1
|
Kimura M, Nomura S, Ouchi T, Kurashima R, Nakano R, Sekiya H, Kuroda H, Kono K, Shibukawa Y. Intracellular cAMP signaling-induced Ca 2+ influx mediated by calcium homeostasis modulator 1 (CALHM1) in human odontoblasts. Pflugers Arch 2025; 477:273-290. [PMID: 39528838 PMCID: PMC11762207 DOI: 10.1007/s00424-024-03038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
In odontoblasts, intracellular Ca2+ signaling plays key roles in reactionary dentin formation and generation of dentinal pain. Odontoblasts also express several Gs protein-coupled receptors that promote production of cyclic AMP (cAMP). However, the crosstalk between intracellular cAMP and Ca2+ signaling, as well as the role of cAMP in the cellular functions of odontoblasts, remains unclear. In this study, we measured intracellular cAMP levels and intracellular free Ca2+ concentration ([Ca2+]i). We also investigated the effect of intracellular cAMP on mineralization by the odontoblasts. In the presence of extracellular Ca2+, the application of forskolin (adenylyl cyclase activator) or isoproterenol (Gs protein-coupled beta-2 adrenergic receptor agonist) increased intracellular cAMP levels and [Ca2+]i in odontoblasts. The [Ca2+]i increases could not be observed by removing extracellular Ca2+, indicating that cAMP is capable to activate Ca2+ entry. Forskolin-induced [Ca2+]i increase was inhibited by a protein kinase A inhibitor in odontoblasts. The [Ca2+]i increase was sensitive to Gd3+, 2APB, or Zn2+ but not verapamil, ML218, or La3+. In immunofluorescence analyses, odontoblasts were immunopositive for calcium homeostasis modulator 1 (CALHM1), which was found close to ionotropic ATP receptor subtype, P2X3 receptors. When CALHM1 was knocked down, forskolin-induced [Ca2+]i increase was suppressed. Alizarin red and von Kossa staining showed that forskolin decreased mineralization. These findings suggest that activation of adenylyl cyclase elicited increases in the intracellular cAMP level and Ca2+ influx via protein kinase A activation in odontoblasts. Subsequent cAMP-dependent Ca2+ influx was mediated by CALHM1 in odontoblasts. In addition, the intracellular cAMP signaling pathway in odontoblasts negatively mediated dentinogenesis.
Collapse
Affiliation(s)
- Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Sachie Nomura
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Ryuya Kurashima
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Rei Nakano
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, 230-0045, Japan
- Japan Animal Specialty Medical Institute (JASMINE), Yokohama, 224-0001, Japan
| | - Hinako Sekiya
- Department of Endodontics, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Hidetaka Kuroda
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
- Department of Dental Anesthesiology, Kanagawa Dental University, Yokosuka, 238-8570, Japan
| | - Kyosuke Kono
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | | |
Collapse
|
2
|
Chantadul V, Rotpenpian N, Arayapisit T, Wanasuntronwong A. Transient receptor potential channels in dental inflammation and pain perception: A comprehensive review. Heliyon 2025; 11:e41730. [PMID: 39872449 PMCID: PMC11761930 DOI: 10.1016/j.heliyon.2025.e41730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/09/2024] [Accepted: 01/04/2025] [Indexed: 01/30/2025] Open
Abstract
Transient Receptor Potential (TRP) channels are a family of ion channels that play pivotal roles in various physiological processes, including sensory transduction, temperature regulation, and inflammation. In the context of dentistry, recent research has highlighted the involvement of TRP channels in mediating sensory responses and inflammation in dental tissues and temporo-mandibular joint (TMJ) structure. TRP channels have emerged as major contributors in the development of inflammatory conditions and pain affecting the oral cavity and related structures, such as periodontitis, dental erosion cause hypersensitivity, pulpitis, and TMJ disorders. These inflammatory conditions notably contribute to oral health challenges, often leading to sharp pain, dull aches, and compromised functionality. Pharmacological interventions and emerging strategies aimed at modulating TRP channel activity are critically evaluated. The therapeutic potential of targeting TRP channels in the management within dental practice is a focal point of view to alleviate pain and inflammation. In conclusion, this comprehensive review provides a valuable synthesis of current knowledge regarding the involvement of TRP channels in inflammatory conditions of dentistry underscoring the potential of TRP channels as promising targets for therapeutic intervention, and then paving the way for innovative strategies to address the complexities of inflammatory dental conditions.
Collapse
Affiliation(s)
- Varunya Chantadul
- Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Nattapon Rotpenpian
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Tawepong Arayapisit
- Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Aree Wanasuntronwong
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Fu X, Kim HS. Dentin Mechanobiology: Bridging the Gap between Architecture and Function. Int J Mol Sci 2024; 25:5642. [PMID: 38891829 PMCID: PMC11171917 DOI: 10.3390/ijms25115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
It is remarkable how teeth maintain their healthy condition under exceptionally high levels of mechanical loading. This suggests the presence of inherent mechanical adaptation mechanisms within their structure to counter constant stress. Dentin, situated between enamel and pulp, plays a crucial role in mechanically supporting tooth function. Its intermediate stiffness and viscoelastic properties, attributed to its mineralized, nanofibrous extracellular matrix, provide flexibility, strength, and rigidity, enabling it to withstand mechanical loading without fracturing. Moreover, dentin's unique architectural features, such as odontoblast processes within dentinal tubules and spatial compartmentalization between odontoblasts in dentin and sensory neurons in pulp, contribute to a distinctive sensory perception of external stimuli while acting as a defensive barrier for the dentin-pulp complex. Since dentin's architecture governs its functions in nociception and repair in response to mechanical stimuli, understanding dentin mechanobiology is crucial for developing treatments for pain management in dentin-associated diseases and dentin-pulp regeneration. This review discusses how dentin's physical features regulate mechano-sensing, focusing on mechano-sensitive ion channels. Additionally, we explore advanced in vitro platforms that mimic dentin's physical features, providing deeper insights into fundamental mechanobiological phenomena and laying the groundwork for effective mechano-therapeutic strategies for dentinal diseases.
Collapse
Affiliation(s)
- Xiangting Fu
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
4
|
Kozyreva TV, Orlov IV, Boyarskaya AR, Voronova IP. Hypothalamic TRPM8 and TRPA1 ion channel genes in the regulation of temperature homeostasis at water balance changes. Neurosci Lett 2024; 828:137763. [PMID: 38574849 DOI: 10.1016/j.neulet.2024.137763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
The role of the hypothalamic cold-sensitive ion channels - transient receptor potential melastatin 8 (TRPM8) and transient receptor potential ankyrin 1 (TRPA1) in homeostatic systems of thermoregulation and water-salt balance - is not clear. The interaction of homeostatic systems of thermoregulation and water-salt balance without additional temperature load did not receive due attention, too. On the models of water-balance disturbance, we tried to elucidate some aspect of these problems. Body temperature (Tbody), O2 consumption, CO2 excretion, electrical muscle activity (EMA), temperature of tail skin (Ttail), plasma osmolality, as well as gene expression of hypothalamic TRPM8 and TRPA1 have been registered in rats of 3 groups: control; water-deprived (3 days under dry-eating); and hyperhydrated (6 days without dry food, drinking liquid 4 % sucrose). No relationship was observed between plasma osmolality and gene expression of Trpm8 and Trpa1. In water-deprived rats, the constriction of skin vessels, increased fat metabolism by 10 % and increased EMA by 48 % allowed the animals to maintain Tbody unchanged. The hyperhydrated rats did not develop sufficient mechanisms, and their Tbody decreased by 0.8 °C. The development of reactions was correlated with the expression of genes of thermosensitive ion channels in the anterior hypothalamus. Ttail had a direct correlation with the expression of the Trpm8 gene, whereas EMA directly correlated with the expression of the Trpa1 gene in water-deprived group. The obtained data attract attention from the point of view of management and correction of physiological functions by modulating the ion channel gene expression.
Collapse
Affiliation(s)
- T V Kozyreva
- Institute of Neuroscience and Medicine, Timakov str. 4, Novosibirsk 630117, Russia; Novosibirsk State University, Pirogov str. 2, Novosibirsk 630090, Russia.
| | - I V Orlov
- Institute of Neuroscience and Medicine, Timakov str. 4, Novosibirsk 630117, Russia; Novosibirsk State University, Pirogov str. 2, Novosibirsk 630090, Russia.
| | - A R Boyarskaya
- Institute of Neuroscience and Medicine, Timakov str. 4, Novosibirsk 630117, Russia.
| | - I P Voronova
- Institute of Neuroscience and Medicine, Timakov str. 4, Novosibirsk 630117, Russia.
| |
Collapse
|
5
|
Taniguchi J, Masuda T, Iwatani Y, Yamamoto K, Sakai N, Okada Y, Watanabe M. Rigorous evaluation of genetic and epigenetic effects on clinical laboratory measurements using Japanese monozygotic twins. Clin Genet 2024; 105:159-172. [PMID: 37899590 DOI: 10.1111/cge.14443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/10/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023]
Abstract
The investigation of environmental effects on clinical measurements using individual samples is challenging because their genetic and environmental factors are different. However, using monozygotic twins (MZ) makes it possible to investigate the influence of environmental factors as they have the same genetic factors within pairs because the difference in the clinical traits within the MZ mostly reflect the influence of environmental factors. We hypothesized that the within-pair differences in the traits that are strongly affected by genetic factors become larger after genetic risk score (GRS) correction. Using 278 Japanese MZ pairs, we compared the change in within-pair differences in each of the 45 normalized clinical measurements before and after GRS correction, and we also attempted to correct for the effects of genetic factors to identify Cytosine-phosphodiester-Guanine (CpG) sites in DNA sequences with epigenetic effects that are regulated by genetic factors. Five traits were classified into the high heritability group, which was strongly affected by genetic factors. CpG sites could be classified into three groups: regulated only by environmental factors, regulated by environmental factors masked by genetic factors, and regulated only by genetic factors. Our method has the potential to identify trait-related methylation sites that have not yet been discovered.
Collapse
Affiliation(s)
- Jumpei Taniguchi
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsuo Masuda
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshinori Iwatani
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Norio Sakai
- Center for Twin Research, Osaka University Graduate School of Medicine, Suita, Japan
- Child Healthcare and Genetic Science Laboratory, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mikio Watanabe
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
6
|
Nagai S, Kitamura K, Kimura M, Yamamoto H, Katakura A, Shibukawa Y. Functional Expression of Mechanosensitive Piezo1/TRPV4 Channels in Mouse Osteoblasts. THE BULLETIN OF TOKYO DENTAL COLLEGE 2023; 64:1-11. [PMID: 36792153 DOI: 10.2209/tdcpublication.2022-0015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Mechanical stress is an important regulatory factor in bone homeostasis. Mechanical stimulation of osteoblasts has been shown to elicit an increase in the concentration of intracellular free Ca2+ ([Ca2+]i). The pattern of functional expression of mechanosensitive ion channels remains unclear, however. Therefore, the purpose of this study was to investigate the pharmacological characteristics of [Ca2+]i in response to direct mechanical stimulation in osteoblasts. The morphological expression of mechanosensitive ion channels was also examined. Mouse osteoblast-like cells (MC3T3-E1 cells) were loaded with fura-2-acetoxymethyl ester, after which [Ca2+]i was measured. Increased levels of [Ca2+]i were observed in MC3T3-E1 cells in response to direct mechanical stimulation by means of a glass micropipette, but no desensitization. Application of a hypotonic solution also induced an increase in [Ca2+]i but was accompanied by a desensitizing effect. Extracellular Gd3+, GsMTx4, or RN-1734 reversibly inhibited this mechanical stimulation-induced increase in [Ca2+]i, whereas no inhibitory effect was observed with HC030031 or clemizole. When osteoblasts were stimulated with Yoda1, an increase was observed in [Ca2+]i together with a significant desensitizing effect. Immunoreactivity against Piezo1 and TRPV4 channel antibodies was detected in MC3T3-E1 cells. These results suggest that osteoblasts express Piezo1 and TRPV4 channels, which are involved in mechanosensitive processes during mechanical stress.
Collapse
Affiliation(s)
- Sayoko Nagai
- Department of Physiology, Tokyo Dental College.,Department of Oral Pathobiological Science and Surgery, Tokyo Dental College
| | - Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Akira Katakura
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College
| | | |
Collapse
|
7
|
Ohyama S, Ouchi T, Kimura M, Kurashima R, Yasumatsu K, Nishida D, Hitomi S, Ubaidus S, Kuroda H, Ito S, Takano M, Ono K, Mizoguchi T, Katakura A, Shibukawa Y. Piezo1-pannexin-1-P2X 3 axis in odontoblasts and neurons mediates sensory transduction in dentinal sensitivity. Front Physiol 2022; 13:891759. [PMID: 36589456 PMCID: PMC9795215 DOI: 10.3389/fphys.2022.891759] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
According to the "hydrodynamic theory," dentinal pain or sensitivity is caused by dentinal fluid movement following the application of various stimuli to the dentin surface. Recent convergent evidence in Vitro has shown that plasma membrane deformation, mimicking dentinal fluid movement, activates mechanosensitive transient receptor potential (TRP)/Piezo channels in odontoblasts, with the Ca2+ signal eliciting the release of ATP from pannexin-1 (PANX-1). The released ATP activates the P2X3 receptor, which generates and propagates action potentials in the intradental Aδ afferent neurons. Thus, odontoblasts act as sensory receptor cells, and odontoblast-neuron signal communication established by the TRP/Piezo channel-PANX-1-P2X3 receptor complex may describe the mechanism of the sensory transduction sequence for dentinal sensitivity. To determine whether odontoblast-neuron communication and odontoblasts acting as sensory receptors are essential for generating dentinal pain, we evaluated nociceptive scores by analyzing behaviors evoked by dentinal sensitivity in conscious Wistar rats and Cre-mediated transgenic mouse models. In the dentin-exposed group, treatment with a bonding agent on the dentin surface, as well as systemic administration of A-317491 (P2X3 receptor antagonist), mefloquine and 10PANX (non-selective and selective PANX-1 antagonists), GsMTx-4 (selective Piezo1 channel antagonist), and HC-030031 (selective TRPA1 channel antagonist), but not HC-070 (selective TRPC5 channel antagonist), significantly reduced nociceptive scores following cold water (0.1 ml) stimulation of the exposed dentin surface of the incisors compared to the scores of rats without local or systemic treatment. When we applied cold water stimulation to the exposed dentin surface of the lower first molar, nociceptive scores in the rats with systemic administration of A-317491, 10PANX, and GsMTx-4 were significantly reduced compared to those in the rats without systemic treatment. Dentin-exposed mice, with somatic odontoblast-specific depletion, also showed significant reduction in the nociceptive scores compared to those of Cre-mediated transgenic mice, which did not show any type of cell deletion, including odontoblasts. In the odontoblast-eliminated mice, P2X3 receptor-positive A-neurons were morphologically intact. These results indicate that neurotransmission between odontoblasts and neurons mediated by the Piezo1/TRPA1-pannexin-1-P2X3 receptor axis is necessary for the development of dentinal pain. In addition, odontoblasts are necessary for sensory transduction to generate dentinal sensitivity as mechanosensory receptor cells.
Collapse
Affiliation(s)
- Sadao Ohyama
- Department of Physiology, Tokyo Dental College, Tokyo, Japan,Oral Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Ryuya Kurashima
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | | | - Daisuke Nishida
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan,Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - Sobhan Ubaidus
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Hidetaka Kuroda
- Department of Physiology, Tokyo Dental College, Tokyo, Japan,Department of Dental Anesthesiology, Kanagawa Dental University, Yokosuka, Japan
| | - Shinichirou Ito
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Masayuki Takano
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | | | - Akira Katakura
- Department of Oral Pathological Science and Surgery, Tokyo Dental College, Tokyo, Japan
| | - Yoshiyuki Shibukawa
- Department of Physiology, Tokyo Dental College, Tokyo, Japan,*Correspondence: Yoshiyuki Shibukawa,
| |
Collapse
|
8
|
Lewis CM, Griffith TN. The mechanisms of cold encoding. Curr Opin Neurobiol 2022; 75:102571. [DOI: 10.1016/j.conb.2022.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/31/2022] [Accepted: 05/06/2022] [Indexed: 11/15/2022]
|
9
|
Liu Y, Wang Y, Lou Y, Tian W, Que K. Functional expression of TRPA1 channel, TRPV1 channel and TMEM100 in human odontoblasts. J Mol Histol 2021; 52:1105-1114. [PMID: 34514518 DOI: 10.1007/s10735-021-10018-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/07/2021] [Indexed: 01/15/2023]
Abstract
TRPA1 and TRPV1 channels respond to external stimulation as pain mediators and form a complex with a transmembrane protein TMEM100 in some tissues. However, their expression and interaction in dental pulp is unclear. To investigate the functional co-expression of TRPA1 channel, TRPV1 channel and TMEM100 in human odontoblasts (HODs), immunohistochemistry, immunofluorescence staining and Western blot were used to study their co-localization and expression in both native HODs and cultured HOD-like cells. Calcium imaging was used to detect the functional interaction between TRPA1 and TRPV1 channels. Immunohistochemistry and multiple immunofluorescence staining of tooth slices showed positive expression of TRPA1 channel, TRPV1 channel and TMEM100 mainly in the cell bodies of HODs, and TRPA1 channel presented more obvious immunofluorescence in the cell processes than TRPV1 channel and TMEM100. HALO software analysis showed that TRPA1 and TRPV1 channels were positively expressed in most TMEM100+ HODs and these three proteins were strongly correlated in HODs (P < 0.01). The protein expression levels of TRPA1 channel, TRPV1 channel and TMEM100 in HODs showed no significant difference (P > 0.05). Double immunofluorescence staining of cultured HOD-like cells visually demonstrated that TRPA1 and TRPV1 channel were both highly co-localized with TMEM100 with similar expressive intensity. Calcium imaging showed that there was a functional interaction between TRPA1 and TRPV1 channels in HOD-like cells, and TRPA1 channel might play a greater role in this interaction. Overall, we concluded that TRPA1 channel, TRPV1 channel and TMEM100 could be functionally co-expressed in HODs.
Collapse
Affiliation(s)
- Yangqiu Liu
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Num22, Road Qixiangtai, Heping District, Tianjin, 300070, China.,Shandong Medical College, Linyi, 276000, Shandong, China
| | - Yu Wang
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Num22, Road Qixiangtai, Heping District, Tianjin, 300070, China.,Stomatological Hospital of Lianyungang, The First People's Hospital of Lianyungang, Lianyungang, 222000, Jiangsu, China
| | - Yaxin Lou
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Num22, Road Qixiangtai, Heping District, Tianjin, 300070, China
| | - Weiping Tian
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Kehua Que
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Num22, Road Qixiangtai, Heping District, Tianjin, 300070, China.
| |
Collapse
|
10
|
Matsunaga M, Kimura M, Ouchi T, Nakamura T, Ohyama S, Ando M, Nomura S, Azuma T, Ichinohe T, Shibukawa Y. Mechanical Stimulation-Induced Calcium Signaling by Piezo1 Channel Activation in Human Odontoblast Reduces Dentin Mineralization. Front Physiol 2021; 12:704518. [PMID: 34504437 PMCID: PMC8421527 DOI: 10.3389/fphys.2021.704518] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Odontoblasts play critical roles in dentin formation and sensory transduction following stimuli on the dentin surface. Exogenous stimuli to the dentin surface elicit dentinal sensitivity through the movement of fluids in dentinal tubules, resulting in cellular deformation. Recently, Piezo1 channels have been implicated in mechanosensitive processes, as well as Ca2+ signals in odontoblasts. However, in human odontoblasts, the cellular responses induced by mechanical stimulation, Piezo1 channel expression, and its pharmacological properties remain unclear. In the present study, we examined functional expression of the Piezo1 channel by recording direct mechanical stimulation-induced Ca2+ signaling in dentin matrix protein 1 (DMP-1)-, nestin-, and dentin sialophosphoprotein (DSPP)-immunopositive human odontoblasts. Mechanical stimulation of human odontoblasts transiently increased intracellular free calcium concentration ([Ca2+]i). Application of repeated mechanical stimulation to human odontoblasts resulted in repeated transient [Ca2+]i increases, but did not show any desensitizing effects on [Ca2+]i increases. We also observed a transient [Ca2+]i increase in the neighboring odontoblasts to the stimulated cells during mechanical stimulation, showing a decrease in [Ca2+]i with an increasing distance from the mechanically stimulated cells. Application of Yoda1 transiently increased [Ca2+]i. This increase was inhibited by application of Gd3+ and Dooku1, respectively. Mechanical stimulation-induced [Ca2+]i increase was also inhibited by application of Gd3+ or Dooku1. When Piezo1 channels in human odontoblasts were knocked down by gene silencing with short hairpin RNA (shRNA), mechanical stimulation-induced [Ca2+]i responses were almost completely abolished. Piezo1 channel knockdown attenuated the number of Piezo1-immunopositive cells in the immunofluorescence analysis, while no effects were observed in Piezo2-immunopositive cells. Alizarin red staining distinctly showed that pharmacological activation of Piezo1 channels by Yoda1 significantly suppressed mineralization, and shRNA-mediated knockdown of Piezo1 also significantly enhanced mineralization. These results suggest that mechanical stimulation predominantly activates intracellular Ca2+ signaling via Piezo1 channel opening, rather than Piezo2 channels, and the Ca2+ signal establishes intercellular odontoblast-odontoblast communication. In addition, Piezo1 channel activation participates in the reduction of dentinogenesis. Thus, the intracellular Ca2+ signaling pathway mediated by Piezo1 channels could contribute to cellular function in human odontoblasts in two ways: (1) generating dentinal sensitivity and (2) suppressing physiological/reactional dentinogenesis, following cellular deformation induced by hydrodynamic forces inside dentinal tubules.
Collapse
Affiliation(s)
- Mayumi Matsunaga
- Department of Physiology, Tokyo Dental College, Tokyo, Japan.,Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | | | - Sadao Ohyama
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Masayuki Ando
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Sachie Nomura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
11
|
Chalazias A, Plemmenos G, Evangeliou E, Piperi C. Pivotal role of Transient Receptor Potential Channels in oral physiology. Curr Med Chem 2021; 29:1408-1425. [PMID: 34365940 DOI: 10.2174/0929867328666210806113132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Transient Receptor Potential (TRP) Channels constitute a large family of non-selective permeable ion channels involved in the perception of environmental stimuli with a central and continuously expanding role in oral tissue homeostasis. Recent studies indicate the regulatory role of TRPs in pulp physiology, oral mucosa sensation, dental pain nociception and salivary gland secretion. This review provides an update on the diverse functions of TRP channels in the physiology of oral cavity, with emphasis on their cellular location, the underlying molecular mechanisms and clinical significance. METHODS A structured search of bibliographic databases (PubMed and MEDLINE) was performed for peer reviewed studies on TRP channels function on oral cavity physiology the last ten years. A qualitative content analysis was performed in screened papers and a critical discussion of main findings is provided. RESULTS TRPs expression has been detected in major cell types of the oral cavity, including odontoblasts, periodontal ligament, oral epithelial, salivary gland cells, and chondrocytes of temporomandibular joints, where they mediate signal perception and transduction of mechanical, thermal, and osmotic stimuli. They contribute to pulp physiology through dentin formation, mineralization, and periodontal ligament formation along with alveolar bone remodeling in dental pulp and periodontal ligament cells. TRPs are also involved in oral mucosa sensation, dental pain nociception, saliva secretion, swallowing reflex and temporomandibular joints' development. CONCLUSION Various TRP channels regulate oral cavity homeostasis, playing an important role in the transduction of external stimuli to intracellular signals in a cell type-specific manner and presenting promising drug targets for the development of pharmacological strategies to manage oral diseases.
Collapse
Affiliation(s)
- Andreas Chalazias
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens. Greece
| | - Grigorios Plemmenos
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens. Greece
| | - Evangelos Evangeliou
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens. Greece
| | - Christina Piperi
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens. Greece
| |
Collapse
|
12
|
Kimura M, Mochizuki H, Satou R, Iwasaki M, Kokubu E, Kono K, Nomura S, Sakurai T, Kuroda H, Shibukawa Y. Plasma Membrane Ca 2+-ATPase in Rat and Human Odontoblasts Mediates Dentin Mineralization. Biomolecules 2021; 11:biom11071010. [PMID: 34356633 PMCID: PMC8301758 DOI: 10.3390/biom11071010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Intracellular Ca2+ signaling engendered by Ca2+ influx and mobilization in odontoblasts is critical for dentinogenesis induced by multiple stimuli at the dentin surface. Increased Ca2+ is exported by the Na+–Ca2+ exchanger (NCX) and plasma membrane Ca2+–ATPase (PMCA) to maintain Ca2+ homeostasis. We previously demonstrated a functional coupling between Ca2+ extrusion by NCX and its influx through transient receptor potential channels in odontoblasts. Although the presence of PMCA in odontoblasts has been previously described, steady-state levels of mRNA-encoding PMCA subtypes, pharmacological properties, and other cellular functions remain unclear. Thus, we investigated PMCA mRNA levels and their contribution to mineralization under physiological conditions. We also examined the role of PMCA in the Ca2+ extrusion pathway during hypotonic and alkaline stimulation-induced increases in intracellular free Ca2+ concentration ([Ca2+]i). We performed RT-PCR and mineralization assays in human odontoblasts. [Ca2+]i was measured using fura-2 fluorescence measurements in odontoblasts isolated from newborn Wistar rat incisor teeth and human odontoblasts. We detected mRNA encoding PMCA1–4 in human odontoblasts. The application of hypotonic or alkaline solutions transiently increased [Ca2+]i in odontoblasts in both rat and human odontoblasts. The Ca2+ extrusion efficiency during the hypotonic or alkaline solution-induced [Ca2+]i increase was decreased by PMCA inhibitors in both cell types. Alizarin red and von Kossa staining showed that PMCA inhibition suppressed mineralization. In addition, alkaline stimulation (not hypotonic stimulation) to human odontoblasts upregulated the mRNA levels of dentin matrix protein-1 (DMP-1) and dentin sialophosphoprotein (DSPP). The PMCA inhibitor did not affect DMP-1 or DSPP mRNA levels at pH 7.4–8.8 and under isotonic and hypotonic conditions, respectively. We also observed PMCA1 immunoreactivity using immunofluorescence analysis. These findings indicate that PMCA participates in maintaining [Ca2+]i homeostasis in odontoblasts by Ca2+ extrusion following [Ca2+]i elevation. In addition, PMCA participates in dentinogenesis by transporting Ca2+ to the mineralizing front (which is independent of non-collagenous dentin matrix protein secretion) under physiological and pathological conditions following mechanical stimulation by hydrodynamic force inside dentinal tubules, or direct alkaline stimulation by the application of high-pH dental materials.
Collapse
Affiliation(s)
- Maki Kimura
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
| | - Hiroyuki Mochizuki
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
| | - Ryouichi Satou
- Department of Epidemiology and Public Health, Tokyo Dental College, Chiyodaku, Tokyo 101-0061, Japan; (R.S.); (M.I.)
| | - Miyu Iwasaki
- Department of Epidemiology and Public Health, Tokyo Dental College, Chiyodaku, Tokyo 101-0061, Japan; (R.S.); (M.I.)
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, Chiyodaku, Tokyo 101-0061, Japan;
| | - Kyosuke Kono
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
| | - Sachie Nomura
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
| | - Takeshi Sakurai
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
| | - Hidetaka Kuroda
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
- Department of Dental Anesthesiology, Kanagawa Dental University, 1-23, Ogawacho, Kanagawa, Yokosuka-shi 238-8570, Japan
| | - Yoshiyuki Shibukawa
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
- Correspondence:
| |
Collapse
|
13
|
Kamata S, Kimura M, Ohyama S, Yamashita S, Shibukawa Y. Large-Conductance Calcium-Activated Potassium Channels and Voltage-Dependent Sodium Channels in Human Cementoblasts. Front Physiol 2021; 12:634846. [PMID: 33959036 PMCID: PMC8093401 DOI: 10.3389/fphys.2021.634846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/17/2021] [Indexed: 12/02/2022] Open
Abstract
Cementum, which is excreted by cementoblasts, provides an attachment site for collagen fibers that connect to the alveolar bone and fix the teeth into the alveolar sockets. Transmembrane ionic signaling, associated with ionic transporters, regulate various physiological processes in a wide variety of cells. However, the properties of the signals generated by plasma membrane ionic channels in cementoblasts have not yet been described in detail. We investigated the biophysical and pharmacological properties of ion channels expressed in human cementoblast (HCEM) cell lines by measuring ionic currents using conventional whole-cell patch-clamp recording. The application of depolarizing voltage steps in 10 mV increments from a holding potential (Vh) of −70 mV evoked outwardly rectifying currents at positive potentials. When intracellular K+ was substituted with an equimolar concentration of Cs+, the outward currents almost disappeared. Using tail current analysis, the contributions of both K+ and background Na+ permeabilities were estimated for the outward currents. Extracellular application of tetraethylammonium chloride (TEA) and iberiotoxin (IbTX) reduced the densities of the outward currents significantly and reversibly, whereas apamin and TRAM-34 had no effect. When the Vh was changed to −100 mV, we observed voltage-dependent inward currents in 30% of the recorded cells. These results suggest that HCEM express TEA- and IbTX-sensitive large-conductance Ca2+-activated K+ channels and voltage-dependent Na+ channels.
Collapse
Affiliation(s)
- Satomi Kamata
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Tokyo, Japan.,Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Sadao Ohyama
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Shuichiro Yamashita
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
14
|
Bernal L, Sotelo-Hitschfeld P, König C, Sinica V, Wyatt A, Winter Z, Hein A, Touska F, Reinhardt S, Tragl A, Kusuda R, Wartenberg P, Sclaroff A, Pfeifer JD, Ectors F, Dahl A, Freichel M, Vlachova V, Brauchi S, Roza C, Boehm U, Clapham DE, Lennerz JK, Zimmermann K. Odontoblast TRPC5 channels signal cold pain in teeth. SCIENCE ADVANCES 2021; 7:7/13/eabf5567. [PMID: 33771873 PMCID: PMC7997515 DOI: 10.1126/sciadv.abf5567] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/09/2021] [Indexed: 05/21/2023]
Abstract
Teeth are composed of many tissues, covered by an inflexible and obdurate enamel. Unlike most other tissues, teeth become extremely cold sensitive when inflamed. The mechanisms of this cold sensation are not understood. Here, we clarify the molecular and cellular components of the dental cold sensing system and show that sensory transduction of cold stimuli in teeth requires odontoblasts. TRPC5 is a cold sensor in healthy teeth and, with TRPA1, is sufficient for cold sensing. The odontoblast appears as the direct site of TRPC5 cold transduction and provides a mechanism for prolonged cold sensing via TRPC5's relative sensitivity to intracellular calcium and lack of desensitization. Our data provide concrete functional evidence that equipping odontoblasts with the cold-sensor TRPC5 expands traditional odontoblast functions and renders it a previously unknown integral cellular component of the dental cold sensing system.
Collapse
Affiliation(s)
- Laura Bernal
- Department of Anesthesiology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Pamela Sotelo-Hitschfeld
- Department of Anesthesiology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Institute of Physiology, Faculty of Medicine and Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Christine König
- Department of Anesthesiology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Viktor Sinica
- Department of Anesthesiology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Zoltan Winter
- Department of Anesthesiology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Alexander Hein
- HHMI, Cardiovascular Division, Boston Children's Hospital, and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Filip Touska
- Department of Anesthesiology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Susanne Reinhardt
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Aaron Tragl
- Department of Anesthesiology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Ricardo Kusuda
- Department of Anesthesiology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Philipp Wartenberg
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Allen Sclaroff
- Department of Otolaryngology, Washington University School of Medicine, St Louis, MO, USA
| | - John D Pfeifer
- Department of Pathology, Washington University School of Medicine, St Louis, MO, USA
| | - Fabien Ectors
- FARAH Mammalian Transgenics Platform, Liège University, Liège, Belgium
| | - Andreas Dahl
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Marc Freichel
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sebastian Brauchi
- Institute of Physiology, Faculty of Medicine and Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-associated Diseases (MiNICAD), Santiago, Chile
| | - Carolina Roza
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - David E Clapham
- HHMI, Cardiovascular Division, Boston Children's Hospital, and Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - Jochen K Lennerz
- Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Katharina Zimmermann
- Department of Anesthesiology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany.
| |
Collapse
|
15
|
Pei F, Liu J, Zhang L, Pan X, Huang W, Cen X, Huang S, Jin Y, Zhao Z. The functions of mechanosensitive ion channels in tooth and bone tissues. Cell Signal 2021; 78:109877. [PMID: 33296740 DOI: 10.1016/j.cellsig.2020.109877] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Tooth and bone are independent tissues with a close relationship. Both are composed of a highly calcified outer structure and soft inner tissue, and both are constantly under mechanical stress. In particular, the alveolar bone and tooth constitute an occlusion system and suffer from masticatory and occlusal force. Thus, mechanotransduction is a key process in many developmental, physiological and pathological processes in tooth and bone. Mechanosensitive ion channels such as Piezo1 and Piezo2 are important participants in mechanotransduction, but their functions in tooth and bone are poorly understood. This review summarizes our current understanding of mechanosensitive ion channels and their roles in tooth and bone tissues. Research in these areas may shed new light on the regulation of tooth and bone tissues and potential treatments for diseases affecting these tissues.
Collapse
Affiliation(s)
- Fang Pei
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Jialing Liu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Lan Zhang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Xuefeng Pan
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Wei Huang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Xiao Cen
- Department of the Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Ying Jin
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China.
| |
Collapse
|
16
|
Transient Receptor Potential (TRP) Ion Channels in Orofacial Pain. Mol Neurobiol 2021; 58:2836-2850. [PMID: 33515176 DOI: 10.1007/s12035-021-02284-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Orofacial pain, including temporomandibular joint disorders pain, trigeminal neuralgia, dental pain, and debilitating headaches, affects millions of Americans each year with significant population health impact. Despite the existence of a large body of information on the subject, the molecular underpinnings of orofacial pain remain elusive. Two decades of research has identified that transient receptor potential (TRP) ion channels play a crucial role in pathological pain. A number of TRP ion channels are clearly expressed in the trigeminal sensory system and have critical functions in the transduction and pathogenesis of orofacial pain. Although there are many similarities, the orofacial sensory system shows some distinct peripheral and central pain processing and different sensitivities from the spinal sensory system. Relative to the extensive review on TRPs in spinally-mediated pain, the summary of TRPs in trigeminally-mediated pain has not been well-documented. This review focuses on the current experimental evidence involving TRP ion channels, particularly TRPV1, TRPA1, TRPV4, and TRPM8 in orofacial pain, and discusses their possible cellular and molecular mechanisms.
Collapse
|
17
|
Kim JH, Won J, Oh SB. Expression of Ca V3.1 T-type Calcium Channels in Acutely Isolated Adult Rat Odontoblasts. Arch Oral Biol 2020; 118:104864. [PMID: 32847753 DOI: 10.1016/j.archoralbio.2020.104864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/20/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Odontoblasts, which consist the outermost compartment of the dental pulp, are primarily engaged in dentin formation. Earlier evidence suggests that voltage-gated calcium channels, such as the high voltage-activated L-type calcium channels, serve as a calcium entry route to mediate dentin formation in odontoblasts. However, the involvement of other voltage-gated calcium channels in regulating intracellular Ca2+ remain unanswered. DESIGN The expression of voltage-gated calcium channel subtypes of the P/Q- (CaV2.1), N-(CaV2.2), R- (CaV2.3), and T- (CaV3.1-3.3) type were screened in adult rat odontoblasts by single cell RT-PCR. Among these candidates, immunopositivity against CaV3.1 was examined in the odontoblastic layer in teeth sections and dissociated odontoblasts. To confirm the functional expression of CaV3.1 in odontoblasts, intracellular Ca2+ increase in response to membrane depolarization was monitored with Fura-2-based ratiometric calcium imaging. RESULTS Among the candidate calcium channels, we found that mRNA for CaV3.1 is mainly detected in odontoblasts, with its expression being detected in the odontoblastic layer and dissociated odontoblasts. High extracellular K+-induced membrane depolarization was inhibited by pharmacological blockers for T-type calcium channels such as amiloride or ML218. CONCLUSION Our results demonstrate that among P/Q-, N-, R-, and T-type calcium channels, CaV3.1 is mainly expressed in odontoblasts to mediate intracellular Ca2+ signaling in response to membrane depolarization. These findings suggest that CaV3.1 may facilitate intracellular Ca2+ dynamics especially in the range of subliminal depolarizations near resting membrane potentials where other high voltage-gated calcium channels such as the L-type are likely to be inactive.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jonghwa Won
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seog Bae Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea; Dental Research Institute and Department of Neurobiology & Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Lee PR, Lee JY, Kim HB, Lee JH, Oh SB. TRPM8 Mediates Hyperosmotic Stimuli-Induced Nociception in Dental Afferents. J Dent Res 2019; 99:107-114. [PMID: 31718465 DOI: 10.1177/0022034519886847] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hyperosmolar sweet foods onto exposed tooth dentin evoke sudden and intense dental pain, called dentin hypersensitivity. However, it remains unclear how hyperosmolar stimuli excite dental primary afferent (DPA) neurons and thereby lead to dentin hypersensitivity. This study elucidated whether TRPM8, which is well known as a cold temperature- or menthol-activated receptor, additionally mediates nociception in response to hyperosmolar stimuli in adult mouse DPA neurons, which are identified by a fluorescent retrograde tracer: DiI. Single-cell reverse transcription polymerase chain reaction revealed that TRPM8 was expressed in subsets of DPA neurons and that TRPM8 was highly colocalized with TRPV1 and Piezo2. Immunohistochemical analysis also confirmed TRPM8 expression in DPA neurons. By using Fura-2-based calcium imaging, application of hyperosmolar sucrose solutions elicited calcium transients in subsets of the trigeminal ganglion neurons, which was significantly abolished by a selective TRPM8 antagonist: N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide (AMTB) hydrochloride. When we further examined changes of c-fos expression (a neuronal activation marker) in the spinal trigeminal nucleus after hyperosmolar stimulation onto exposed tooth dentin, c-fos mRNA and protein expression were increased and were also significantly reduced by AMTB, especially in the spinal trigeminal interpolaris-caudalis transition zone (Vi/Vc). Taken together, our results provide strong evidence that TRPM8 expressed in DPA neurons might mediate dental pain as a hyperosmosensor in adult mice.
Collapse
Affiliation(s)
- P R Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - J Y Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - H B Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - J H Lee
- Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - S B Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.,Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
20
|
Rajan S, Ljunggren A, Manton DJ, Björkner AE, McCullough M. Post-mitotic odontoblasts in health, disease, and regeneration. Arch Oral Biol 2019; 109:104591. [PMID: 31710968 DOI: 10.1016/j.archoralbio.2019.104591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/09/2019] [Accepted: 10/20/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Description of the odontoblast lifecycle, an overview of the known complex molecular interactions that occur when the health of the dental pulp is challenged and the current and future management strategies on vital and non-vital teeth. METHODS A literature search of the electronic databases included MEDLINE (1966-April 2019), CINAHL (1982-April 2019), EMBASE and EMBASE Classic (1947-April 2019), and hand searches of references retrieved were undertaken using the following MESH terms 'odontoblast*', 'inflammation', 'dental pulp*', 'wound healing' and 'regenerative medicine'. RESULTS Odontoblasts have a sensory and mechano-transduction role so as to detect external stimuli that challenge the dental pulp. On detection, odontoblasts stimulate the innate immunity by activating defence mechanisms key in the healing and repair mechanisms of the tooth. A better understanding of the role of odontoblasts within the dental pulp complex will allow an opportunity for biological management to remove the cause of the insult to the dental pulp, modulate the inflammatory process, and promote the healing and repair capabilities of the tooth. Current strategies include use of conventional dental pulp medicaments while newer methods include bioactive molecules, epigenetic modifications and tissue engineering. CONCLUSION Regenerative medicine methods are in their infancy and experimental stages at best. This review highlights the future direction of dental caries management and consequently research.
Collapse
Affiliation(s)
- S Rajan
- The University of Melbourne, Australia.
| | | | - D J Manton
- The University of Melbourne, Australia; Centrum voor Tandheelkunde en Mondzorgkunde, UMCG, University of Groningen, the Netherlands
| | | | | |
Collapse
|
21
|
Higashikawa A, Kimura M, Shimada M, Ohyama S, Ofusa W, Tazaki M, Shibukawa Y. Merkel Cells Release Glutamate Following Mechanical Stimulation: Implication of Glutamate in the Merkel Cell-Neurite Complex. Front Cell Neurosci 2019; 13:255. [PMID: 31244612 PMCID: PMC6580182 DOI: 10.3389/fncel.2019.00255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/21/2019] [Indexed: 01/14/2023] Open
Abstract
Merkel cells (MCs) have been proposed to form a part of the MC-neurite complex with sensory neurons through synaptic contact. However, the detailed mechanisms for intercellular communication between MCs and neurons have yet to be clarified. The present study examined the increases in intracellular free Ca2+ concentration ([Ca2+]i) induced by direct mechanical stimulation of MCs. We also measured [Ca2+]i in the trigeminal ganglion neurons (TGs) following direct mechanical stimulation to the MCs in an MC-TGs coculture. The MCs were isolated from hamster buccal mucosa, while TGs were isolated from neonatal Wistar rats. Both cell populations showed depolarization-induced [Ca2+]i. Direct mechanical stimulation to MCs increased [Ca2+]i, showing stimulation strength dependence. In the MC-TGs coculture, the application of direct mechanical stimulation to MCs resulted in increased [Ca2+]i in the TGs. These changes were significantly suppressed by antagonists of glutamate-permeable anion channels (4,4′-diisothiocyanato-2,2′-stilbenedisulfonic acid; DIDS), and non-competitive antagonist of the N-methyl-D-aspartate (NMDA) receptors (MK801). Apyrase, an ATP-degrading enzyme, and suramin, a non-selective P2 purinergic receptor antagonist, did not exert inhibitory effects on these [Ca2+]i increases in the TGs following MC stimulation. These results indicated that MCs are capable of releasing glutamate, but not ATP, in response to cellular deformation by direct mechanical stimulation. The released glutamate activates the NMDA receptors on TGs. We suggest that MCs act as mechanoelectrical transducers and establish synaptic transmission with neurons, through the MC-neurite complex, to mediate mechanosensory transduction.
Collapse
Affiliation(s)
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Miyuki Shimada
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Sadao Ohyama
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Wataru Ofusa
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Masakazu Tazaki
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
22
|
Lee K, Lee BM, Park CK, Kim YH, Chung G. Ion Channels Involved in Tooth Pain. Int J Mol Sci 2019; 20:ijms20092266. [PMID: 31071917 PMCID: PMC6539952 DOI: 10.3390/ijms20092266] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023] Open
Abstract
The tooth has an unusual sensory system that converts external stimuli predominantly into pain, yet its sensory afferents in teeth demonstrate cytochemical properties of non-nociceptive neurons. This review summarizes the recent knowledge underlying this paradoxical nociception, with a focus on the ion channels involved in tooth pain. The expression of temperature-sensitive ion channels has been extensively investigated because thermal stimulation often evokes tooth pain. However, temperature-sensitive ion channels cannot explain the sudden intense tooth pain evoked by innocuous temperatures or light air puffs, leading to the hydrodynamic theory emphasizing the microfluidic movement within the dentinal tubules for detection by mechanosensitive ion channels. Several mechanosensitive ion channels expressed in dental sensory systems have been suggested as key players in the hydrodynamic theory, and TRPM7, which is abundant in the odontoblasts, and recently discovered PIEZO receptors are promising candidates. Several ligand-gated ion channels and voltage-gated ion channels expressed in dental primary afferent neurons have been discussed in relation to their potential contribution to tooth pain. In addition, in recent years, there has been growing interest in the potential sensory role of odontoblasts; thus, the expression of ion channels in odontoblasts and their potential relation to tooth pain is also reviewed.
Collapse
Affiliation(s)
- Kihwan Lee
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea.
| | - Byeong-Min Lee
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul 08826, Korea.
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea.
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea.
| | - Gehoon Chung
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul 08826, Korea.
- Dental Research Institute, Seoul National University, Seoul 03080, Korea.
| |
Collapse
|
23
|
Glitsch M. Mechano- and pH-sensing convergence on Ca 2+-mobilising proteins - A recipe for cancer? Cell Calcium 2019; 80:38-45. [PMID: 30952068 DOI: 10.1016/j.ceca.2019.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Alterations in the (bio)chemical and physical microenvironment of cells accompany and often promote disease formation and progression. This is particularly well established for solid cancers, which are typically stiffer than the healthy tissue in which they arise, and often display profound acidification of their interstitial fluid. Cell surface receptors can sense changes in the mechanical and (bio)chemical properties of the surrounding extracellular matrix and fluid, and signalling through these receptors is thought to play a key role in disease development and advancement. This review will look at ion channels and G protein coupled receptors that are activated by mechanical cues and extracellular acidosis, and stimulation of which results in increases in intracellular Ca2+ concentrations. Cellular Ca2+ levels are dysregulated in cancer as well as cancer-associated cells, and mechano- and proton-sensing proteins likely contribute to these aberrant intracellular Ca2+ signals, making them attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Maike Glitsch
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Hossain MZ, Bakri MM, Yahya F, Ando H, Unno S, Kitagawa J. The Role of Transient Receptor Potential (TRP) Channels in the Transduction of Dental Pain. Int J Mol Sci 2019; 20:ijms20030526. [PMID: 30691193 PMCID: PMC6387147 DOI: 10.3390/ijms20030526] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Dental pain is a common health problem that negatively impacts the activities of daily living. Dentine hypersensitivity and pulpitis-associated pain are among the most common types of dental pain. Patients with these conditions feel pain upon exposure of the affected tooth to various external stimuli. However, the molecular mechanisms underlying dental pain, especially the transduction of external stimuli to electrical signals in the nerve, remain unclear. Numerous ion channels and receptors localized in the dental primary afferent neurons (DPAs) and odontoblasts have been implicated in the transduction of dental pain, and functional expression of various polymodal transient receptor potential (TRP) channels has been detected in DPAs and odontoblasts. External stimuli-induced dentinal tubular fluid movement can activate TRP channels on DPAs and odontoblasts. The odontoblasts can in turn activate the DPAs by paracrine signaling through ATP and glutamate release. In pulpitis, inflammatory mediators may sensitize the DPAs. They could also induce post-translational modifications of TRP channels, increase trafficking of these channels to nerve terminals, and increase the sensitivity of these channels to stimuli. Additionally, in caries-induced pulpitis, bacterial products can directly activate TRP channels on DPAs. In this review, we provide an overview of the TRP channels expressed in the various tooth structures, and we discuss their involvement in the development of dental pain.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Marina Mohd Bakri
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Farhana Yahya
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| |
Collapse
|
25
|
Muramatsu T, Kashiwagi S, Ishizuka H, Matsuura Y, Furusawa M, Kimura M, Shibukawa Y. Alkaline extracellular conditions promote the proliferation and mineralization of a human cementoblast cell line. Int Endod J 2018; 52:639-645. [PMID: 30447154 DOI: 10.1111/iej.13044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/13/2018] [Indexed: 01/10/2023]
Abstract
AIM To investigate the proliferation and mineralization of a human cementoblast cell line under alkaline conditions. METHODOLOGY A human cementoblast cell line was cultured in alkaline media with several pHs (pH 7.6, 8.0 and 8.4) without CO2 . Cell numbers, phospho-p44/42 expression, alkaline phosphatase (ALP) activity and mineralization were evaluated. The significance of differences between groups was assessed using two-way analysis of variance 15 (ANOVA) followed by Bonferroni's multiple comparison test (α = 0.01). RESULTS Cell numbers increased in a time-dependent manner in the high pH medium groups. Western blot analysis revealed the upregulated expression of phospho-p44/42 under alkaline conditions. ALP activity was also increased at pH 8.0 and 8.4. Alizarin red staining revealed increased mineralization in the high pH medium groups. The incorporation of the transient receptor potential ankyrin subfamily member 1 (TRPA1) antagonist HC030031 markedly negated the effect on proliferation and mineralization. CONCLUSIONS Extracellular alkaline conditions promoted the proliferation and mineralization of human cementoblasts in vitro via TRPA1.
Collapse
Affiliation(s)
- T Muramatsu
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Tokyo, Japan
| | - S Kashiwagi
- Department of Endodontics, Tokyo Dental College, Tokyo, Japan
| | - H Ishizuka
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Tokyo, Japan
| | - Y Matsuura
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - M Furusawa
- Department of Endodontics, Tokyo Dental College, Tokyo, Japan
| | - M Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Y Shibukawa
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
26
|
An S. The emerging role of extracellular Ca
2+
in osteo/odontogenic differentiation and the involvement of intracellular Ca
2+
signaling: From osteoblastic cells to dental pulp cells and odontoblasts. J Cell Physiol 2018; 234:2169-2193. [DOI: 10.1002/jcp.27068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and EndodonticsGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen UniversityGuangzhou China
- Guangdong Province Key Laboratory of StomatologySun Yat‐Sen UniversityGuangzhou China
| |
Collapse
|
27
|
Fujita F, Uchida K, Takayama Y, Suzuki Y, Takaishi M, Tominaga M. Hypotonicity-induced cell swelling activates TRPA1. J Physiol Sci 2018; 68:431-440. [PMID: 28623463 PMCID: PMC6351518 DOI: 10.1007/s12576-017-0545-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/19/2017] [Indexed: 01/23/2023]
Abstract
Hypotonic solutions can cause painful sensations in nasal and ocular mucosa through molecular mechanisms that are not entirely understood. We clarified the ability of human TRPA1 (hTRPA1) to respond to physical stimulus, and evaluated the response of hTRPA1 to cell swelling under hypotonic conditions. Using a Ca2+-imaging method, we found that modulation of AITC-induced hTRPA1 activity occurred under hypotonic conditions. Moreover, cell swelling in hypotonic conditions evoked single-channel activation of hTRPA1 in a cell-attached mode when the patch pipette was attached after cell swelling under hypotonic conditions, but not before swelling. Single-channel currents activated by cell swelling were also inhibited by a known hTRPA1 blocker. Since pre-application of thapsigargin or pretreatment with the calcium chelator BAPTA did not affect the single-channel activation induced by cell swelling, changes in intracellular calcium concentrations are likely not related to hTRPA1 activation induced by physical stimuli.
Collapse
Affiliation(s)
- Fumitaka Fujita
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.
- Basic Research Institute, Mandom Corp., Osaka, 540-8530, Japan.
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kunitoshi Uchida
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
| | - Yasunori Takayama
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
| | - Yoshiro Suzuki
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
| | - Masayuki Takaishi
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Product Assurance Division, Mandom Corp., Osaka, 540-8530, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan.
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Tokyo, 113-0033, Japan.
| |
Collapse
|
28
|
Kimura M, Nishi K, Higashikawa A, Ohyama S, Sakurai K, Tazaki M, Shibukawa Y. High pH-Sensitive Store-Operated Ca 2+ Entry Mediated by Ca 2+ Release-Activated Ca 2+ Channels in Rat Odontoblasts. Front Physiol 2018; 9:443. [PMID: 29765331 PMCID: PMC5938338 DOI: 10.3389/fphys.2018.00443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/10/2018] [Indexed: 11/13/2022] Open
Abstract
Odontoblasts play a crucial role in dentin formation and sensory transduction following the application of stimuli to the dentin surface. Various exogenous and endogenous stimuli elicit an increase in the intracellular free calcium concentration ([Ca2+]i) in odontoblasts, which is mediated by Ca2+ release from intracellular Ca2+ stores and/or Ca2+ influx from the extracellular medium. In a previous study, we demonstrated that the depletion of Ca2+ stores in odontoblasts activated store-operated Ca2+ entry (SOCE), a Ca2+ influx pathway. However, the precise biophysical and pharmacological properties of SOCE in odontoblasts have remained unclear. In the present study, we examined the functional expression and pharmacological properties of Ca2+ release-activated Ca2+ (CRAC) channels that mediate SOCE and evaluated the alkali sensitivity of SOCE in rat odontoblasts. In the absence of extracellular Ca2+, treatment with thapsigargin (TG), a sarco/endoplasmic reticulum Ca2+-ATPase inhibitor, induced an increase in [Ca2+]i. After [Ca2+]i returned to near-resting levels, the subsequent application of 2.5 mM extracellular Ca2+ resulted in an increase in [Ca2+]i which is a typical of SOCE activation. Additionally, application of 2-methylthioadenosine diphosphate trisodium salt (2-MeSADP), a P2Y1,12,13 receptor agonist, or carbachol (CCh), a muscarinic cholinergic receptor agonist, in the absence of extracellular Ca2+, induced a transient increase in [Ca2+]i. The subsequent addition of extracellular Ca2+ resulted in significantly higher [Ca2+]i in 2-MeSADP- or CCh-treated odontoblasts than in untreated cells. SOCE, that is activated by addition of extracellular Ca2+ in the TG pretreated odontoblasts was then suppressed by Synta66, BTP2, or lanthanum, which are CRAC channel inhibitors. Treatment with an alkaline solution enhanced SOCE, while treatment with HC030031, a TRPA1 channel antagonist, inhibited it. The amplitude of SOCE at pH 9 in the presence of HC030031 was higher than that at pH 7.4 in the absence of HC030031. These findings indicate that CRAC channel-mediated alkali-sensitive SOCE occurs in odontoblasts. SOCE is mediated by P2Y and muscarinic-cholinergic receptors, which are activated by endogenous ligands in odontoblasts.
Collapse
Affiliation(s)
- Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Koichi Nishi
- Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College, Tokyo, Japan
| | | | - Sadao Ohyama
- Department of Physiology, Tokyo Dental College, Tokyo, Japan.,Department of Oral Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kaoru Sakurai
- Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College, Tokyo, Japan
| | - Masakazu Tazaki
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
29
|
Kojima Y, Higashikawa A, Kimura M, Sato M, Mochizuki H, Ogura K, Sase T, Shinya A, Kobune K, Furuya T, Sato T, Shibukawa Y, Tazaki M. Depolarization-induced Intracellular Free Calcium Concentration Increases Show No Desensitizing Effect in Rat Odontoblasts. THE BULLETIN OF TOKYO DENTAL COLLEGE 2018; 56:131-4. [PMID: 26085001 DOI: 10.2209/tdcpublication.56.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Odontoblasts play an important role in the transduction of the sensory signals underlying dentinal pain. Transmembrane voltage-independent Ca(2+) influx in odontoblasts has been well described. Voltage-dependent Ca(2+) influx has also been reported, but its biophysical properties remain unclear. The aim of the present study was to investigate the desensitizing effect of voltage-dependent Ca(2+) influx in rat odontoblasts by measuring depolarization-induced intracellular free Ca(2+) concentrations ([Ca(2+) ]i ). Odontoblasts on dental pulp slices from newborn rats were acutely isolated and [Ca(2+) ]i measured by using fura-2 fluorescence. Repeated application of extracellular high-K(+) solution (50 mM), which induces membrane depolarization-elicited repeated and transient increases in [Ca(2+) ]i in the presence of extracellular Ca(2+). Increases in depolarization-induced [Ca(2+) ]i showed no significant desensitizing effect (p >0.05; Friedman test). These results suggest that odontoblasts express a voltage-dependent Ca(2+) influx pathway with no desensitizing properties.
Collapse
Affiliation(s)
- Yuki Kojima
- Department of Physiology, Tokyo Dental College
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sato M, Ogura K, Kimura M, Nishi K, Ando M, Tazaki M, Shibukawa Y. Activation of Mechanosensitive Transient Receptor Potential/Piezo Channels in Odontoblasts Generates Action Potentials in Cocultured Isolectin B 4-negative Medium-sized Trigeminal Ganglion Neurons. J Endod 2018; 44:984-991.e2. [PMID: 29709295 DOI: 10.1016/j.joen.2018.02.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Various stimuli to the dentin surface elicit dentinal pain by inducing dentinal fluid movement causing cellular deformation in odontoblasts. Although odontoblasts detect deformation by the activation of mechanosensitive ionic channels, it is still unclear whether odontoblasts are capable of establishing neurotransmission with myelinated A delta (Aδ) neurons. Additionally, it is still unclear whether these neurons evoke action potentials by neurotransmitters from odontoblasts to mediate sensory transduction in dentin. Thus, we investigated evoked inward currents and evoked action potentials form trigeminal ganglion (TG) neurons after odontoblast mechanical stimulation. METHODS We used patch clamp recordings to identify electrophysiological properties and record evoked responses in TG neurons. RESULTS We classified TG cells into small-sized and medium-sized neurons. In both types of neurons, we observed voltage-dependent inward currents. The currents from medium-sized neurons showed fast inactivation kinetics. When mechanical stimuli were applied to odontoblasts, evoked inward currents were recorded from medium-sized neurons. Antagonists for the ionotropic adenosine triphosphate receptor (P2X3), transient receptor potential channel subfamilies, and Piezo1 channel significantly inhibited these inward currents. Mechanical stimulation to odontoblasts also generated action potentials in the isolectin B4-negative medium-sized neurons. Action potentials in these isolectin B4-negative medium-sized neurons showed a short duration. Overall, electrophysiological properties of neurons indicate that the TG neurons with recorded evoked responses after odontoblast mechanical stimulation were myelinated Aδ neurons. CONCLUSIONS Odontoblasts established neurotransmission with myelinated Aδ neurons via P2X3 receptor activation. The results also indicated that mechanosensitive TRP/Piezo1 channels were functionally expressed in odontoblasts. The activation of P2X3 receptors induced an action potential in the Aδ neurons, underlying a sensory generation mechanism of dentinal pain.
Collapse
Affiliation(s)
- Masaki Sato
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Kazuhiro Ogura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Koichi Nishi
- Removable Prosthodontics and Gerodontology, Tokyo Dental College, Tokyo, Japan
| | - Masayuki Ando
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Masakazu Tazaki
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
31
|
da Rosa WLO, Piva E, da Silva AF. Disclosing the physiology of pulp tissue for vital pulp therapy. Int Endod J 2018; 51:829-846. [DOI: 10.1111/iej.12906] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 01/30/2018] [Indexed: 12/23/2022]
Affiliation(s)
- W. L. O. da Rosa
- Department of Restorative Dentistry; School of Dentistry; Federal University of Pelotas; Pelotas Brazil
| | - E. Piva
- Department of Restorative Dentistry; School of Dentistry; Federal University of Pelotas; Pelotas Brazil
| | - A. F. da Silva
- Department of Restorative Dentistry; School of Dentistry; Federal University of Pelotas; Pelotas Brazil
| |
Collapse
|
32
|
Ogata K, Tsumuraya T, Oka K, Shin M, Okamoto F, Kajiya H, Katagiri C, Ozaki M, Matsushita M, Okabe K. The crucial role of the TRPM7 kinase domain in the early stage of amelogenesis. Sci Rep 2017; 7:18099. [PMID: 29273814 PMCID: PMC5741708 DOI: 10.1038/s41598-017-18291-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/07/2017] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential melastatin-7 (TRPM7) is a bi-functional protein containing a kinase domain fused to an ion channel. TRPM7 is highly expressed in ameloblasts during tooth development. Here we show that TRPM7 kinase-inactive knock-in mutant mice (TRPM7 KR mice) exhibited small enamel volume with opaque white-colored incisors. The TRPM7 channel function of ameloblast-lineage cells from TRPM7 KR mice was normal. Interestingly, phosphorylation of intracellular molecules including Smad1/5/9, p38 and cAMP response element binding protein (CREB) was inhibited in ameloblasts from TRPM7 KR mice at the pre-secretory stage. An immunoprecipitation assay showed that CREB was bound to TRPM7, suggesting that direct phosphorylation of CREB by TRPM7 was inhibited in ameloblast-lineage cells from TRPM7 KR mice. These results indicate that the function of the TRPM7 kinase domain plays an important role in ameloblast differentiation, independent of TRPM7 channel activity, via phosphorylation of CREB.
Collapse
Affiliation(s)
- Kayoko Ogata
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.,Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Tomoyuki Tsumuraya
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kyoko Oka
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan.
| | - Masashi Shin
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Fujio Okamoto
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Kajiya
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Chiaki Katagiri
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masao Ozaki
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Koji Okabe
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
33
|
Kojima Y, Kimura M, Higashikawa A, Kono K, Ando M, Tazaki M, Shibukawa Y. Potassium Currents Activated by Depolarization in Odontoblasts. Front Physiol 2017; 8:1078. [PMID: 29311993 PMCID: PMC5742198 DOI: 10.3389/fphys.2017.01078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/06/2017] [Indexed: 12/30/2022] Open
Abstract
Increased intracellular free Ca2+ concentrations elicit plasma membrane depolarization, which leads to the activation of K+ currents. However, the precise properties of K+ currents activated by depolarization in odontoblasts remain to be elucidated. The present study identified biophysical and pharmacological characteristics of time-dependent and voltage-activated K+ currents in freshly dissociated rat odontoblasts using patch-clamp recordings in a whole-cell configuration. Using a holding potential of −70 mV, outwardly rectifying time- and voltage-dependent currents were activated by depolarizing voltage. To record pure K+ conductance, we substituted Cl− in both the extracellular and intracellular solutions with gluconate−. Under these conditions, observation of K+ concentration changes in the extracellular solution showed that reversal potentials of tail currents shifted according to the K+ equilibrium potential. The activation kinetics of outward K+ currents were relatively slow and depended on the membrane potential. Kinetics of steady-state inactivation were fitted by a Boltzmann function. The half-maximal inactivation potential was −38 mV. Tetraethylammonium chloride, 4-aminopyridine, and α-dendrotoxin inhibited outward currents in odontoblasts in a concentration-dependent manner, suggesting that rat odontoblasts express the α-subunit of the time- and voltage-dependent K+ channel (Kv) subtypes Kv1.1, 1.2, and/or 1.6. We further examined the effects of Kv activity on mineralization by alizarin red and von Kossa staining. Continuous application of tetraethylammonium chloride to human odontoblasts grown in a mineralization medium over a 21-day period exhibited a dose-dependent decrease in mineralization efficiency compared to cells without tetraethylammonium chloride. This suggests that odontoblasts functionally express voltage-dependent K+ channels that play important roles in dentin formation.
Collapse
Affiliation(s)
- Yuki Kojima
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | | | - Kyosuke Kono
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Masayuki Ando
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Masakzu Tazaki
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
34
|
Solé-Magdalena A, Martínez-Alonso M, Coronado CA, Junquera LM, Cobo J, Vega JA. Molecular basis of dental sensitivity: The odontoblasts are multisensory cells and express multifunctional ion channels. Ann Anat 2017; 215:20-29. [PMID: 28954208 DOI: 10.1016/j.aanat.2017.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/22/2017] [Accepted: 09/10/2017] [Indexed: 12/26/2022]
Abstract
Odontoblasts are the dental pulp cells responsible for the formation of dentin. In addition, accumulating data strongly suggest that they can also function as sensory cells that mediate the early steps of mechanical, thermic, and chemical dental sensitivity. This assumption is based on the expression of different families of ion channels involved in various modalities of sensitivity and the release of putative neurotransmitters in response to odontoblast stimulation which are able to act on pulp sensory nerve fibers. This review updates the current knowledge on the expression of transient-potential receptor ion channels and acid-sensing ion channels in odontoblasts, nerve fibers innervating them and trigeminal sensory neurons, as well as in pulp cells. Moreover, the innervation of the odontoblasts and the interrelationship been odontoblasts and nerve fibers mediated by neurotransmitters was also revisited. These data might provide the basis for novel therapeutic approaches for the treatment of dentin sensibility and/or dental pain.
Collapse
Affiliation(s)
- A Solé-Magdalena
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain
| | - M Martínez-Alonso
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain
| | - C A Coronado
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - L M Junquera
- Departamento de Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Servicio de Cirugía Maxilofacial, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - J Cobo
- Departamento de Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Instituto Asturiano de Odontología, Oviedo, Spain
| | - J A Vega
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile.
| |
Collapse
|
35
|
Lee BM, Jo H, Park G, Kim YH, Park CK, Jung SJ, Chung G, Oh SB. Extracellular ATP Induces Calcium Signaling in Odontoblasts. J Dent Res 2016; 96:200-207. [PMID: 27694154 DOI: 10.1177/0022034516671308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Odontoblasts form dentin at the outermost surface of tooth pulp. An increasing level of evidence in recent years, along with their locational advantage, implicates odontoblasts as a secondary role as sensory or immune cells. Extracellular adenosine triphosphate (ATP) is a well-characterized signaling molecule in the neuronal and immune systems, and its potential involvement in interodontoblast communications was recently demonstrated. In an effort to elaborate the ATP-mediated signaling pathway in odontoblasts, the current study performed single-cell reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescent detection to investigate the expression of ATP receptors related to calcium signal in odontoblasts from incisal teeth of 8- to 10-wk-old rats, and demonstrated an in vitro response to ATP application via calcium imaging experiments. While whole tissue RT-PCR analysis detected P2Y2, P2Y4, and all 7 subtypes (P2X1 to P2X7) in tooth pulp, single-cell RT-PCR analysis of acutely isolated rat odontoblasts revealed P2Y2, P2Y4, P2X2, P2X4, P2X6, and P2X7 expression in only a subset (23% to 47%) of cells tested, with no evidence for P2X1, P2X3, and P2X5 expression. An increase of intracellular Ca2+ concentration in response to 100μM ATP, which was repeated after pretreatment of thapsigargin or under the Ca2+-free condition, suggested function of both ionotropic and metabotropic ATP receptors in odontoblasts. The enhancement of ATP-induced calcium response by ivermectin and inhibition by 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) confirmed a functional P2X4 subtype in odontoblasts. Positive calcium response to 2',3'-O-(benzoyl-4-benzoyl)-ATP (BzATP) and negative response to α,β-methylene ATP suggested P2X2, P2X4, and P2X7 as functional subunits in rat odontoblasts. Single-cell RT-PCR analysis of the cells with confirmed calcium response and immunofluorescent detection further corroborated the expression of P2X4 and P2X7 in odontoblasts. Overall, this study demonstrated heterogeneous expression of calcium-related ATP receptor subtypes in subsets of individual odontoblasts, suggesting extracellular ATP as a potential signal mediator for odontoblastic functions.
Collapse
Affiliation(s)
- B M Lee
- 1 Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - H Jo
- 1 Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - G Park
- 1 Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Y H Kim
- 1 Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - C K Park
- 2 Department of Physiology, Graduate School of Medicine, Gachon University, Incheon, Republic of Korea
| | - S J Jung
- 3 Department of Physiology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - G Chung
- 1 Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - S B Oh
- 1 Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- 4 Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Govea RM, Zhou S, Carlton SM. Group III mGluR8 negatively modulates TRPA1. Neuroscience 2016; 334:134-147. [PMID: 27497709 DOI: 10.1016/j.neuroscience.2016.07.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 01/01/2023]
Abstract
Several lines of evidence indicate group III metabotropic glutamate receptors (mGluRs) have systemic anti-hyperalgesic effects. We hypothesized this could occur through modulation of TRP channels on nociceptors. This study used a multifaceted approach to examine the interaction between group III mGluRs (mGluR8) and transient receptor potential ankyrin 1 (TRPA1) on cutaneous nociceptors in rats. Ca2+ imaging studies demonstrated co-localization and functional coupling of TRPA1 and mGluR8, since 1μM (S)-3,4-dicarboxyphenylglycine (DCPG) (mGluR8 agonist) significantly reduced Ca2+ mobilization produced by 30μM mustard oil (MO), a TRPA1 agonist. Behavioral studies demonstrated that 10mM MO produced mechanical hypersensitivity when topically applied to the hind paw, significantly decreasing paw withdrawal threshold (PWT) from 15g to 6g. However, administration of 30μM DCPG prior to 10mM MO reversed this hypersensitivity such that PWT was not significantly different from baseline. At the single-fiber level, compared to vehicle, 30μM MO significantly increased nociceptor activity and decreased mechanical threshold. However, 30μM DCPG reversed both of these MO-induced effects. Furthermore, DCPG significantly reduced the number of MO-induced mechanically sensitive fibers. Inhibition of protein kinase A (PKA) using Rp-cyclic 3',5'-hydrogen phosphorothioate adenosine triethylammonium salt (RpCAMPS) (PKA inhibitor, 1 and 10μM) significantly reduced MO-induced Ca2+ mobilization. Taken together, these results show that group III mGluRs negatively modulate TRPA1 activity on cutaneous nociceptors. Furthermore, it is likely that this modulation occurs intracellularly at the level of the cAMP/PKA pathway. This study demonstrates that group III agonists may be effective in the treatment of mechanical hypersensitivity which can develop as a result of inflammation, nerve injury, chemotherapy and other disease states.
Collapse
Affiliation(s)
- R M Govea
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, United States
| | - S Zhou
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, United States
| | - S M Carlton
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, United States.
| |
Collapse
|
37
|
Alvarez-Berdugo D, Rofes L, Casamitjana JF, Padrón A, Quer M, Clavé P. Oropharyngeal and laryngeal sensory innervation in the pathophysiology of swallowing disorders and sensory stimulation treatments. Ann N Y Acad Sci 2016; 1380:104-120. [DOI: 10.1111/nyas.13150] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/19/2016] [Accepted: 05/25/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Daniel Alvarez-Berdugo
- Gastrointestinal Motility Laboratory, Hospital de Mataró; Consorci Sanitari del Maresme; Mataró Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas; Instituto de Salud Carlos III; Barcelona Spain
| | - Laia Rofes
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas; Instituto de Salud Carlos III; Barcelona Spain
| | | | - Andreína Padrón
- Department of Pathology, Hospital de Mataró; Consorci Sanitari del Maresme; Mataró Spain
| | - Miquel Quer
- ENT and Cervicofacial Pathology Department of Hospital de la Santa Creu i Sant Pau; Barcelona Spain
| | - Pere Clavé
- Gastrointestinal Motility Laboratory, Hospital de Mataró; Consorci Sanitari del Maresme; Mataró Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas; Instituto de Salud Carlos III; Barcelona Spain
- Fundació Institut de Investigació Germans Trias i Pujol; Badalona Spain
| |
Collapse
|
38
|
Nishiyama A, Sato M, Kimura M, Katakura A, Tazaki M, Shibukawa Y. Intercellular signal communication among odontoblasts and trigeminal ganglion neurons via glutamate. Cell Calcium 2016; 60:341-355. [PMID: 27452727 DOI: 10.1016/j.ceca.2016.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 01/01/2023]
Abstract
Various stimuli to the exposed surface of dentin induce changes in the hydrodynamic force inside the dentinal tubules resulting in dentinal pain. Recent evidences indicate that mechano-sensor channels, such as the transient receptor potential channels, in odontoblasts receive these hydrodynamic forces and trigger the release of ATP to the pulpal neurons, to generate dentinal pain. A recent study, however, has shown that odontoblasts also express glutamate receptors (GluRs). This implies that cells in the dental pulp tissue have the ability to release glutamate, which acts as a functional intercellular mediator to establish inter-odontoblast and odontoblast-trigeminal ganglion (TG) neuron signal communication. To investigate the intercellular signal communication, we applied mechanical stimulation to odontoblasts and measured the intracellular free Ca2+ concentration ([Ca2+]i). During mechanical stimulation in the presence of extracellular Ca2+, we observed a transient [Ca2+]i increase not only in single stimulated odontoblasts, but also in adjacent odontoblasts. We could not observe these responses in the absence of extracellular Ca2+. [Ca2+]i increases in the neighboring odontoblasts during mechanical stimulation of single odontoblasts were inhibited by antagonists of metabotropic glutamate receptors (mGluRs) as well as glutamate-permeable anion channels. In the odontoblast-TG neuron coculture, we observed an increase in [Ca2+]i in the stimulated odontoblasts and TG neurons, in response to direct mechanical stimulation of single odontoblasts. These [Ca2+]i increases in the neighboring TG neurons were inhibited by antagonists for mGluRs. The [Ca2+]i increases in the stimulated odontoblasts were also inhibited by mGluRs antagonists. We further confirmed that the odontoblasts express group I, II, and III mGluRs. However, we could not record any currents evoked from odontoblasts near the mechanically stimulated odontoblast, with or without extracellular Mg2+, indicating that N-methyl-d-aspartic acid receptor does not contribute to inter-odontoblast signal communication. The results suggest that a mechanically stimulated odontoblast is capable of releasing glutamate into the extracellular space via glutamate-permeable anion channels. The released glutamate activates mGluRs on the odontoblasts in an autocrine/paracrine manner, forming an inter-odontoblasts communication, which drives dentin formation via odontoblast-odontoblast signal communication. Glutamate and mGluRs also mediate neurotransmission between the odontoblasts and neurons in the dental pulp to modulate sensory signal transmission for dentinal sensitivity.
Collapse
Affiliation(s)
- A Nishiyama
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo 101-0061, Japan
| | - M Sato
- Department of Physiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - M Kimura
- Department of Physiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - A Katakura
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo 101-0061, Japan
| | - M Tazaki
- Department of Physiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Y Shibukawa
- Department of Physiology, Tokyo Dental College, Tokyo 101-0061, Japan.
| |
Collapse
|
39
|
Zhang L, An X, Wang Q, He M. Activation of Cold-Sensitive Channels TRPM8 and TRPA1 Inhibits the Proliferative Airway Smooth Muscle Cell Phenotype. Lung 2016; 194:595-603. [PMID: 27236325 DOI: 10.1007/s00408-016-9901-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/20/2016] [Indexed: 01/18/2023]
Abstract
PURPOSE Airway smooth muscle cell (ASMC) phenotypic modulation is one of the key factors contributing to asthma. Temperature changes may induce asthma, and these changes are known to be related to the temperature-sensitive transient receptor potential channels (TS-TRPs). The present study was designed to investigate the cellular functions of cold-sensitive channels, TRPM8 and TRPA1, in the phenotypic modulation of ASMCs. METHODS A rat asthma model was constructed and the expression of TS-TRPs in ASM was tested. Using the agonists and antagonists for both TRPM8 and TRPA1, the effects of cold-sensitive channels on the phenotypic modulation of ASMCs were evaluated by measurement of contractile protein expression and cell proliferation and migration. Signaling pathways and matrix metalloproteinase-2 (MMP-2) activity were assayed with Western blotting and gelatin zymography. RESULTS TRPM8 and TRPA1 were decreased in the ASM of the rat asthma model. Icilin and menthol, agonists for TRPM8 and TRPA1, inhibited ASMC proliferation and migration induced by fetal bovine serum (FBS) or platelet-derived growth factor (PDGF). Moreover, icilin reversed the FBS-induced inhibition of the expression of contractile phenotype markers, smooth muscle α-actin, and SM22α. Icilin also antagonized the activation of p38 and MMP-2 and the repression of p21 caused by FBS. CONCLUSIONS Our findings show, for the first time, that the activation of TRPM8 and TRPA1 inhibits ASMC proliferative phenotype. These data suggest that TRPM8 and TRPA1 agonists may be promising new therapies for asthma.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Xiaofei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiuyu Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China. .,Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai, China.
| |
Collapse
|
40
|
Kimura M, Sase T, Higashikawa A, Sato M, Sato T, Tazaki M, Shibukawa Y. High pH-Sensitive TRPA1 Activation in Odontoblasts Regulates Mineralization. J Dent Res 2016; 95:1057-64. [PMID: 27084672 DOI: 10.1177/0022034516644702] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Calcium hydroxide and mineral trioxide aggregate are widely used for indirect and direct pulp capping and root canal filling. Their dissociation into Ca(2+) and OH(-) in dental pulp creates an alkaline environment, which activates reparative/reactionary dentinogenesis. However, the mechanisms by which odontoblasts detect the pH of the extracellular environment remain unclear. We examined the alkali-sensitive intracellular Ca(2+) signaling pathway in rat odontoblasts. In the presence or absence of extracellular Ca(2+), application of alkaline solution increased intracellular Ca(2+) concentration, or [Ca(2+)]i Alkaline solution-induced [Ca(2+)]i increases depended on extracellular pH (8.5 to 10.5) in both the absence and the presence of extracellular Ca(2+) The amplitude was smaller in the absence than in the presence of extracellular Ca(2+) Each increase in [Ca(2+)]i, activated by pH 7.5, 8.5, or 9.5, depended on extracellular Ca(2+) concentration; the equilibrium binding constant for extracellular Ca(2+) concentration decreased as extracellular pH increased (1.04 mM at pH 7.5 to 0.11 mM at pH 9.5). Repeated applications of alkaline solution did not have a desensitizing effect on alkali-induced [Ca(2+)]i increases and inward currents. In the presence of extracellular Ca(2+), alkaline solution-induced [Ca(2+)]i increases were suppressed by application of an antagonist of transient receptor potential ankyrin subfamily member 1 (TRPA1) channels. Ca(2+) exclusion efficiency during alkaline solution-induced [Ca(2+)]i increases was reduced by a Na(+)-Ca(2+) exchanger antagonist. Alizarin red and von Kossa staining revealed increased mineralization levels under repeated high pH stimulation, whereas the TRPA1 antagonist strongly reduced this effect. These findings indicate that alkaline stimuli-such as the alkaline environment inside dental pulp treated with calcium hydroxide or mineral trioxide aggregate-activate Ca(2+) mobilization via Ca(2+) influx mediated by TRPA1 channels and intracellular Ca(2+) release in odontoblasts. High pH-sensing mechanisms in odontoblasts are important for activating dentinogenesis induced by an alkaline environment.
Collapse
Affiliation(s)
- M Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - T Sase
- Department of Crown and Bridge Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | - A Higashikawa
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - M Sato
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - T Sato
- Department of Crown and Bridge Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | - M Tazaki
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Y Shibukawa
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
41
|
Ikeda E, Goto T, Gunjigake K, Kuroishi K, Ueda M, Kataoka S, Toyono T, Nakatomi M, Seta Y, Kitamura C, Nishihara T, Kawamoto T. Expression of Vesicular Nucleotide Transporter in Rat Odontoblasts. Acta Histochem Cytochem 2016; 49:21-8. [PMID: 27006518 PMCID: PMC4794551 DOI: 10.1267/ahc.15022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/25/2015] [Indexed: 01/29/2023] Open
Abstract
Several theories have been proposed regarding pain transmission mechanisms in tooth. However, the exact signaling mechanism from odontoblasts to pulp nerves remains to be clarified. Recently, ATP-associated pain transmission has been reported, but it is unclear whether ATP is involved in tooth pain transmission. In the present study, we focused on the vesicular nucleotide transporter (VNUT), a transporter of ATP into vesicles, and examined whether VNUT was involved in ATP release from odontoblasts. We examined the expression of VNUT in rat pulp by RT-PCR and immunostaining. ATP release from cultured odontoblast-like cells with heat stimulation was evaluated using ATP luciferase methods. VNUT was expressed in pulp tissue, and the distribution of VNUT-immunopositive vesicles was confirmed in odontoblasts. In odontoblasts, some VNUT-immunopositive vesicles were colocalized with membrane fusion proteins. Additionally P2X3, an ATP receptor, immunopositive axons were distributed between odontoblasts. The ATP release by thermal stimulation from odontoblast-like cells was inhibited by the addition of siRNA for VNUT. These findings suggest that cytosolic ATP is transported by VNUT and that the ATP in the vesicles is then released from odontoblasts to ATP receptors on axons. ATP vesicle transport in odontoblasts seems to be a key mechanism for signal transduction from odontoblasts to axons in the pulp.
Collapse
Affiliation(s)
- Erina Ikeda
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University
| | - Tetsuya Goto
- Department of Oral Anatomy and Cell Biology, Kagoshima University
| | - Kaori Gunjigake
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University
| | - Kayoko Kuroishi
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University
| | - Masae Ueda
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University
| | | | | | | | - Yuji Seta
- Division of Anatomy, Kyushu Dental University
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Kyushu Dental University
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology, Kyushu Dental University
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University
| |
Collapse
|
42
|
Sato M, Furuya T, Kimura M, Kojima Y, Tazaki M, Sato T, Shibukawa Y. Intercellular Odontoblast Communication via ATP Mediated by Pannexin-1 Channel and Phospholipase C-coupled Receptor Activation. Front Physiol 2015; 6:326. [PMID: 26617529 PMCID: PMC4639624 DOI: 10.3389/fphys.2015.00326] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/27/2015] [Indexed: 11/13/2022] Open
Abstract
Extracellular ATP released via pannexin-1 channels, in response to the activation of mechanosensitive-TRP channels during odontoblast mechanical stimulation, mediates intercellular communication among odontoblasts in dental pulp slice preparation dissected from rat incisor. Recently, odontoblast cell lines, such as mouse odontoblast lineage cells, have been widely used to investigate physiological/pathological cellular functions. To clarify whether the odontoblast cell lines also communicate with each other by diffusible chemical substance(s), we investigated the chemical intercellular communication among cells from mouse odontoblast cell lines following mechanical stimulation. A single cell was stimulated using a glass pipette filled with standard extracellular solution. We measured intracellular free Ca(2+) concentration ([Ca(2+)]i) by fura-2 in stimulated cells, as well as in cells located nearby. Direct mechanical stimulation to a single odontoblast increased [Ca(2+)]i, which showed sensitivity to capsazepine. In addition, we observed increases in [Ca(2+)]i not only in the mechanically stimulated odontoblast, but also in nearby odontoblasts. We could observe mechanical stimulation-induced increase in [Ca(2+)]i in a stimulated human embryo kidney (HEK) 293 cell, but not in nearby HEK293 cells. The increase in [Ca(2+)]i in nearby odontoblasts, but not in the stimulated odontoblast, was inhibited by adenosine triphosphate (ATP) release channel (pannexin-1) inhibitor in a concentration- and spatial-dependent manner. Moreover, in the presence of phospholipase C (PLC) inhibitor, the increase in [Ca(2+)]i in nearby odontoblasts, following mechanical stimulation of a single odontoblast, was abolished. We could record some inward currents evoked from odontoblasts near the stimulated odontoblast, but the currents were observed in only 4.8% of the recorded odontoblasts. The results of this study showed that ATP is released via pannexin-1, from a mechanically stimulated odontoblast, which transmits a signal to nearby odontoblasts by predominant activation of PLC-coupled nucleotide receptors.
Collapse
Affiliation(s)
- Masaki Sato
- Department of Physiology, Tokyo Dental College Tokyo, Japan
| | - Tadashi Furuya
- Department of Physiology, Tokyo Dental College Tokyo, Japan ; Department of Crown and Bridge Prosthodontics, Tokyo Dental College Tokyo, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College Tokyo, Japan
| | - Yuki Kojima
- Department of Physiology, Tokyo Dental College Tokyo, Japan
| | | | - Toru Sato
- Department of Crown and Bridge Prosthodontics, Tokyo Dental College Tokyo, Japan
| | | |
Collapse
|
43
|
Kumar A, Kumari S, Majhi RK, Swain N, Yadav M, Goswami C. Regulation of TRP channels by steroids: Implications in physiology and diseases. Gen Comp Endocrinol 2015; 220:23-32. [PMID: 25449179 DOI: 10.1016/j.ygcen.2014.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 01/26/2023]
Abstract
While effects of different steroids on the gene expression and regulation are well established, it is proven that steroids can also exert rapid non-genomic actions in several tissues and cells. In most cases, these non-genomic rapid effects of steroids are actually due to intracellular mobilization of Ca(2+)- and other ions suggesting that Ca(2+) channels are involved in such effects. Transient Receptor Potential (TRP) ion channels or TRPs are the largest group of non-selective and polymodal ion channels which cause Ca(2+)-influx in response to different physical and chemical stimuli. While non-genomic actions of different steroids on different ion channels have been established to some extent, involvement of TRPs in such functions is largely unexplored. In this review, we critically analyze the literature and summarize how different steroids as well as their metabolic precursors and derivatives can exert non-genomic effects by acting on different TRPs qualitatively and/or quantitatively. Such effects have physiological repercussion on systems such as in sperm cells, immune cells, bone cells, neuronal cells and many others. Different TRPs are also endogenously expressed in diverse steroid-producing tissues and thus may have importance in steroid synthesis as well, a process which is tightly controlled by the intracellular Ca(2+) concentrations. Tissue and cell-specific expression of TRP channels are also regulated by different steroids. Understanding of the crosstalk between TRP channels and different steroids may have strong significance in physiological, endocrinological and pharmacological context and in future these compounds can also be used as potential biomedicine.
Collapse
Affiliation(s)
- Ashutosh Kumar
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Shikha Kumari
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Rakesh Kumar Majhi
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Nirlipta Swain
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Manoj Yadav
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Chandan Goswami
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India.
| |
Collapse
|
44
|
Mori Y, Takahashi N, Polat OK, Kurokawa T, Takeda N, Inoue M. Redox-sensitive transient receptor potential channels in oxygen sensing and adaptation. Pflugers Arch 2015; 468:85-97. [PMID: 26149285 PMCID: PMC4700073 DOI: 10.1007/s00424-015-1716-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/22/2015] [Indexed: 12/14/2022]
Abstract
Regulation of ion channels is central to the mechanisms that underlie immediate acute physiological responses to changes in the availability of molecular oxygen (O2). A group of cation-permeable channels that are formed by transient receptor potential (TRP) proteins have been characterized as exquisite sensors of redox reactive species and as efficient actuators of electric/ionic signals in vivo. In this review, we first discuss how redox-sensitive TRP channels such as TRPA1 have recently emerged as sensors of the relatively inert oxidant O2. With regard to the physiological significance of O2 sensor TRP channels, vagal TRPA1 channels are mainly discussed with respect to their role in respiratory regulation in comparison with canonical pathways in glomus cells of the carotid body, which is a well-established O2-sensing organ. TRPM7 channels are discussed regarding hypoxia-sensing function in ischemic cell death. Also, ubiquitous expression of TRPA1 and TRPM7 together with their physiological relevance in the body is examined. Finally, based upon these studies on TRP channels, we propose a hypothesis of “O2 remodeling.” The hypothesis is that cells detect deviation of O2 availability from appropriate levels via sensors and adjust local O2 environments in vivo by controlling supply and consumption of O2 via pathways comprising cellular signals and transcription factors downstream of sensors, which consequently optimize physiological functions. This new insight into O2 adaptation through ion channels, particularly TRPs, may foster a paradigm shift in our understanding in the biological significance of O2.
Collapse
Affiliation(s)
- Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
- Laboratory of Environmental Systems Biology, Department of Technology and Ecology, Hall of Global Environmental Studies, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Nobuaki Takahashi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Onur Kerem Polat
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tatsuki Kurokawa
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masahiro Inoue
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Higashinari-ku, Osaka, 537-8511, Japan
| |
Collapse
|
45
|
Khatibi Shahidi M, Krivanek J, Kaukua N, Ernfors P, Hladik L, Kostal V, Masich S, Hampl A, Chubanov V, Gudermann T, Romanov R, Harkany T, Adameyko I, Fried K. Three-dimensional Imaging Reveals New Compartments and Structural Adaptations in Odontoblasts. J Dent Res 2015; 94:945-54. [DOI: 10.1177/0022034515580796] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In organized tissues, the precise geometry and the overall shape are critical for the specialized functions that the cells carry out. Odontoblasts are major matrix-producing cells of the tooth and have also been suggested to participate in sensory transmission. However, refined morphologic data on these important cells are limited, which hampers the analysis and understanding of their cellular functions. We took advantage of fluorescent color-coding genetic tracing to visualize and reconstruct in 3 dimensions single odontoblasts, pulp cells, and their assemblages. Our results show distinct structural features and compartments of odontoblasts at different stages of maturation, with regard to overall cellular shape, formation of the main process, orientation, and matrix deposition. We demonstrate previously unanticipated contacts between the processes of pulp cells and odontoblasts. All reported data are related to mouse incisor tooth. We also show that odontoblasts express TRPM5 and Piezo2 ion channels. Piezo2 is expressed ubiquitously, while TRPM5 is asymmetrically distributed with distinct localization to regions proximal to and within odontoblast processes.
Collapse
Affiliation(s)
| | - J. Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - N. Kaukua
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - P. Ernfors
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - L. Hladik
- TESCAN ORSAY Holding, Brno, Czech Republic
| | - V. Kostal
- TESCAN ORSAY Holding, Brno, Czech Republic
| | - S. Masich
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - A. Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - V. Chubanov
- Ludwig-Maximilians-Universität München, Walther-Straub-Institut für Pharmakologie und Toxikologie, München, Germany
| | - T. Gudermann
- Ludwig-Maximilians-Universität München, Walther-Straub-Institut für Pharmakologie und Toxikologie, München, Germany
| | - R.A. Romanov
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - T. Harkany
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Neurosciences, Center of Brain Research, Medical University of Vienna, Vienna, Austria
| | - I. Adameyko
- Department of Molecular Neurosciences, Center of Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - K. Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Tokuda M, Tatsuyama S, Fujisawa M, Morimoto-Yamashita Y, Kawakami Y, Shibukawa Y, Torii M. Dentin and pulp sense cold stimulus. Med Hypotheses 2015; 84:442-4. [PMID: 25665859 DOI: 10.1016/j.mehy.2015.01.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/23/2015] [Indexed: 11/26/2022]
Abstract
Dentin hypersensitivity is a common symptom, and recent convergent evidences have reported transient receptor potential (TRP) channels in odontoblasts act as mechanical and thermal molecular sensor, which detect stimulation applied on the exposed dentin surface, to drive multiple odontoblastic cellular functions, such as sensory transduction and/or dentin formation. In the present study, we confirmed expression of TRP melastatin subfamily member-8 (TRPM8) channels in primary cultured cells derived from human dental pulp cells (HPCs) and mouse odontoblast-lineage cells (OLCs) as well as in dentin matrix protein-1 (DMP-1) and dentin sialoprotein (DSP) positive acutely isolated rat odontoblasts from dental pulp tissue slice culture by immunohistochemical analyses. In addition, we detected TRPM8 channel expression on HPCs and OLCs by RT-PCR and Western blotting analyses. These results indicated that both odontoblasts and dental pulp cells express TRPM8 channels in rat, mouse and human, and therefore we hypothesize they may contribute as cold sensor in tooth.
Collapse
Affiliation(s)
- Masayuki Tokuda
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Shoko Tatsuyama
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Mari Fujisawa
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Yoko Morimoto-Yamashita
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Yoshiko Kawakami
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | | | - Mistuso Torii
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
47
|
Bartho L, Sándor Z, Kelemen D, Papp R, Benko R. Smooth muscle-depressant activity of AP-18, a putative TRPA1 antagonist in the guinea pig intestine. Pharmacology 2014; 94:131-4. [PMID: 25247599 DOI: 10.1159/000366023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 07/21/2014] [Indexed: 11/19/2022]
Abstract
AP-18, a putative antagonist at TRPA1 receptor/ion channel, caused smooth muscle relaxation at 10-100 µmol/l. It inhibited cholinergic twitch responses evoked by electrical field stimulation of cholinergic nerves as well as contractions in response to acetylcholine and histamine in the guinea pig small intestine. AP-18 (30 µmol/l) blocked spontaneous contractions of longitudinal strips of human jejunum. It is concluded that AP-18 may have limited value in studying TRPA1-mediated responses in smooth muscles and should probably be used with care in other preparations because of possible nonspecific effects.
Collapse
Affiliation(s)
- Lorand Bartho
- Department of Pharmacology and Pharmacotherapy, University Medical School of Pécs and Clinical Centre, Pécs, Hungary
| | | | | | | | | |
Collapse
|
48
|
Shibukawa Y, Sato M, Kimura M, Sobhan U, Shimada M, Nishiyama A, Kawaguchi A, Soya M, Kuroda H, Katakura A, Ichinohe T, Tazaki M. Odontoblasts as sensory receptors: transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction. Pflugers Arch 2014; 467:843-63. [PMID: 24939701 DOI: 10.1007/s00424-014-1551-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/16/2014] [Accepted: 06/05/2014] [Indexed: 01/09/2023]
Abstract
Various stimuli induce pain when applied to the surface of exposed dentin. However, the mechanisms underlying dentinal pain remain unclear. We investigated intercellular signal transduction between odontoblasts and trigeminal ganglion (TG) neurons following direct mechanical stimulation of odontoblasts. Mechanical stimulation of single odontoblasts increased the intracellular free calcium concentration ([Ca(2+)]i) by activating the mechanosensitive-transient receptor potential (TRP) channels TRPV1, TRPV2, TRPV4, and TRPA1, but not TRPM8 channels. In cocultures of odontoblasts and TG neurons, increases in [Ca(2+)]i were observed not only in mechanically stimulated odontoblasts, but also in neighboring odontoblasts and TG neurons. These increases in [Ca(2+)]i were abolished in the absence of extracellular Ca(2+) and in the presence of mechanosensitive TRP channel antagonists. A pannexin-1 (ATP-permeable channel) inhibitor and ATP-degrading enzyme abolished the increases in [Ca(2+)]i in neighboring odontoblasts and TG neurons, but not in the stimulated odontoblasts. G-protein-coupled P2Y nucleotide receptor antagonists also inhibited the increases in [Ca(2+)]i. An ionotropic ATP (P2X3) receptor antagonist inhibited the increase in [Ca(2+)]i in neighboring TG neurons, but not in stimulated or neighboring odontoblasts. During mechanical stimulation of single odontoblasts, a connexin-43 blocker did not have any effects on the [Ca(2+)]i responses observed in any of the cells. These results indicate that ATP, released from mechanically stimulated odontoblasts via pannexin-1 in response to TRP channel activation, transmits a signal to P2X3 receptors on TG neurons. We suggest that odontoblasts are sensory receptor cells and that ATP released from odontoblasts functions as a neurotransmitter in the sensory transduction sequence for dentinal pain.
Collapse
|