1
|
Jamalpour Z, Ghaderi S, Fathian-Kolahkaj M. High-risk patient profiles for ovarian cancer: A new approach using cluster analysis of tumor markers. J Gynecol Obstet Hum Reprod 2025; 54:102888. [PMID: 39617144 DOI: 10.1016/j.jogoh.2024.102888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE Ovarian cancer remains a leading cause of cancer-related deaths in women. Early detection improves prognosis, but current diagnostic tools still need improvement. We aimed to identify high-risk patient profiles for ovarian cancer using cluster analysis of age and tumor marker data. MATERIAL AND METHODS A secondary dataset analysis was conducted using unsupervised learning techniques. Data were from a University Hospital, originally collected between July 2011 and July 2018 in Taiwan. In total, 349 women diagnosed with ovarian masses, including both benign and malignant tumors, were included in this analysis. The median age was 45 years, and 49 % were diagnosed with ovarian cancer in pathology. We used a hierarchical clustering algorithm to find groups of patients with similar features. RESULTS Two clusters were identified (N = 204 and 145), with a high-risk cluster (66.2 % malignancy) characterized by significantly older age, higher CA125, HE4, CEA, and AFP levels, and a lower CA19-9 level than the low-risk cluster (24.8 % malignancy). The assessment of clustering stability and internal validity yielded a figure of merit score of 0.970 and a silhouette coefficient of 0.524. A classification model using age, CA125, HE4, and CA19-9 demonstrated high accuracy (89.4 %), sensitivity (94.5 %), specificity (83.7 %), and a large area under the curve (89.1 %) for the risk stratification. CONCLUSION Integrating tumor markers with patient demographics improved the differentiation between benign and malignant ovarian masses. This approach can help clinicians prioritize high-risk patients for further diagnostic evaluation and reduce unnecessary invasive procedures for low-risk patients.
Collapse
Affiliation(s)
- Zahra Jamalpour
- Vali-Asr Hospital, Department of Obstetrics and Gynecology, Faculty of Medicine, Abadan University of Medical Sciences, Khoramshahr, Iran.
| | - Somayeh Ghaderi
- Al-Zahra Hospital, Department of Obstetrics and Gynecology, Faculty of Medicine, Kermanshah University of Medical Sciences, Gilan-e Gharb, Iran
| | | |
Collapse
|
2
|
Ribeiro de Souza B, Oliveira G, Leme G, Brum Reis I, Augusto Tossini Cabral F, Lima Baggio de Paula J, Henrique da Silva Santos D, Ronca Felizzola C, Durán N, Anglesio M, José Fávaro W. A novel serous ovarian carcinoma model induced by DMBA: Results from OncoTherad® (MRB-CFI-1) immunotherapy preclinical testing. Biomed Pharmacother 2025; 182:117755. [PMID: 39693910 DOI: 10.1016/j.biopha.2024.117755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
AIMS The term ovarian carcinoma (OC) refers to a heterogeneous collection of five distinct diseases known as histotypes. While histotype-specific treatment is still a clinical challenge in OC, well-characterized models are required for testing new therapeutic strategies. We employed OncoTherad® (MRB-CFI-1), an interferon (IFN-γ)-stimulating nano-immunotherapy mediated by Toll-like receptors (TLR) 2/4, in association or not with Erythropoietin (EPO) in a chemically-induced ovarian cancer model. Besides characterization of the therapies effects, we also assessed whether the animal model was representative of human OC by providing histotype classification. MAIN METHODS Thirty-five Fischer rats were distributed into five groups: Control (Sham surgery); Cancer (7,12-dimethylbenzoanthracene - DMBA injection in the ovarian bursa, 1.25 mg/kg); OncoTherad® (20 mg/kg intraperitoneal); EPO (8.4 µg/kg intraperitoneal); and OncoTherad+EPO (same doses). Ovaries were formalin-fixed into paraffin-embedded blocks. TLR pathway and the inflammatory response profile were evaluated by immunohistochemistry (IHC). After DNA extraction and tissue microarray construction, we assessed typical gene mutations directly (Sanger sequencing) or indirectly (IHC surrogates) and examined biomarkers of different OC histotypes. KEY FINDINGS OC induction decreased TLR2, TLR4, and proinflammatory cytokines. OncoTherad® alone or associated with EPO modulated the OC microenvironment to a cytotoxic immune profile through stimulation of the TLR4-mediated non-canonical pathway. EPO stimulated TLR2-mediated canonical pathway and notably increased Tregs. SIGNIFICANCE The features analyzed favored interpretation of our DMBA-induced tumor model as predominantly low-grade, serous carcinoma-like, in which treatments with OncoTherad® and EPO showed immunomodulatory properties related to the reduction of ovarian lesions.
Collapse
Affiliation(s)
- Bianca Ribeiro de Souza
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Department of Obstetrics and Gynecology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Gabriela Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Giovana Leme
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ianny Brum Reis
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Felippe Augusto Tossini Cabral
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Juliane Lima Baggio de Paula
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Daniel Henrique da Silva Santos
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Claudia Ronca Felizzola
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Nelson Durán
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| | - Michael Anglesio
- Department of Obstetrics and Gynecology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Wagner José Fávaro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
3
|
Qi H, Ma X, Ma Y, Jia L, Liu K, Wang H. Mechanisms of HIF1A-mediated immune evasion in gastric cancer and the impact on therapy resistance. Cell Biol Toxicol 2024; 40:87. [PMID: 39384651 PMCID: PMC11464584 DOI: 10.1007/s10565-024-09917-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND The high prevalence and detrimental effects on patient outcomes make gastric cancer (GC) a significant health issue that persists internationally. Existing treatment modalities exhibit limited efficacy, prompting the exploration of immune checkpoint inhibitors as a novel therapeutic approach. However, resistance to immunotherapy poses a significant challenge in GC management, necessitating a profound grasp of the intrinsic molecular pathways. METHODS This study focuses on investigating the immunosuppressive mechanisms of quiescent cancer cells (QCCs) in GC, particularly their resistance to T-cell-mediated immune responses. Utilizing mouse models, gene editing techniques, and transcriptome sequencing, we aim to elucidate the interactions between QCCs, immune cells, and key regulatory factors like HIF1A. Functional enrichment analysis will further underscore the role of glycolysis-related genes in mediating immunosuppression by QCCs. RESULTS The cancer cells that survived GC treated with T-cell therapy lost their proliferative ability. QCCs, as the main resistance force to immunotherapy, exhibit stronger resistance to CD8+ T-cell attack and possess higher cancer-initiating potential. Single-cell sequencing analysis revealed that the microenvironment in the QCCs region harbors more M2-type tumor-associated macrophages and fewer T cells. This microenvironment in the QCCs region leads to the downregulation of T-cell immune activation and alters macrophage metabolic function. Transcriptome sequencing of QCCs identified upregulated genes related to chemo-resistance, hypoxia, and glycolysis. In vitro cell experiments illustrated that HIF1A promotes the transcription of glycolysis-related genes, and silencing HIF1A in QCCs enhances T-cell proliferation and activation in co-culture systems, induces apoptosis in QCCs, and increases QCCs' sensitivity to immune checkpoint inhibitors. In vivo, animal experiments showed that silencing HIF1A in QCCs can inhibit GC growth and metastasis. CONCLUSION Unraveling the molecular mechanisms by which QCCs resist T-cell-mediated immune responses through immunosuppression holds promising implications for refining treatment strategies and enhancing patient outcomes in GC. By delineating these intricate interactions, this study contributes crucial insights into precision medicine and improved therapeutic outcomes in GC management.
Collapse
Affiliation(s)
- Hao Qi
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Xiaoyu Ma
- Departments of Gastrointestinal Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yu Ma
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Liuyu Jia
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Kuncong Liu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Honghu Wang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
4
|
Guo N, Yang A, Farooq FB, Kalaria S, Moss E, DeVorkin L, Lesperance M, Bénard F, Wilson D, Tinker AV, Nathoo FS, Hamilton PT, Lum JJ. CD8 + T cell infiltration is associated with improved survival and negatively correlates with hypoxia in clear cell ovarian cancer. Sci Rep 2023; 13:6530. [PMID: 37085560 PMCID: PMC10121667 DOI: 10.1038/s41598-023-30655-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/27/2023] [Indexed: 04/23/2023] Open
Abstract
Unlike other histological types of epithelial ovarian carcinoma, clear cell ovarian carcinoma (CCOC) has poor response to therapy. In many other carcinomas, expression of the hypoxia-related enzyme Carbonic anhydrase IX (CAIX) by cancer cells is associated with poor prognosis, while the presence of CD8 + tumor-infiltrating lymphocytes (TIL) is positively prognostic. We employed [18F]EF5-PET/CT imaging, transcriptome profiling, and spatially-resolved histological analysis to evaluate relationships between CAIX, CD8, and survival in CCOC. Tissue microarrays (TMAs) were evaluated for 218 cases in the Canadian COEUR study. Non-spatial relationships between CAIX and CD8 were investigated using Spearman rank correlation, negative binomial regression and gene set enrichment analysis. Spatial relationships at the cell level were investigated using the cross K-function. Survival analysis was used to assess the relationship of CAIX and CD8 with patient survival for 154 cases. CD8 + T cell infiltration positively predicted survival with estimated hazard ratio 0.974 (95% CI 0.950, 1000). The negative binomial regression analysis found a strong TMA effect (p-value < 0.0001). It also indicated a negative association between CD8 and CAIX overall (p-value = 0.0171) and in stroma (p-value = 0.0050) but not in tumor (p-value = 0.173). Examination of the spatial association between the locations of CD8 + T cells and CAIX cells found a significant amount of heterogeneity in the first TMA, while in the second TMA there was a clear signal indicating negative spatial association in stromal regions. These results suggest that hypoxia may contribute to immune exclusion, primarily mediated by effects in stroma.
Collapse
Affiliation(s)
- Nancy Guo
- Department of Mathematics and Statistics, University of Victoria, STN CSC, PO BOX 1700, Victoria, BC, V8W 2Y2, Canada
| | - Aijun Yang
- Department of Mathematics and Statistics, University of Victoria, STN CSC, PO BOX 1700, Victoria, BC, V8W 2Y2, Canada
| | | | - Shreena Kalaria
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, 2410 Lee Avenue, 3rd Floor, Victoria, BC, V8R 6V5, Canada
| | - Elena Moss
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, 2410 Lee Avenue, 3rd Floor, Victoria, BC, V8R 6V5, Canada
| | - Lindsay DeVorkin
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, 2410 Lee Avenue, 3rd Floor, Victoria, BC, V8R 6V5, Canada
| | - Mary Lesperance
- Department of Mathematics and Statistics, University of Victoria, STN CSC, PO BOX 1700, Victoria, BC, V8W 2Y2, Canada
| | - François Bénard
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Don Wilson
- Functional Imaging, BC Cancer Vancouver, Vancouver, Canada
| | - Anna V Tinker
- Medical Oncology, BC Cancer Vancouver, Vancouver, Canada
| | - Farouk S Nathoo
- Department of Mathematics and Statistics, University of Victoria, STN CSC, PO BOX 1700, Victoria, BC, V8W 2Y2, Canada.
| | - Phineas T Hamilton
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, 2410 Lee Avenue, 3rd Floor, Victoria, BC, V8R 6V5, Canada.
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, 2410 Lee Avenue, 3rd Floor, Victoria, BC, V8R 6V5, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada.
| |
Collapse
|
5
|
Jin Z, Sun X, Wang Y, Zhou C, Yang H, Zhou S. Regulation of autophagy fires up the cold tumor microenvironment to improve cancer immunotherapy. Front Immunol 2022; 13:1018903. [PMID: 36300110 PMCID: PMC9589261 DOI: 10.3389/fimmu.2022.1018903] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells, have revolutionized the treatment of patients with advanced and metastatic tumors resistant to traditional therapies. However, the immunosuppressed tumor microenvironment (TME) results in a weak response to immunotherapy. Therefore, to realize the full potential of immunotherapy and obstacle barriers, it is essential to explore how to convert cold TME to hot TME. Autophagy is a crucial cellular process that preserves cellular stability in the cellular components of the TME, contributing to the characterization of the immunosuppressive TME. Targeted autophagy ignites immunosuppressive TME by influencing antigen release, antigen presentation, antigen recognition, and immune cell trafficking, thereby enhancing the effectiveness of cancer immunotherapy and overcoming resistance to immunotherapy. In this review, we summarize the characteristics and components of TME, explore the mechanisms and functions of autophagy in the characterization and regulation of TME, and discuss autophagy-based therapies as adjuvant enhancers of immunotherapy to improve the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Zhicheng Jin
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Xuefeng Sun
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Yaoyao Wang
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Chao Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
- *Correspondence: Suna Zhou, ; HaihuaYang,
| | - Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
- Department of Radiation Oncology, Xi’an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, China
- *Correspondence: Suna Zhou, ; HaihuaYang,
| |
Collapse
|
6
|
Ma S, Zhao Y, Lee WC, Ong LT, Lee PL, Jiang Z, Oguz G, Niu Z, Liu M, Goh JY, Wang W, Bustos MA, Ehmsen S, Ramasamy A, Hoon DSB, Ditzel HJ, Tan EY, Chen Q, Yu Q. Hypoxia induces HIF1α-dependent epigenetic vulnerability in triple negative breast cancer to confer immune effector dysfunction and resistance to anti-PD-1 immunotherapy. Nat Commun 2022; 13:4118. [PMID: 35840558 PMCID: PMC9287350 DOI: 10.1038/s41467-022-31764-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
The hypoxic tumor microenvironment has been implicated in immune escape, but the underlying mechanism remains elusive. Using an in vitro culture system modeling human T cell dysfunction and exhaustion in triple-negative breast cancer (TNBC), we find that hypoxia suppresses immune effector gene expression, including in T and NK cells, resulting in immune effector cell dysfunction and resistance to immunotherapy. We demonstrate that hypoxia-induced factor 1α (HIF1α) interaction with HDAC1 and concurrent PRC2 dependency causes chromatin remolding resulting in epigenetic suppression of effector genes and subsequent immune dysfunction. Targeting HIF1α and the associated epigenetic machinery can reverse the immune effector dysfunction and overcome resistance to PD-1 blockade, as demonstrated both in vitro and in vivo using syngeneic and humanized mice models. These findings identify a HIF1α-mediated epigenetic mechanism in immune dysfunction and provide a potential strategy to overcome immune resistance in TNBC. Hypoxia can promote tumor escape from immune surveillance and immunotherapy. Here, the authors show that hypoxia induces T and NK cell dysfunction through HIF1α-mediated epigenetic suppression of effector gene expression, conferring resistance to anti-PD1 blockade in triple negative breast cancer models.
Collapse
Affiliation(s)
- Shijun Ma
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Yue Zhao
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Wee Chyan Lee
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Li-Teng Ong
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Puay Leng Lee
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Zemin Jiang
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Gokce Oguz
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Zhitong Niu
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Min Liu
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Jian Yuan Goh
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Wenyu Wang
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Providence Health System, Santa Monica, CA, 90404, USA
| | - Sidse Ehmsen
- Department of Oncology, Odense University Hospital, Odense, 5230, Denmark
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Providence Health System, Santa Monica, CA, 90404, USA
| | - Henrik J Ditzel
- Department of Oncology, Odense University Hospital, Odense, 5230, Denmark.,Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, 5230, Denmark
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, 308433, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| | - Qiang Yu
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.
| |
Collapse
|
7
|
Kilgour MK, MacPherson S, Zacharias LG, Ellis AE, Sheldon RD, Liu EY, Keyes S, Pauly B, Carleton G, Allard B, Smazynski J, Williams KS, Watson PH, Stagg J, Nelson BH, DeBerardinis RJ, Jones RG, Hamilton PT, Lum JJ. 1-Methylnicotinamide is an immune regulatory metabolite in human ovarian cancer. SCIENCE ADVANCES 2021; 7:eabe1174. [PMID: 33523930 PMCID: PMC7817098 DOI: 10.1126/sciadv.abe1174] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Immune regulatory metabolites are key features of the tumor microenvironment (TME), yet with a few exceptions, their identities remain largely unknown. Here, we profiled tumor and T cells from tumor and ascites of patients with high-grade serous carcinoma (HGSC) to uncover the metabolomes of these distinct TME compartments. Cells within the ascites and tumor had pervasive metabolite differences, with a notable enrichment in 1-methylnicotinamide (MNA) in T cells infiltrating the tumor compared with ascites. Despite the elevated levels of MNA in T cells, the expression of nicotinamide N-methyltransferase, the enzyme that catalyzes the transfer of a methyl group from S-adenosylmethionine to nicotinamide, was restricted to fibroblasts and tumor cells. Functionally, MNA induces T cells to secrete the tumor-promoting cytokine tumor necrosis factor alpha. Thus, TME-derived MNA contributes to the immune modulation of T cells and represents a potential immunotherapy target to treat human cancer.
Collapse
Affiliation(s)
- Marisa K Kilgour
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | - Sarah MacPherson
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | | | - Abigail E Ellis
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Ryan D Sheldon
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Elaine Y Liu
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | - Sarah Keyes
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Brenna Pauly
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Gillian Carleton
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | - Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada
- Faculté de Pharmacie, Université de Montréal, Québec, Canada
- Institut du Cancer de Montréal, Québec, Canada
| | - Julian Smazynski
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | - Kelsey S Williams
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Peter H Watson
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
- Biobanking and Biospecimen Research Services, Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada
- Faculté de Pharmacie, Université de Montréal, Québec, Canada
- Institut du Cancer de Montréal, Québec, Canada
| | - Brad H Nelson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ralph J DeBerardinis
- Children's Research Institute, UT Southwestern, Dallas, TX, USA
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Julian J Lum
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| |
Collapse
|
8
|
Zadka Ł, Grybowski DJ, Dzięgiel P. Modeling of the immune response in the pathogenesis of solid tumors and its prognostic significance. Cell Oncol (Dordr) 2020; 43:539-575. [PMID: 32488850 PMCID: PMC7363737 DOI: 10.1007/s13402-020-00519-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumor initiation and subsequent progression are usually long-term processes, spread over time and conditioned by diverse aspects. Many cancers develop on the basis of chronic inflammation; however, despite dozens of years of research, little is known about the factors triggering neoplastic transformation under these conditions. Molecular characterization of both pathogenetic states, i.e., similarities and differences between chronic inflammation and cancer, is also poorly defined. The secretory activity of tumor cells may change the immunophenotype of immune cells and modify the extracellular microenvironment, which allows the bypass of host defense mechanisms and seems to have diagnostic and prognostic value. The phenomenon of immunosuppression is also present during chronic inflammation, and the development of cancer, due to its duration, predisposes patients to the promotion of chronic inflammation. The aim of our work was to discuss the above issues based on the latest scientific insights. A theoretical mechanism of cancer immunosuppression is also proposed. CONCLUSIONS Development of solid tumors may occur both during acute and chronic phases of inflammation. Differences in the regulation of immune responses between precancerous states and the cancers resulting from them emphasize the importance of immunosuppressive factors in oncogenesis. Cancer cells may, through their secretory activity and extracellular transport mechanisms, enhance deterioration of the immune system which, in turn, may have prognostic implications.
Collapse
Affiliation(s)
- Łukasz Zadka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland.
| | - Damian J Grybowski
- Orthopedic Surgery, University of Illinois, 900 S. Ashland Avenue (MC944) Room 3356, Molecular Biology Research Building Chicago, Chicago, IL, 60607, USA
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland
| |
Collapse
|
9
|
Kimm MA, Tzoumas S, Glasl S, Omar M, Symvoulidis P, Olefir I, Rummeny EJ, Meier R, Ntziachristos V. Longitudinal imaging of T cell-based immunotherapy with multi-spectral, multi-scale optoacoustic tomography. Sci Rep 2020; 10:4903. [PMID: 32184401 PMCID: PMC7078227 DOI: 10.1038/s41598-020-61191-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/28/2020] [Indexed: 12/31/2022] Open
Abstract
Most imaging studies of immunotherapy have focused on tracking labeled T cell biodistribution in vivo for understanding trafficking and homing parameters and predicting therapeutic efficacy by the presence of transferred T cells at or in the tumour mass. Conversely, we investigate here a novel concept for longitudinally elucidating anatomical and pathophysiological changes of solid tumours after adoptive T cell transfer in a preclinical set up, using previously unexplored in-tandem macroscopic and mesoscopic optoacoustic (photoacoustic) imaging. We show non-invasive in vivo observations of vessel collapse during tumour rejection across entire tumours and observe for the first time longitudinal tumour rejection in a label-free manner based on optical absorption changes in the tumour mass due to cellular decline. We complement these observations with high resolution episcopic fluorescence imaging of T cell biodistribution using optimized T cell labeling based on two near-infrared dyes targeting the cell membrane and the cytoplasm. We discuss how optoacoustic macroscopy and mesoscopy offer unique contrast and immunotherapy insights, allowing label-free and longitudinal observations of tumour therapy. The results demonstrate optoacoustic imaging as an invaluable tool in understanding and optimizing T cell therapy.
Collapse
Affiliation(s)
- Melanie A Kimm
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stratis Tzoumas
- Chair for Biological Imaging, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sarah Glasl
- Chair for Biological Imaging, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Murad Omar
- Chair for Biological Imaging, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Panagiotis Symvoulidis
- Chair for Biological Imaging, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ivan Olefir
- Chair for Biological Imaging, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Reinhard Meier
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Vasilis Ntziachristos
- Chair for Biological Imaging, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, Germany. .,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
10
|
De La Motte Rouge T, Corné J, Cauchois A, Le Boulch M, Poupon C, Henno S, Rioux-Leclercq N, Le Pabic E, Laviolle B, Catros V, Levêque J, Fautrel A, Le Gallo M, Legembre P, Lavoué V. Serum CD95L Level Correlates with Tumor Immune Infiltration and Is a Positive Prognostic Marker for Advanced High-Grade Serous Ovarian Cancer. Mol Cancer Res 2019; 17:2537-2548. [DOI: 10.1158/1541-7786.mcr-19-0449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/15/2019] [Accepted: 09/10/2019] [Indexed: 11/16/2022]
|
11
|
Liu G, Chen L, Ren H, Liu F, Dong C, Wu A, Liu Z, Zheng Y, Cheng X, Liu L. Seven Genes Based Novel Signature Predicts Clinical Outcome and Platinum Sensitivity of High Grade IIIc Serous Ovarian Carcinoma. Int J Biol Sci 2018; 14:2012-2022. [PMID: 30585265 PMCID: PMC6299362 DOI: 10.7150/ijbs.28249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
Background: As a major subtype of ovarian cancer, high grade FIGO stage IIIc serous ovarian carcinoma (HG3cSOC), has various prognosis due to genetic heterogeneity. Methods: The transcriptome of 401 primary FIGO IIIc serous ovarian samples was screened, seven genes based prognostic model was developed. The prognostic valueof risk score in four different cohorts (TCGA-cohort, Poland-cohort, Japan-cohort and USA-cohort) was validated. The relationship between risk score and other clinical indicators were analyzed. The guide value of risk score for platinum-taxol chemotherapy was also assayed. Tissue microenvironment difference among samples with different risk scores was investigated. Results: High-risk group (N=200, median survival months: 39.6, 95% CI: 35.9-46.3 months) had a significantly worse prognosis than low-risk group (N=201, median survival months: 52.6, 95% CI: 45.2-64.9 months;). The risk score's performance was validated in Japan-cohort (N=90, Poland-cohort (N=48) and USA-cohort (N=84). The risk score is independent from age, primary tumor size, grade and treatment methods and the performance of risk score is uniform in subgroups. Furthermore, the risk score predicted the response of HG3cSOC to platinum-based regimen after surgery, and this finding was further validated in newly collected China-cohort (N=102). Gene Set Enrichment Analysis (GSEA) and tumor infiltration analysis revealed that risk score reflected the immune infiltration and cell-cell interaction status, and the migration function of candidate genes were also verified. Conclusions: The optimized seven genes-based model is a valuable and robust model in predicting the survival of HG3cSOC, and served as a valuable marker for the response to platinum-based chemotherapy.
Collapse
Affiliation(s)
- Gang Liu
- Shanghai Public Health Clinical Center, Department of Medical System Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Lihua Chen
- Department of Gynecology Oncology, Fudan University Shanghai Cancer Centre, Fudan University, 200032, Shanghai, P.R.China
| | - He Ren
- Shanghai Public Health Clinical Center, Department of Medical System Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Fei Liu
- Department of Gynecology Oncology, Fudan University Shanghai Cancer Centre, Fudan University, 200032, Shanghai, P.R.China
| | - Chuanpeng Dong
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University, Indianapolis, IN, US
| | - Aosen Wu
- Shanghai Public Health Clinical Center, Department of Medical System Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Zhenhao Liu
- Shanghai Public Health Clinical Center, Department of Medical System Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Yu Zheng
- Shanghai Public Health Clinical Center, Department of Medical System Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Xi Cheng
- Department of Gynecology Oncology, Fudan University Shanghai Cancer Centre, Fudan University, 200032, Shanghai, P.R.China
| | - Lei Liu
- Shanghai Public Health Clinical Center, Department of Medical System Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| |
Collapse
|
12
|
De Meulder B, Lefaudeux D, Bansal AT, Mazein A, Chaiboonchoe A, Ahmed H, Balaur I, Saqi M, Pellet J, Ballereau S, Lemonnier N, Sun K, Pandis I, Yang X, Batuwitage M, Kretsos K, van Eyll J, Bedding A, Davison T, Dodson P, Larminie C, Postle A, Corfield J, Djukanovic R, Chung KF, Adcock IM, Guo YK, Sterk PJ, Manta A, Rowe A, Baribaud F, Auffray C. A computational framework for complex disease stratification from multiple large-scale datasets. BMC SYSTEMS BIOLOGY 2018; 12:60. [PMID: 29843806 PMCID: PMC5975674 DOI: 10.1186/s12918-018-0556-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Multilevel data integration is becoming a major area of research in systems biology. Within this area, multi-'omics datasets on complex diseases are becoming more readily available and there is a need to set standards and good practices for integrated analysis of biological, clinical and environmental data. We present a framework to plan and generate single and multi-'omics signatures of disease states. METHODS The framework is divided into four major steps: dataset subsetting, feature filtering, 'omics-based clustering and biomarker identification. RESULTS We illustrate the usefulness of this framework by identifying potential patient clusters based on integrated multi-'omics signatures in a publicly available ovarian cystadenocarcinoma dataset. The analysis generated a higher number of stable and clinically relevant clusters than previously reported, and enabled the generation of predictive models of patient outcomes. CONCLUSIONS This framework will help health researchers plan and perform multi-'omics big data analyses to generate hypotheses and make sense of their rich, diverse and ever growing datasets, to enable implementation of translational P4 medicine.
Collapse
Affiliation(s)
- Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France.
| | - Diane Lefaudeux
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Aruna T Bansal
- Acclarogen Ltd, St John's Innovation Centre, Cambridge, CB4 OWS, UK
| | - Alexander Mazein
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Amphun Chaiboonchoe
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Hassan Ahmed
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Irina Balaur
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Mansoor Saqi
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Johann Pellet
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Stéphane Ballereau
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Nathanaël Lemonnier
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Kai Sun
- Data Science Institute, Imperial College, London, SW7 2AZ, UK
| | - Ioannis Pandis
- Data Science Institute, Imperial College, London, SW7 2AZ, UK.,Janssen Research and Development Ltd, High Wycombe, HP12 4DP, UK
| | - Xian Yang
- Data Science Institute, Imperial College, London, SW7 2AZ, UK
| | | | | | | | | | - Timothy Davison
- Janssen Research and Development Ltd, High Wycombe, HP12 4DP, UK
| | - Paul Dodson
- AstraZeneca Ltd, Alderley Park, Macclesfield, SK10 4TG, UK
| | | | - Anthony Postle
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Julie Corfield
- AstraZeneca R & D, 43150, Mölndal, Sweden.,Arateva R & D Ltd, Nottingham, NG1 1GF, UK
| | - Ratko Djukanovic
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Kian Fan Chung
- National Hearth and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Ian M Adcock
- National Hearth and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Yi-Ke Guo
- Data Science Institute, Imperial College, London, SW7 2AZ, UK
| | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, AZ1105, The Netherlands
| | - Alexander Manta
- Research Informatics, Roche Diagnostics GmbH, 82008, Unterhaching, Germany
| | - Anthony Rowe
- Janssen Research and Development Ltd, High Wycombe, HP12 4DP, UK
| | | | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France.
| | | |
Collapse
|
13
|
Wei W, Giulia F, Luffer S, Kumar R, Wu B, Tavallai M, Bekele RT, Birrer MJ. How can molecular abnormalities influence our clinical approach. Ann Oncol 2018; 28:viii16-viii24. [PMID: 29232470 DOI: 10.1093/annonc/mdx447] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Despite improvements in diagnostics and treatment, the clinical outcome of epithelial ovarian cancer remains poor over the last three decades. Recent high-throughput genomic studies have demonstrated ovarian cancer as a highly heterogeneous entity with distinctive molecular signatures among different or even within the same histotype. In this article, we review the molecular genetics of epithelial ovarian cancer and how they have been translated into modern clinical trials, as well as their implications in patient stratification for more targeted and personalized approaches. Patients and methods Multiple genomic studies were collected to summarize the major advances in understanding ovarian cancer-associated molecular abnormalities with emphasis on their potential clinical applicability to rationalize the design of recent clinical trials. Results The clinical management of ovarian cancer can significantly benefit from comprehensive molecular profiling studies, which have uncovered the distinctiveness of ovarian cancer subsets bearing characteristic genomic aberrance and consequentially dysregulated genes and pathways underlying the tumor progression and chemoresistance. Genomics studies have demonstrated a powerful tool to delineate the molecular basis responsible for diverse clinical behaviors associated with tumor histology and grade. In addition, molecular signatures obtained by integrated 'omics' analyses have promised opportunities for novel therapeutic or stratification biomarkers to tailor current clinical management as well as novel predictive tools of clinical end points including patient prognosis and therapeutic efficacy. Conclusions Recent progress in understanding the molecular landscape of ovarian cancer has profoundly shifted the design of clinical trials from empirical, unitary paradigms to more rationalized and personalized regimes. Correspondingly, a promising prospective has emerged for ovarian cancer patients to have considerably improved outcome upon careful alignment of patient characteristics, therapeutic biomarkers and targeting approaches. Nevertheless, extensive validation and inference of potential biomarkers are pressing demands on both bioinformatic and biological levels to warrant sufficient clinical relevance for potential translation, so that the performance of related clinical trial can be well predicted and achieved.
Collapse
Affiliation(s)
- W Wei
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, USA
| | - F Giulia
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, USA
| | - S Luffer
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, USA
| | - R Kumar
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, USA
| | - B Wu
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, USA
| | - M Tavallai
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, USA
| | - R T Bekele
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, USA
| | - M J Birrer
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, USA
| |
Collapse
|
14
|
Schadendorf D, Nghiem P, Bhatia S, Hauschild A, Saiag P, Mahnke L, Hariharan S, Kaufman HL. Immune evasion mechanisms and immune checkpoint inhibition in advanced merkel cell carcinoma. Oncoimmunology 2017; 6:e1338237. [PMID: 29123950 DOI: 10.1080/2162402x.2017.1338237] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 12/22/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare skin cancer caused by Merkel cell polyomavirus (MCPyV) infection and/or ultraviolet radiation-induced somatic mutations. The presence of tumor-infiltrating lymphocytes is evidence that an active immune response to MCPyV and tumor-associated neoantigens occurs in some patients. However, inhibitory immune molecules, including programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1), within the MCC tumor microenvironment aid in tumor evasion of T-cell-mediated clearance. Unlike chemotherapy, treatment with anti-PD-L1 (avelumab) or anti-PD-1 (pembrolizumab) antibodies leads to durable responses in MCC, in both virus-positive and virus-negative tumors. As many tumors are established through the evasion of infiltrating immune-cell clearance, the lessons learned in MCC may be broadly relevant to many cancers.
Collapse
Affiliation(s)
- Dirk Schadendorf
- Department of Dermatology, Essen University Hospital, Germany and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| | - Paul Nghiem
- Department of Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Shailender Bhatia
- Department of Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Axel Hauschild
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Philippe Saiag
- Head of Service de Dermatologie Générale et Oncologique, University of Versailles-SQY, CHU A Paré, Boulogne Cedex, France
| | - Lisa Mahnke
- EMD Serono, Inc., Billerica, Boston, MA, USA
| | | | - Howard L Kaufman
- Department of Surgery and Medicine, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
15
|
Abstract
Our understanding of epithelial ovarian cancer has blossomed, and we now recognize that it is a collection of varied histologic and molecularly different malignancies, many of which may not derive from a true ovarian anatomic precursor. High-grade serous ovarian cancer (HGSOC) is a unique type of epithelial cancer. It is characterized by nearly universal mutation in and dysfunction of p53, genomic instability rather than driver mutations, advanced stage at onset, and probable fallopian tube epithelium origin, with a serous tubal in situ carcinoma precursor. Germline deleterious mutations in BRCA1 and BRCA2, as well as other less prevalent genes involved in DNA repair, such as PALB2 and RAD51c, are associated with its carcinogenesis and may predict susceptibility to classes of treatment agents, including DNA-damaging agents and DNA repair inhibitors. Loss of function of these genes is associated with homologous recombination dysfunction (HRD). It is now recognized that there may be HGSOC with wild-type BRCA1 and BRCA2 with an identifiable HRD phenotype. Such HRD tumors also may be more susceptible to certain classes of treatments and may be phenotypically detectable with a composite molecular biomarker that has been shown to be predictive for response to PARP inhibitors. Use of this new knowledge of the anatomic and molecular background of HGSOC has led to the rational design of novel combinations of treatment classes to create an HRD-like cellular environment and thus drive treatment benefits.
Collapse
Affiliation(s)
- Elise C Kohn
- From the Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, MD
| | - S Percy Ivy
- From the Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, MD
| |
Collapse
|
16
|
Yokoyama S, Miyoshi H, Nakashima K, Shimono J, Hashiguchi T, Mitsuoka M, Takamori S, Akagi Y, Ohshima K. Prognostic Value of Programmed Death Ligand 1 and Programmed Death 1 Expression in Thymic Carcinoma. Clin Cancer Res 2016; 22:4727-34. [PMID: 27166394 DOI: 10.1158/1078-0432.ccr-16-0434] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/03/2016] [Indexed: 01/22/2023]
Abstract
PURPOSE The immune checkpoint of the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway is believed to play an important role in evasion of host antitumor immune surveillance in various malignancies; however, little is known about its role in thymic carcinoma. This study investigated PD-1/PD-L1 expression and its association with clinicopathologic features, the expression of immune-related proteins in tumor-infiltrating lymphocytes (TIL), and patient prognosis. EXPERIMENTAL DESIGN PD-L1 and PD-1 expression was evaluated by IHC in 25 thymic carcinoma tissue specimens. Copy number alterations of the PD-L1 gene in 11 cases were assessed in formalin-fixed, paraffin-embedded material using qRT-PCR. RESULTS Compared with normal subjects, 3 thymic carcinoma patients showed an increase in PD-L1 copy number, whereas 8 did not. PD-L1 was significantly overexpressed in cases with copy number gain as compared with normal cases. High PD-L1 expression was associated with higher disease-free and overall survival rates as compared to cases with low expression. Prognostic analysis revealed low PD-L1 expression and high number of PD-1(+) TILs as significant predictors of poor survival, together with Masaoka-Koga stage IVa/IVb disease and incomplete resection. In the quantitative analysis of TILs, PD-L1 expression correlated proportionally with the number of infiltrating CTLs. CONCLUSIONS Here, for the first time, we report that PD-L1 and PD-1 expression might be useful prognostic predictors in thymic carcinoma. Further studies are expected to substantiate the prognostic value of PD-L1 and PD-1 expression, and the potential efficacy of targeting the PD-1/PD-L1 pathway in thymic carcinoma via immunotherapy. Clin Cancer Res; 22(18); 4727-34. ©2016 AACR.
Collapse
Affiliation(s)
- Shintaro Yokoyama
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan.
| | - Kazutaka Nakashima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Joji Shimono
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Toshihiro Hashiguchi
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan. Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Masahiro Mitsuoka
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Shinzo Takamori
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Yoshito Akagi
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
17
|
Abstract
T-cell intracellular antigen 1 (TIA1) and TIA1-related/like protein (TIAR/TIAL1) are 2 proteins discovered in 1991 as components of cytotoxic T lymphocyte granules. They act in the nucleus as regulators of transcription and pre-mRNA splicing. In the cytoplasm, TIA1 and TIAR regulate and/or modulate the location, stability and/or translation of mRNAs. As knowledge of the different genes regulated by these proteins and the cellular/biological programs in which they are involved increases, it is evident that these antigens are key players in human physiology and pathology. This review will discuss the latest developments in the field, with physiopathological relevance, that point to novel roles for these regulators in the molecular and cell biology of higher eukaryotes.
Collapse
Affiliation(s)
- Carmen Sánchez-Jiménez
- a Centro de Biología Molecular Severo Ochoa; Consejo Superior de Investigaciones Científicas; Universidad Autónoma de Madrid (CSIC/UAM); C/Nicolás Cabrera 1 ; Madrid , Spain
| | | |
Collapse
|
18
|
Radiation-Induced Glycogen Accumulation Detected by Single Cell Raman Spectroscopy Is Associated with Radioresistance that Can Be Reversed by Metformin. PLoS One 2015; 10:e0135356. [PMID: 26280348 PMCID: PMC4539228 DOI: 10.1371/journal.pone.0135356] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/21/2015] [Indexed: 11/29/2022] Open
Abstract
Altered cellular metabolism is a hallmark of tumor cells and contributes to a host of properties associated with resistance to radiotherapy. Detection of radiation-induced biochemical changes can reveal unique metabolic pathways affecting radiosensitivity that may serve as attractive therapeutic targets. Using clinically relevant doses of radiation, we performed label-free single cell Raman spectroscopy on a series of human cancer cell lines and detected radiation-induced accumulation of intracellular glycogen. The increase in glycogen post-irradiation was highest in lung (H460) and breast (MCF7) tumor cells compared to prostate (LNCaP) tumor cells. In response to radiation, the appearance of this glycogen signature correlated with radiation resistance. Moreover, the buildup of glycogen was linked to the phosphorylation of GSK-3β, a canonical modulator of cell survival following radiation exposure and a key regulator of glycogen metabolism. When MCF7 cells were irradiated in the presence of the anti-diabetic drug metformin, there was a significant decrease in the amount of radiation-induced glycogen. The suppression of glycogen by metformin following radiation was associated with increased radiosensitivity. In contrast to MCF7 cells, metformin had minimal effects on both the level of glycogen in H460 cells following radiation and radiosensitivity. Our data demonstrate a novel approach of spectral monitoring by Raman spectroscopy to assess changes in the levels of intracellular glycogen as a potential marker and resistance mechanism to radiation therapy.
Collapse
|
19
|
Abstract
Cancer vaccines are designed to promote tumor specific immune responses, particularly cytotoxic CD8 positive T cells that are specific to tumor antigens. The earliest vaccines, which were developed in 1994-95, tested non-mutated, shared tumor associated antigens that had been shown to be immunogenic and capable of inducing clinical responses in a minority of people with late stage cancer. Technological developments in the past few years have enabled the investigation of vaccines that target mutated antigens that are patient specific. Several platforms for cancer vaccination are being tested, including peptides, proteins, antigen presenting cells, tumor cells, and viral vectors. Standard of care treatments, such as surgery and ablation, chemotherapy, and radiotherapy, can also induce antitumor immunity, thereby having cancer vaccine effects. The monitoring of patients' immune responses at baseline and after standard of care treatment is shedding light on immune biomarkers. Combination therapies are being tested in clinical trials and are likely to be the best approach to improving patient outcomes.
Collapse
Affiliation(s)
- Lisa H Butterfield
- Departments of Medicine, Surgery and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
20
|
Nelson BH. New insights into tumor immunity revealed by the unique genetic and genomic aspects of ovarian cancer. Curr Opin Immunol 2015; 33:93-100. [PMID: 25710852 DOI: 10.1016/j.coi.2015.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 01/26/2015] [Accepted: 02/06/2015] [Indexed: 02/08/2023]
Abstract
Ovarian cancer is a challenging disease that nonetheless provokes brisk, prognostically favorable immune responses in many patients. The biology of ovarian cancer offers unique insights into the factors that engender protective tumor immunity. Tumor-infiltrating lymphocyte (TIL) patterns range from CD8+ TIL alone to complex aggregates that additionally include CD4+ and CD20+ TIL. Patient survival rates increase in step with TIL complexity, suggesting cooperative interactions between these lymphocyte subsets. TIL are associated with high-grade serous histology and BRCA1 disruption; the latter may promote immunity through altered cytokine signaling, oxidative stress responses, or antigen expression. The ovarian tumor genome demonstrates extensive spatial and temporal heterogeneity, yet TIL exhibit relatively homogeneous spatial distributions that may reflect core properties of the tumor. In summary, ovarian cancer attracts the attention of the immune system in ways that create unique challenges and opportunities for immunotherapy.
Collapse
Affiliation(s)
- Brad H Nelson
- Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Avenue, Victoria, British Columbia V8R 6V5, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
21
|
Mandl SJ, Rountree RB, Dela Cruz TB, Foy SP, Cote JJ, Gordon EJ, Trent E, Delcayre A, Franzusoff A. Elucidating immunologic mechanisms of PROSTVAC cancer immunotherapy. J Immunother Cancer 2014; 2:34. [PMID: 25328681 PMCID: PMC4201731 DOI: 10.1186/s40425-014-0034-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PROSTVAC®, an active immunotherapy currently studied for the treatment of metastatic castration-resistant prostate cancer (mCRPC), consists of a heterologous prime-boost regimen with two different poxvirus-based vectors to provoke productive immune responses against prostate specific antigen (PSA) as the target tumor antigen. A Phase 2 study of PROSTVAC immunotherapy showed significantly improved median overall survival by 8.5 months and is currently being validated in a global Phase 3 study (PROSPECT; NCT01322490). Here, preclinical models were explored to investigate the mechanism of action and immune signatures of anti-tumor efficacy with PROSTVAC immunotherapy with the goal to identify potential immune correlates of clinical benefit. METHODS PROSTVAC-induced immune responses and anti-tumor efficacy were studied in male BALB/c mice. Functionality of the induced T cell response was characterized by interferon-gamma (IFNγ) ELISPOT, cytotoxic degranulation, multi-cytokine intracellular staining, and in vivo T cell depletion. Tumor infiltrating lymphocytes (TILs) were evaluated phenotypically by flow cytometry. RESULTS The heterologous prime-boost regimen of the two PROSTVAC vectors significantly enhanced the magnitude and quality of activated PSA-specific CD4 and CD8 T cell responses compared to homologous, single vector regimens. PROSTVAC-activated CD4 and CD8 T cells were highly functional as evidenced by expression of activation markers, production of multiple cytokines, and amplified cytotoxic T cell activity. Importantly, PROSTVAC immunotherapy resulted in significant anti-tumor efficacy in a transplantable prostate cancer mouse model. Antigen-spreading occurred in PROSTVAC-treated animals that rejected PSA-expressing tumors, as shown by subsequent rejection of PSA-negative tumors. In vivo CD4 and CD8 depletion revealed that both T cell subsets contributed to anti-tumor efficacy. Characterization of TILs demonstrated that PROSTVAC immunotherapy greatly increased the intra-tumoral ratio of activated effector to regulatory T cells. CONCLUSIONS PROSTVAC immunotherapy activates broad, highly functional T cell immunity to PSA and to endogenous tumor antigens via immune-mediated antigen spreading. These preclinical results further elucidate the mode of action of PROSTVAC immunotherapy and its potential causal relationship to extended overall survival as observed in the PROSTVAC Phase 2 study. The clinical validation is ongoing in the PROSPECT Phase 3 clinical study.
Collapse
Affiliation(s)
- Stefanie J Mandl
- Bavarian Nordic, Inc, 2425 Garcia Ave, Mountain View, CA 94043 USA
| | - Ryan B Rountree
- Bavarian Nordic, Inc, 2425 Garcia Ave, Mountain View, CA 94043 USA
| | | | - Susan P Foy
- Bavarian Nordic, Inc, 2425 Garcia Ave, Mountain View, CA 94043 USA
| | - Joseph J Cote
- Bavarian Nordic, Inc, 2425 Garcia Ave, Mountain View, CA 94043 USA
| | - Evan J Gordon
- Bavarian Nordic, Inc, 2425 Garcia Ave, Mountain View, CA 94043 USA
| | - Erica Trent
- Bavarian Nordic, Inc, 2425 Garcia Ave, Mountain View, CA 94043 USA
| | - Alain Delcayre
- Bavarian Nordic, Inc, 2425 Garcia Ave, Mountain View, CA 94043 USA ; ExoThera LLC, 675 Olive Street, Menlo Park, CA 94025 USA
| | - Alex Franzusoff
- Bavarian Nordic, Inc, 2425 Garcia Ave, Mountain View, CA 94043 USA
| |
Collapse
|
22
|
Paulson KG, Iyer JG, Simonson WT, Blom A, Thibodeau RM, Schmidt M, Pietromonaco S, Sokil M, Warton EM, Asgari MM, Nghiem P. CD8+ lymphocyte intratumoral infiltration as a stage-independent predictor of Merkel cell carcinoma survival: a population-based study. Am J Clin Pathol 2014; 142:452-8. [PMID: 25239411 DOI: 10.1309/ajcpikdzm39crpnc] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Intratumoral CD8+ lymphocytes (IT-CD8s) have shown promise as a prognostic indicator for Merkel cell carcinoma (MCC). We tested whether IT-CD8s predict survival among a population-based MCC cohort. METHODS One hundred thirty-seven MCC cases that had not previously been analyzed for IT-CD8s were studied. RESULTS Three-year MCC-specific survival rates were 56%, 72%, and 100% for patients with absent (n = 46), low (n = 85), and moderate or strong (n = 6) IT-CD8s, respectively. Increased IT-CD8s were associated with improved MCC-specific survival in a multivariate competing risk-regression analysis including stage, age, and sex (hazard ratio [HR] = 0.5; 95% confidence interval [CI] = 0.3-0.9). Although a similar trend was observed for overall survival, statistical significance was not reached (HR = 0.8; 95% CI = 0.6-1.0), likely because of the high rate of non-MCC deaths among older patients. CONCLUSIONS This study of prospectively captured MCC cases supports the concept that cellular immunity is important in MCC outcome and that CD8+ lymphocyte infiltration adds prognostic information to conventional staging.
Collapse
Affiliation(s)
- Kelly G. Paulson
- Department of Medicine/Dermatology and Pathology at the University of Washington, Seattle
| | - Jayasri G. Iyer
- Department of Medicine/Dermatology and Pathology at the University of Washington, Seattle
| | - William T. Simonson
- Department of Medicine/Dermatology and Pathology at the University of Washington, Seattle
| | - Astrid Blom
- Department of Medicine/Dermatology and Pathology at the University of Washington, Seattle
| | - Renee M. Thibodeau
- Department of Medicine/Dermatology and Pathology at the University of Washington, Seattle
| | - Miranda Schmidt
- Department of Medicine/Dermatology and Pathology at the University of Washington, Seattle
| | - Stephanie Pietromonaco
- Department of Medicine/Dermatology and Pathology at the University of Washington, Seattle
| | - Monica Sokil
- Division of Research, Kaiser Permanente Northern California, Oakland
| | | | - Maryam M. Asgari
- Division of Research, Kaiser Permanente Northern California, Oakland
| | - Paul Nghiem
- Department of Medicine/Dermatology and Pathology at the University of Washington, Seattle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle WA
| |
Collapse
|
23
|
Wellman TL, Eckenstein M, Wong C, Rincon M, Ashikaga T, Mount SL, Francklyn CS, Lounsbury KM. Threonyl-tRNA synthetase overexpression correlates with angiogenic markers and progression of human ovarian cancer. BMC Cancer 2014; 14:620. [PMID: 25163878 PMCID: PMC4155084 DOI: 10.1186/1471-2407-14-620] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/20/2014] [Indexed: 12/11/2022] Open
Abstract
Background Ovarian tumors create a dynamic microenvironment that promotes angiogenesis and reduces immune responses. Our research has revealed that threonyl-tRNA synthetase (TARS) has an extracellular angiogenic activity separate from its function in protein synthesis. The objective of this study was to test the hypothesis that TARS expression in clinical samples correlates with angiogenic markers and ovarian cancer progression. Methods Protein and mRNA databases were explored to correlate TARS expression with ovarian cancer. Serial sections of paraffin embedded ovarian tissues from 70 patients diagnosed with epithelial ovarian cancer and 12 control patients were assessed for expression of TARS, vascular endothelial growth factor (VEGF) and PECAM using immunohistochemistry. TARS secretion from SK-OV-3 human ovarian cancer cells was measured. Serum samples from 31 tissue-matched patients were analyzed by ELISA for TARS, CA-125, and tumor necrosis factor-α (TNF-α). Results There was a strong association between the tumor expression of TARS and advancing stage of epithelial ovarian cancer (p < 0.001). TARS expression and localization were also correlated with VEGF (p < 0.001). A significant proportion of samples included heavy TARS staining of infiltrating leukocytes which also correlated with stage (p = 0.017). TARS was secreted by ovarian cancer cells, and patient serum TARS was related to tumor TARS and angiogenic markers, but did not achieve significance with respect to stage. Multivariate Cox proportional hazard models revealed a surprising inverse relationship between TARS expression and mortality risk in late stage disease (p = 0.062). Conclusions TARS expression is increased in epithelial ovarian cancer and correlates with markers of angiogenic progression. These findings and the association of TARS with disease survival provide clinical validation that TARS is associated with angiogenesis in ovarian cancer. These results encourage further study of TARS as a regulator of the tumor microenvironment and possible target for diagnosis and/or treatment in ovarian cancer. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-620) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karen M Lounsbury
- Departments of Pharmacology, University of Vermont, College of Medicine, Burlington, Vermont 05405, USA.
| |
Collapse
|
24
|
Neilson D, MacPherson S, Townsend KN, Lum JJ. Tumor vascularity in ovarian cancer: T cells need breathing room. Oncoimmunology 2014; 3:e28272. [PMID: 25050200 PMCID: PMC4063148 DOI: 10.4161/onci.28272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 11/23/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are crucial for effective antitumor responses. However, hypoxia can skew T-cell differentiation and function, thereby perturbing TILs. We have demonstrated that TILs and their immune function are associated with tumor vascularization. These features are prognostic for improved disease-specific survival in ovarian cancer. Thus, new immunotherapies should consider how hypoxia impacts antitumor immunity.
Collapse
Affiliation(s)
- David Neilson
- Trev and Joyce Deeley Research Centre; BC Cancer Agency; Victoria, BC Canada ; Department of Biochemistry and Microbiology; University of Victoria; Victoria, BC Canada
| | - Sarah MacPherson
- Trev and Joyce Deeley Research Centre; BC Cancer Agency; Victoria, BC Canada ; Department of Biochemistry and Microbiology; University of Victoria; Victoria, BC Canada
| | - Katelin N Townsend
- Trev and Joyce Deeley Research Centre; BC Cancer Agency; Victoria, BC Canada ; Department of Biochemistry and Microbiology; University of Victoria; Victoria, BC Canada
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre; BC Cancer Agency; Victoria, BC Canada ; Department of Biochemistry and Microbiology; University of Victoria; Victoria, BC Canada
| |
Collapse
|