmology, IRCCS-G.B. Bietti Foundation, Via Santo Stefano Rotondo, 6 I-00184, Rome, Italy
| | - Graziana Esposito
- Research Laboratories in Ophthalmology, IRCCS-G.B. Bietti Foundation, Via Santo Stefano Rotondo, 6 I-00184, Rome, Italy
| | - Carla Petrella
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Luigi Aloe
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS-G.B. Bietti Foundation, Via Santo Stefano Rotondo, 6 I-00184, Rome, Italy.
| |
Collapse
|
9
|
Persistent inflammatory state after photoreceptor loss in an animal model of retinal degeneration. Sci Rep 2016; 6:33356. [PMID: 27624537 PMCID: PMC5022039 DOI: 10.1038/srep33356] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/18/2016] [Indexed: 01/24/2023] Open
Abstract
Microglia act as the resident immune cells of the central nervous system, including the retina. In response to damaging stimuli microglia adopt an activated state, which can progress into a phagocytic phenotype and play a potentially harmful role by eliciting the expression and release of pro-inflammatory cytokines. The aim of the present study was to assess longitudinal changes in microglia during retinal degeneration in the homozygous P23H rat, a model of dominant retinitis pigmentosa. Microglial phenotypes, morphology and density were analyzed by immunohistochemistry, flow cytometry, and cytokine antibody array. In addition, we performed electroretinograms to evaluate the retinal response. In the P23H retina, sclera, choroid and ciliary body, inflammatory cells increased in number compared with the control at all ages analyzed. As the rats became older, a higher number of amoeboid MHC-II(+) cells were observed in the P23H retina, which correlated with an increase in the expression of pro-inflammatory cytokines. These findings suggest that, in the P23H model, retinal neuroinflammation persists throughout the rat's life span even after photoreceptor depletion. Therefore, the inclusion of anti-inflammatory drugs at advanced stages of the neurodegenerative process may provide better retinal fitness so the remaining cells could still be used as targets of cellular or gene therapies.
Collapse
|
10
|
Gene expression changes in the retina following subretinal injection of human neural progenitor cells into a rodent model for retinal degeneration. Mol Vis 2016; 22:472-90. [PMID: 27217715 PMCID: PMC4872275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/13/2016] [Indexed: 12/03/2022] Open
Abstract
PURPOSE Retinal degenerative diseases (RDDs) affect millions of people and are the leading cause of vision loss. Although treatment options for RDDs are limited, stem and progenitor cell-based therapies have great potential to halt or slow the progression of vision loss. Our previous studies have shown that a single subretinal injection of human forebrain derived neural progenitor cells (hNPCs) into the Royal College of Surgeons (RCS) retinal degenerate rat offers long-term preservation of photoreceptors and visual function. Furthermore, neural progenitor cells are currently in clinical trials for treating age-related macular degeneration; however, the molecular mechanisms of stem cell-based therapies are largely unknown. This is the first study to analyze gene expression changes in the retina of RCS rats following subretinal injection of hNPCs using high-throughput sequencing. METHODS RNA-seq data of retinas from RCS rats injected with hNPCs (RCS(hNPCs)) were compared to sham surgery in RCS (RCS(sham)) and wild-type Long Evans (LE(sham)) rats. Differential gene expression patterns were determined with in silico analysis and confirmed with qRT-PCR. Function, biologic, cellular component, and pathway analyses were performed on differentially expressed genes and investigated with immunofluorescent staining experiments. RESULTS Analysis of the gene expression data sets identified 1,215 genes that were differentially expressed between RCS(sham) and LE(sham) samples. Additionally, 283 genes were differentially expressed between the RCS(hNPCs) and RCS(sham) samples. Comparison of these two gene sets identified 68 genes with inverse expression (termed rescue genes), including Pdc, Rp1, and Cdc42ep5. Functional, biologic, and cellular component analyses indicate that the immune response is enhanced in RCS(sham). Pathway analysis of the differential expression gene sets identified three affected pathways in RCS(hNPCs), which all play roles in phagocytosis signaling. Immunofluorescent staining detected the increased presence of macrophages and microglia in RCS(sham) retinas, which decreased in RCS(hNPCs) retinas similar to the patterns detected in LE(sham). CONCLUSIONS The results from this study provide evidence of the gene expression changes that occur following treatment with hNPCs in the degenerating retina. This information can be used in future studies to potentially enhance or predict responses to hNPC and other stem cell therapies for retinal degenerative diseases.
Collapse
|
11
|
Ma J, Guo C, Guo C, Sun Y, Liao T, Beattie U, López FJ, Chen DF, Lashkari K. Transplantation of Human Neural Progenitor Cells Expressing IGF-1 Enhances Retinal Ganglion Cell Survival. PLoS One 2015; 10:e0125695. [PMID: 25923430 PMCID: PMC4414591 DOI: 10.1371/journal.pone.0125695] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/19/2015] [Indexed: 11/30/2022] Open
Abstract
We have previously characterized human neuronal progenitor cells (hNP) that can adopt a retinal ganglion cell (RGC)-like morphology within the RGC and nerve fiber layers of the retina. In an effort to determine whether hNPs could be used a candidate cells for targeted delivery of neurotrophic factors (NTFs), we evaluated whether hNPs transfected with an vector that expresses IGF-1 in the form of a fusion protein with tdTomato (TD), would increase RGC survival in vitro and confer neuroprotective effects in a mouse model of glaucoma. RGCs co-cultured with hNPIGF-TD cells displayed enhanced survival, and increased neurite extension and branching as compared to hNPTD or untransfected hNP cells. Application of various IGF-1 signaling blockers or IGF-1 receptor antagonists abrogated these effects. In vivo, using a model of glaucoma we showed that IOP elevation led to reductions in retinal RGC count. In this model, evaluation of retinal flatmounts and optic nerve cross sections indicated that only hNPIGF-TD cells effectively reduced RGC death and showed a trend to improve optic nerve axonal loss. RT-PCR analysis of retina lysates over time showed that the neurotrophic effects of IGF-1 were also attributed to down-regulation of inflammatory and to some extent, angiogenic pathways. This study shows that neuronal progenitor cells that hone into the RGC and nerve fiber layers may be used as vehicles for local production and delivery of a desired NTF. Transplantation of hNPIGF-TD cells improves RGC survival in vitro and protects against RGC loss in a rodent model of glaucoma. Our findings have provided experimental evidence and form the basis for applying cell-based strategies for local delivery of NTFs into the retina. Application of cell-based delivery may be extended to other disease conditions beyond glaucoma.
Collapse
Affiliation(s)
- Jie Ma
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, United States of America
| | - Chenying Guo
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, United States of America
| | - Caiwei Guo
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, United States of America
| | - Yu Sun
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, United States of America
| | - Tiffany Liao
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, United States of America
| | - Ursula Beattie
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, United States of America
| | - Francisco J. López
- Ophthalmology DPU, RD. Alternative Discovery & Development, GlaxoSmithKline, King of Prussia, PA, 19406, United States of America
| | - Dong Feng Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, United States of America
| | - Kameran Lashkari
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Xu Y, Balasubramaniam B, Copland DA, Liu J, Armitage MJ, Dick AD. Activated adult microglia influence retinal progenitor cell proliferation and differentiation toward recoverin-expressing neuron-like cells in a co-culture model. Graefes Arch Clin Exp Ophthalmol 2015; 253:1085-96. [PMID: 25680876 DOI: 10.1007/s00417-015-2961-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Microglia contribute to immune homeostasis of the retina, and thus act as a potential regulator determining successful repair or retinal stem cell transplantation. We investigated the interaction between human microglia and retinal progenitor cells in cell co-culture to further our exploration on developing a new therapeutic strategy for retinal degeneration. METHODS Microglia and retinal progenitor cultures were developed using CD11b(+) and CD133(+), respectively, from adult donor retina. Microglia activation was developed using interferon-gamma and lipopolysaccharide. Retinal progenitor differentiation was analysed in co-culture with or without microglial activation. Retinal progenitor proliferation was analysed in presence of conditioned medium from activated microglia. Phenotype and function of adult human retinal cell cultures were examined using cell morphology, immunohistochemistry and real-time PCR. RESULTS By morphology, neuron-like cells generated in co-culture expressed photoreceptor marker recoverin. Neurospheres derived from retinal progenitor cells showed reduced growth in the presence of conditioned medium from activated microglia. Delayed retinal progenitor cell migration and reduced cellular differentiation was observed in co-cultures with activated microglia. In independent experiments, activated microglia showed enhanced mRNA expression of CXCL10, IL-27, IL-6, and TNF-alpha compared to controls. CONCLUSION Adult human retina retains retinal progenitors or potential to reprogram cells to then proliferate and differentiate into neuron-like cells in vitro. Human microglia support retinal progenitor differentiation into neuron-like cells, but such capacity is altered following microglial activation. Modulating microglia activity is a potential approach to promote retinal repair and facilitate success of stem-cell transplantation.
Collapse
Affiliation(s)
- Yunhe Xu
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom,
| | | | | | | | | | | |
Collapse
|
13
|
Joy A, Al-Ghoul KJ. Basal membrane complex architecture is disrupted during posterior subcapsular cataract formation in Royal College of Surgeons rats. Mol Vis 2014; 20:1777-95. [PMID: 25593506 PMCID: PMC4287704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/30/2014] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Previous studies detailing the development of posterior subcapsular cataracts (PSC) in Royal College of Surgeons (RCS) rats have shown that aberrant fiber-end migration underlies the structural compromise. This investigation was conducted to examine the distribution of select basal membrane complex (BMC) components and to assess the intravitreal levels of specific cytokines during PSC formation. METHODS Lenses from 52 RCS dystrophic rats (RCS/Lav) and 28 genetically matched control animals (RCS-rdy(+)/Lav) from 2 to 8 weeks old were used. After enucleation, vitreous was collected for eventual cytokine level analyses; lenses were then removed and processed for immunocytochemical localization of actin, cadherin, β integrin, vinculin, and cell nuclei. RESULTS At 2-3 weeks postnatal, dystrophic lenses showed normal BMC distribution of actin, cadherin, and vinculin; however β integrin distribution was altered as compared to controls. By 4-6 weeks of age, F-actin was visible as bright foci arranged in a "rosette" pattern around fiber-end profiles. Concurrently, vinculin was rearranged into a diffuse pattern within the BMC. Cadherin delineated the fiber ends in dystrophic lenses until 5 weeks postnatal, after which it displayed diffuse cytoplasmic staining with more definitive labeling at the BMC periphery. β integrin was initially distributed as punctuate spots at 2-3 weeks postnatal; however, by 4-6 weeks it was co-localized with F-actin around the periphery of fiber ends. The distribution of F-actin, cadherin, and β integrin components did not undergo further changes after 6 weeks of age; however, vinculin was present predominantly at the periphery of the BMC in 7-8-week-old dystrophic lenses. Intravitreal cytokine levels were assessed for interleukin (IL)-1α, IL-4, IL-6, IL-8, tumor necrosis factor (TNF), and interferon (IFN)-γ. Levels of IL-1α, IL-4, TNF, and IFN-γ demonstrated a similar pattern, with concentrations increasing from 2 to 6 weeks postnatal and then decreasing slightly up to 8 weeks of age. IL-4 and TNF had the highest average concentrations, with peaks of 148.00 pg/ml and 34.20 pg/ml, respectively. CONCLUSIONS The data indicate that defined rearrangements of normal BMC architecture precede and characterize the structural changes that culminate in the PSC. These are consistent with modifications of adhesion mechanics involving cell-cell attachment, cell-matrix adhesion, and timely fiber-end detachment. Further, the results suggest that pro-inflammatory cytokines are potential initiating factors in aberrant fiber-end migration and subsequent PSC formation.
Collapse
Affiliation(s)
- Anita Joy
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, IL
| | - Kristin J. Al-Ghoul
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL,Department of Ophthalmology, Rush University Medical Center, Chicago, IL
| |
Collapse
|
14
|
Xiang P, Wu KC, Zhu Y, Xiang L, Li C, Chen DL, Chen F, Xu G, Wang A, Li M, Jin ZB. A novel Bruch's membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells. Biomaterials 2014; 35:9777-9788. [DOI: 10.1016/j.biomaterials.2014.08.040] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/24/2014] [Indexed: 12/28/2022]
|