1
|
Pydyn N, Kadluczka J, Major P, Hutsch T, Belamri K, Malczak P, Radkowiak D, Budzynski A, Miekus K, Jura J, Kotlinowski J. Hepatic MCPIP1 protein levels are reduced in NAFLD patients and are predominantly expressed in cholangiocytes and liver endothelium. Hepatol Commun 2023; 7:e0008. [PMID: 36809310 PMCID: PMC9949814 DOI: 10.1097/hc9.0000000000000008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2022] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND AND AIMS NAFLD is characterized by the excessive accumulation of fat in hepatocytes. NAFLD can range from simple steatosis to the aggressive form called NASH, which is characterized by both fatty liver and liver inflammation. Without proper treatment, NAFLD may further progress to life-threatening complications, such as fibrosis, cirrhosis, or liver failure. Monocyte chemoattractant protein-induced protein 1 (MCPIP1, alias Regnase 1) is a negative regulator of inflammation, acting through the cleavage of transcripts coding for proinflammatory cytokines and the inhibition of NF-κB activity. METHODS In this study, we investigated MCPIP1 expression in the liver and peripheral blood mononuclear cells (PBMCs) collected from a cohort of 36 control and NAFLD patients hospitalized due to bariatric surgery or primary inguinal hernia laparoscopic repair. Based on liver histology data (hematoxylin and eosin and Oil Red-O staining), 12 patients were classified into the NAFL group, 19 into the NASH group, and 5 into the control (non-NAFLD) group. Biochemical characterization of patient plasma was followed by expression analysis of genes regulating inflammation and lipid metabolism. The MCPIP1 protein level was reduced in the livers of NAFL and NASH patients in comparison to non-NAFLD control individuals. In addition, in all groups of patients, immunohistochemical staining showed that the expression of MCPIP1 was higher in the portal fields and bile ducts in comparison to the liver parenchyma and central vein. The liver MCPIP1 protein level negatively correlated with hepatic steatosis but not with patient body mass index or any other analyte. The MCPIP1 level in PBMCs did not differ between NAFLD patients and control patients. Similarly, in patients' PBMCs there were no differences in the expression of genes regulating β-oxidation (ACOX1, CPT1A, and ACC1) and inflammation (TNF, IL1B, IL6, IL8, IL10, and CCL2), or transcription factors controlling metabolism (FAS, LCN2, CEBPB, SREBP1, PPARA, and PPARG). CONCLUSION We have demonstrated that MCPIP1 protein levels are reduced in NAFLD patients, but further research is needed to investigate the specific role of MCPIP1 in NAFL initiation and the transition to NASH.
Collapse
Affiliation(s)
- Natalia Pydyn
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Kadluczka
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Piotr Major
- 2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz Hutsch
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
- Veterinary Diagnostic Laboratory ALAB Bioscience, Warsaw, Poland
| | - Kinga Belamri
- Veterinary Diagnostic Laboratory ALAB Bioscience, Warsaw, Poland
| | - Piotr Malczak
- 2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Dorota Radkowiak
- 2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Andrzej Budzynski
- 2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Miekus
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jerzy Kotlinowski
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
2
|
Uehata T, Takeuchi O. Post-transcriptional regulation of immunological responses by Regnase-1-related RNases. Int Immunol 2021; 33:859-865. [PMID: 34320195 DOI: 10.1093/intimm/dxab048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
Regulation of messenger RNA (mRNA) decay plays a crucial role in the control of gene expression. Canonical mRNA decay pathways are initiated by deadenylation and decapping, and are followed by exonucleolytic degradation. However, recent studies revealed that endoribonucleolytic cleavage also mediates mRNA decay, and both exoribonucleolytic and endoribonucleolytic decay pathways are important for the regulation of immune responses. Regnase-1 functions as an endoribonuclease to control immunity by damping mRNAs. Particularly, Regnase-1 controls cytokines and other inflammatory mediators by recognizing their mRNAs via stem-loop structures present in the 3' untranslated regions. Regnase-1 was found to be critical for human inflammatory diseases such as ulcerative colitis and idiopathic pulmonary fibrosis. Furthermore, a set of Regnase-1-related RNases contribute to immune regulation as well as antiviral host defense. In this review, we provide an overview of recent findings as to immune-related RNA-binding proteins (RBPs) with an emphasis on stem-loop-mediated mRNA decay via Regnase-1 and related RNases and discuss how the function of these RBPs is regulated and contributes to inflammatory disorders.
Collapse
Affiliation(s)
- Takuya Uehata
- Laboratory of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Osamu Takeuchi
- Laboratory of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Krajewski PK, Szukała W, Lichawska-Cieślar A, Matusiak Ł, Jura J, Szepietowski JC. MCPIP1/Regnase-1 Expression in Keratinocytes of Patients with Hidradenitis Suppurativa: Preliminary Results. Int J Mol Sci 2021; 22:ijms22147241. [PMID: 34298861 PMCID: PMC8307415 DOI: 10.3390/ijms22147241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
The pathogenesis of hidradenitis suppurativa (HS) is yet to be fully understood. However, inflammation is a key element in the development of skin lesions. The aim of this study was to evaluate the expression of monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in the skin of patients suffering from HS. Skin biopsies of 15 patients with HS and 15 healthy controls were obtained and processed for immunohistochemistry, western blot, and real time PCR. The highest mean MCPIP1 mRNA expression was found in the inflammatory lesional skin of HS patients. It was significantly higher than MCPIP1 mRNA expression in the biopsies from both healthy controls and non-lesional skin of HS patients. Western blot analysis indicated that expression of MCPIP1 was elevated within both lesional and non-lesional skin compared to the healthy control. The increased MCPIP1 mRNA and protein expression level in HS lesions may indicate its possible role in the disease pathogenesis.
Collapse
Affiliation(s)
- Piotr K. Krajewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland; (P.K.K.); (Ł.M.)
| | - Weronika Szukała
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-392 Krakow, Poland; (W.S.); (J.J.)
| | - Agata Lichawska-Cieślar
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-392 Krakow, Poland; (W.S.); (J.J.)
- Correspondence: (A.L.-C.); (J.C.S.)
| | - Łukasz Matusiak
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland; (P.K.K.); (Ł.M.)
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-392 Krakow, Poland; (W.S.); (J.J.)
| | - Jacek C. Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland; (P.K.K.); (Ł.M.)
- Correspondence: (A.L.-C.); (J.C.S.)
| |
Collapse
|
4
|
Yan B, Guo Y, Gui Y, Jiang ZS, Zheng XL. Multifunctional RNase MCPIP1 and its Role in Cardiovascular Diseases. Curr Med Chem 2021; 28:3385-3405. [PMID: 33191882 DOI: 10.2174/0929867327999201113100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/20/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022]
Abstract
Monocyte chemoattractant protein-1 induced protein 1 (MCPIP1), one of the MCPIP family members, is characterized by the presence of both C-x8-C-x5-C-x3-H (CCCH)- type zinc finger and PilT-N-terminal domains. As a potent regulator of innate immunity, MCPIP1 exerts anti-inflammatory effects through its ribonuclease (RNase) and deubiquitinating enzyme activities to degrade cytokine mRNAs and inhibit nuclear factor- kappa B (NF-κB), respectively. MCPIP1 is expressed not only in immune cells but also in many other cell types, including cardiomyocytes, vascular endothelial cells (ECs) and smooth muscle cells (SMCs). Increasing evidence indicates that MCPIP1 plays a role in the regulation of cardiac functions and is involved in the processes of vascular diseases, such as ischemia-reperfusion (I/R) and atherosclerosis. To better understand the emerging roles of MCPIP1 in the cardiovascular system, we reviewed the current literature with respect to MCPIP1 functions and discussed its association with the pathogenesis of cardiovascular diseases and the implication as a therapeutic target.
Collapse
Affiliation(s)
- Binjie Yan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Yanan Guo
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| | - Yu Gui
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| |
Collapse
|
5
|
Vitamin B12 and folic acid alleviate symptoms of nutritional deficiency by antagonizing aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 2020; 117:15837-15845. [PMID: 32571957 DOI: 10.1073/pnas.2006949117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Despite broad appreciation of their clinical utility, it has been unclear how vitamin B12 and folic acid (FA) function at the molecular level to directly prevent their hallmark symptoms of deficiency like anemia or birth defects. To this point, B12 and FA have largely been studied as cofactors for enzymes in the one-carbon (1C) cycle in facilitating the de novo generation of nucleotides and methylation of DNA and protein. Here, we report that B12 and FA function as natural antagonists of aryl hydrocarbon receptor (AhR). Our studies indicate that B12 and FA bind AhR directly as competitive antagonists, blocking AhR nuclear localization, XRE binding, and target gene induction mediated by AhR agonists like 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and 6-formylindolo[3,2-b]carbazole (FICZ). In mice, TCDD treatment replicated many of the hallmark symptoms of B12/FA deficiency and cotreatment with aryl hydrocarbon portions of B12/FA rescued mice from these toxic effects. Moreover, we found that B12/FA deficiency in mice induces AhR transcriptional activity and accumulation of erythroid progenitors and that it may do so in an AhR-dependent fashion. Consistent with these results, we observed that human cancer samples with deficient B12/FA uptake demonstrated higher transcription of AhR target genes and lower transcription of pathways implicated in birth defects. In contrast, there was no significant difference observed between samples with mutated and intact 1C cycle proteins. Thus, we propose a model in which B12 and FA blunt the effect of natural AhR agonists at baseline to prevent the symptoms that arise with AhR overactivation.
Collapse
|
6
|
Konieczny P, Lichawska-Cieslar A, Kwiecinska P, Cichy J, Pietrzycka R, Szukala W, Declercq W, Devos M, Paziewska A, Rumienczyk I, Kulecka M, Mikula M, Fu M, Borowczyk J, Santamaria-Babí LF, Jura J. Keratinocyte-specific ablation of Mcpip1 impairs skin integrity and promotes local and systemic inflammation. J Mol Med (Berl) 2019; 97:1669-1684. [PMID: 31786670 DOI: 10.1007/s00109-019-01853-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
MCPIP1 (Regnase-1, encoded by the ZC3H12A gene) regulates the mRNA stability of several inflammatory cytokines. Due to the critical role of this RNA endonuclease in the suppression of inflammation, Mcpip1 deficiency in mice leads to the development of postnatal multiorgan inflammation and premature death. Here, we generated mice with conditional deletion of Mcpip1 in the epidermis (Mcpip1EKO). Mcpip1 loss in keratinocytes resulted in the upregulated expression of transcripts encoding factors related to inflammation and keratinocyte differentiation, such as IL-36α/γ cytokines, S100a8/a9 antibacterial peptides, and Sprr2d/2h proteins. Upon aging, the Mcpip1EKO mice showed impaired skin integrity that led to the progressive development of spontaneous skin pathology and systemic inflammation. Furthermore, we found that the lack of epidermal Mcpip1 expression impaired the balance of keratinocyte proliferation and differentiation. Overall, we provide evidence that keratinocyte-specific Mcpip1 activity is crucial for the maintenance of skin integrity as well as for the prevention of excessive local and systemic inflammation. KEY MESSAGES: Loss of murine epidermal Mcpip1 upregulates transcripts related to inflammation and keratinocyte differentiation. Keratinocyte Mcpip1 function is essential to maintain the integrity of skin in adult mice. Ablation of Mcpip1 in mouse epidermis leads to the development of local and systemic inflammation.
Collapse
Affiliation(s)
- Piotr Konieczny
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Agata Lichawska-Cieslar
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Patrycja Kwiecinska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Roza Pietrzycka
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Weronika Szukala
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Wim Declercq
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Michael Devos
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Izabela Rumienczyk
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Mingui Fu
- Department of Biomedical Science and Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, 5100 Rockhill Rd, Kansas City, MO, 64110, USA
| | - Julia Borowczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.,Current address: Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Gabrielle Perret-Gentil 4, 1211, Geneva, Switzerland
| | - Luis F Santamaria-Babí
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University de Barcelona, Gran Via de les Corts Catalanes 585, 08007, Barcelona, Spain
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
7
|
Niu QF, Wang QL, Tong ZX, Tong L, Tong XJ. Adsorptive properties of graphene oxide on vitamin B12 and their effect on the promotion of peripheral nerve regeneration. Neurol Res 2018; 41:282-288. [PMID: 30585138 DOI: 10.1080/01616412.2018.1557868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES To observe whether Graphene oxide (GO) can absorb vitamin B12 (VB12) and Decellularized scaffold - acellular nerve allograft (ANA) modified GO-VB12 promote the repair of ischiadic nervus defects in a rat model. METHODS The adsorption of GO on vitamin and the optimum adsorption conditions were investigated by single factor experiment. The adsorption properties of the material were observed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) to determine the success of adsorption on VB12. GO-VB12-ANA was prepared by vibration mixing method and bridged to injured ischiadic nervus. The nerve action potential, wet weight ratio of gastrocnemius muscle and the expression of GAP-43 were investigated by contrast test to detect its effect on nerve regeneration. RESULTS The optimized adsorption conditions for GO on VB12 solution were listed as follows: adsorbent dosage was 6 mg, shaking time was 70 min, the pH value was 6, the optimum concentration of VB12 was 50 mg/L and the theoretical saturated adsorption capacity was 21.51 mg/g. The nerve action potential, wet weight ratio of gastrocnemius muscle and the expression of GAP-43 in nerve fiber of GO-VB12-ANA group were close to the normal values and significantly higher than those of ANA and rotation group. CONCLUSIONS Based on the adsorption function of GO on VB12, GO-VB12-ANA can promote regeneration of injured ischiadic nervus, providing the experimental basis for the clinical application of nanomaterials.
Collapse
Affiliation(s)
- Qing-Fei Niu
- a Department of anatomy, College of Basic Medical Science , China Medical University , Shenyang , China
| | - Qiao-Ling Wang
- b Department of anatomy , Shenyang Medical College , Shenyang , China
| | - Zhao-Xue Tong
- a Department of anatomy, College of Basic Medical Science , China Medical University , Shenyang , China
| | - Lei Tong
- a Department of anatomy, College of Basic Medical Science , China Medical University , Shenyang , China
| | - Xiao-Jie Tong
- a Department of anatomy, College of Basic Medical Science , China Medical University , Shenyang , China
| |
Collapse
|
8
|
Regnase-1 Maintains Iron Homeostasis via the Degradation of Transferrin Receptor 1 and Prolyl-Hydroxylase-Domain-Containing Protein 3 mRNAs. Cell Rep 2018; 19:1614-1630. [PMID: 28538180 DOI: 10.1016/j.celrep.2017.05.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/30/2017] [Accepted: 05/02/2017] [Indexed: 12/23/2022] Open
Abstract
Iron metabolism is regulated by transcriptional and post-transcriptional mechanisms. The mRNA of the iron-controlling gene, transferrin receptor 1 (TfR1), has long been believed to be negatively regulated by a yet-unidentified endonuclease. Here, we show that the endonuclease Regnase-1 is critical for the degradation of mRNAs involved in iron metabolism in vivo. First, we demonstrate that Regnase-1 promotes TfR1 mRNA decay. Next, we show that Regnase-1-/- mice suffer from severe iron deficiency anemia, although hepcidin expression is downregulated. The iron deficiency anemia is induced by a defect in duodenal iron uptake. We reveal that duodenal Regnase-1 controls the expression of PHD3, which impairs duodenal iron uptake via HIF2α suppression. Finally, we show that Regnase-1 is a HIF2α-inducible gene and thus provides a positive feedback loop for HIF2α activation via PHD3. Collectively, these results demonstrate that Regnase-1-mediated regulation of iron-related transcripts is essential for the maintenance of iron homeostasis.
Collapse
|
9
|
Central role of myeloid MCPIP1 in protecting against LPS-induced inflammation and lung injury. Signal Transduct Target Ther 2017; 2:17066. [PMID: 29263935 PMCID: PMC5721545 DOI: 10.1038/sigtrans.2017.66] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/21/2017] [Accepted: 10/29/2017] [Indexed: 12/27/2022] Open
Abstract
Although systemic inflammatory responses attributable to infection may lead to significant lung injury, the precise molecular mechanisms leading to lung damage are poorly understood and therapeutic options remain limited. Here, we show that myeloid monocyte chemotactic protein-inducible protein 1 (MCPIP1) plays a central role in protecting against LPS-induced inflammation and lung injury. Myeloid-specific MCPIP1 knockout mice developed spontaneous inflammatory syndromes, but at a late age compared to global MCPIP1 knockout mice. Moreover, mice with a myeloid-specific deletion of MCPIP1 were extremely sensitive to LPS-induced lung injury due to overproduction of proinflammatory cytokines and chemokines. We identified C/EBPβ and C/EBPδ, two critical transcriptional factors that drive cytokine production and lung injury, as targets of MCPIP1 RNase. LPS administration caused MCPIP1 protein degradation in the lungs. Pharmacological inhibition of MALT1, a paracaspase that cleaves MCPIP1, by MI-2 selectively increased the MCPIP1 protein levels in macrophages and in the lungs. Meanwhile, administration of MI-2 protected mice from LPS-induced inflammation, lung injury and death. Collectively, these results indicate that myeloid MCPIP1 is central in controlling LPS-induced inflammation and lung injury. Pharmacological inhibition of MALT1 protease activity may be a good strategy to treat inflammatory diseases by enhancing MCPIP1 expression in myeloid cells.
Collapse
|
10
|
Habacher C, Ciosk R. ZC3H12A/MCPIP1/Regnase-1-related endonucleases: An evolutionary perspective on molecular mechanisms and biological functions. Bioessays 2017; 39. [PMID: 28719000 DOI: 10.1002/bies.201700051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mammalian Zc3h12a/MCPIP1/Regnase-1, an extensively studied regulator of inflammatory response, is the founding member of a ribonuclease family, which includes proteins related by the presence of the so-called Zc3h12a-like NYN domain. Recently, several related proteins have been described in Caenorhabditis elegans, allowing comparative evaluation of molecular functions and biological roles of these ribonucleases. We discuss the structural features of these proteins, which endow some members with ribonuclease (RNase) activity while others with auxiliary or RNA-independent functions. We also consider their RNA specificity and highlight a common role for these proteins in cellular defense, which is remarkable considering the evolutionary distance and fundamental differences in cellular defense mechanisms between mammals and nematodes.
Collapse
Affiliation(s)
- Cornelia Habacher
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Rafal Ciosk
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
11
|
Mao R, Yang R, Chen X, Harhaj EW, Wang X, Fan Y. Regnase-1, a rapid response ribonuclease regulating inflammation and stress responses. Cell Mol Immunol 2017; 14:412-422. [PMID: 28194024 PMCID: PMC5423090 DOI: 10.1038/cmi.2016.70] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) are central players in post-transcriptional regulation and immune homeostasis. The ribonuclease and RBP Regnase-1 exerts critical roles in both immune cells and non-immune cells. Its expression is rapidly induced under diverse conditions including microbial infections, treatment with inflammatory cytokines and chemical or mechanical stimulation. Regnase-1 activation is transient and is subject to negative feedback mechanisms including proteasome-mediated degradation or mucosa-associated lymphoid tissue 1 (MALT1) mediated cleavage. The major function of Regnase-1 is promoting mRNA decay via its ribonuclease activity by specifically targeting a subset of genes in different cell types. In monocytes, Regnase-1 downregulates IL-6 and IL-12B mRNAs, thus mitigating inflammation, whereas in T cells, it restricts T-cell activation by targeting c-Rel, Ox40 and Il-2 transcripts. In cancer cells, Regnase-1 promotes apoptosis by inhibiting anti-apoptotic genes including Bcl2L1, Bcl2A1, RelB and Bcl3. Together with up-frameshift protein-1 (UPF1), Regnase-1 specifically cleaves mRNAs that are active during translation by recognizing a stem-loop (SL) structure within the 3'UTRs of these genes in endoplasmic reticulum-bound ribosomes. Through this mechanism, Regnase-1 rapidly shapes mRNA profiles and associated protein expression, restricts inflammation and maintains immune homeostasis. Dysregulation of Regnase-1 has been described in a multitude of pathological states including autoimmune diseases, cancer and cardiovascular diseases. Here, we provide a comprehensive update on the function, regulation and molecular mechanisms of Regnase-1, and we propose that Regnase-1 may function as a master rapid response gene for cellular adaption triggered by microenvironmental changes.
Collapse
Affiliation(s)
- Renfang Mao
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Riyun Yang
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xia Chen
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Edward W Harhaj
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Xiaoying Wang
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yihui Fan
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| |
Collapse
|
12
|
Abstract
Nearly 60 CCCH zinc finger proteins have been identified in humans and mice. These proteins are involved in the regulation of multiple steps of RNA metabolism, including mRNA splicing, polyadenylation, transportation, translation and decay. Several CCCH zinc finger proteins, such as tristetraprolin (TTP), roquin 1 and MCPIP1 (also known as regnase 1), are crucial for many aspects of immune regulation by targeting mRNAs for degradation and modulation of signalling pathways. In this Review, we focus on the emerging roles of CCCH zinc finger proteins in the regulation of immune responses through their effects on cytokine production, immune cell activation and immune homeostasis.
Collapse
|
13
|
Jeltsch KM, Hu D, Brenner S, Zöller J, Heinz GA, Nagel D, Vogel KU, Rehage N, Warth SC, Edelmann SL, Gloury R, Martin N, Lohs C, Lech M, Stehklein JE, Geerlof A, Kremmer E, Weber A, Anders HJ, Schmitz I, Schmidt-Supprian M, Fu M, Holtmann H, Krappmann D, Ruland J, Kallies A, Heikenwalder M, Heissmeyer V. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote T(H)17 differentiation. Nat Immunol 2014; 15:1079-89. [PMID: 25282160 DOI: 10.1038/ni.3008] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022]
Abstract
Humoral autoimmunity paralleled by the accumulation of follicular helper T cells (T(FH) cells) is linked to mutation of the gene encoding the RNA-binding protein roquin-1. Here we found that T cells lacking roquin caused pathology in the lung and accumulated as cells of the T(H)17 subset of helper T cells in the lungs. Roquin inhibited T(H)17 cell differentiation and acted together with the endoribonuclease regnase-1 to repress target mRNA encoding the T(H)17 cell-promoting factors IL-6, ICOS, c-Rel, IRF4, IκBNS and IκBζ. This cooperation required binding of RNA by roquin and the nuclease activity of regnase-1. Upon recognition of antigen by the T cell antigen receptor (TCR), roquin and regnase-1 proteins were cleaved by the paracaspase MALT1. Thus, this pathway acts as a 'rheostat' by translating TCR signal strength via graded inactivation of post-transcriptional repressors and differential derepression of targets to enhance T(H)17 differentiation.
Collapse
Affiliation(s)
- Katharina M Jeltsch
- 1] Institute for Immunology, Ludwig-Maximilians-Universität München, Munich, Germany. [2] Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| | - Desheng Hu
- Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| | - Sven Brenner
- Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| | - Jessica Zöller
- Institute for Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Gitta A Heinz
- Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| | - Daniel Nagel
- Institute of Toxicology and Pharmacology, Research Unit Cellular Signal Integration, Helmholtz Zentrum München, Neuherberg, Germany
| | - Katharina U Vogel
- Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| | - Nina Rehage
- 1] Institute for Immunology, Ludwig-Maximilians-Universität München, Munich, Germany. [2] Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| | - Sebastian C Warth
- Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| | - Stephanie L Edelmann
- 1] Institute for Immunology, Ludwig-Maximilians-Universität München, Munich, Germany. [2] Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| | - Renee Gloury
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Nina Martin
- Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| | - Claudia Lohs
- Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| | - Maciej Lech
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jenny E Stehklein
- Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| | - Achim Weber
- Institute for Surgical Pathology, University Hospital, Zürich, Switzerland
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ingo Schmitz
- 1] Helmholtz Centre for Infection Research, Braunschweig, Germany. [2] Institute for Molecular and Clinical Immunology, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | | | - Mingui Fu
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Helmut Holtmann
- Institute of Biochemistry, Hannover Medical School, Hannover, Germany
| | - Daniel Krappmann
- Institute of Toxicology and Pharmacology, Research Unit Cellular Signal Integration, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Axel Kallies
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Mathias Heikenwalder
- Institute for Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Vigo Heissmeyer
- 1] Institute for Immunology, Ludwig-Maximilians-Universität München, Munich, Germany. [2] Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|