1
|
Kalra L, Bee M. Auditory streaming and rhythmic masking release in Cope's gray treefrog. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:2319-2329. [PMID: 40167344 DOI: 10.1121/10.0036251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
Auditory streaming involves perceptually assigning overlapping sound sequences to their respective sources. Although critical for acoustic communication, few studies have investigated the role of auditory streaming in nonhuman animals. This study used the rhythmic masking release paradigm to investigate auditory streaming in Cope's gray treefrog (Hyla chrysoscelis). In this paradigm, the temporal rhythm of a Target sequence is masked in the presence of a Distractor sequence. A release from masking can be induced by adding a Captor sequence that perceptually "captures" the Distractor into an auditory stream segregated from the Target. Here, the Target was a sequence of repeated pulses mimicking the rhythm of the species' advertisement call. Gravid females exhibited robust phonotaxis to the Target alone, but responses declined significantly when Target pulses were interleaved with those of a Distractor at the same frequency, indicating the Target's attractive temporal rhythm was masked. However, addition of a remote-frequency Captor resulted in a significant increase in responses to the Target, suggesting the Target could be segregated from a separate stream consisting of integrated Distractor and Captor sequences. This result sheds light on how auditory streaming may facilitate acoustic communication in frogs and other animals.
Collapse
Affiliation(s)
- Lata Kalra
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Mark Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota 55108, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
2
|
Kalra L, Altman S, Bee MA. Perceptually salient differences in a species recognition cue do not promote auditory streaming in eastern grey treefrogs (Hyla versicolor). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:853-867. [PMID: 38733407 DOI: 10.1007/s00359-024-01702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
Auditory streaming underlies a receiver's ability to organize complex mixtures of auditory input into distinct perceptual "streams" that represent different sound sources in the environment. During auditory streaming, sounds produced by the same source are integrated through time into a single, coherent auditory stream that is perceptually segregated from other concurrent sounds. Based on human psychoacoustic studies, one hypothesis regarding auditory streaming is that any sufficiently salient perceptual difference may lead to stream segregation. Here, we used the eastern grey treefrog, Hyla versicolor, to test this hypothesis in the context of vocal communication in a non-human animal. In this system, females choose their mate based on perceiving species-specific features of a male's pulsatile advertisement calls in social environments (choruses) characterized by mixtures of overlapping vocalizations. We employed an experimental paradigm from human psychoacoustics to design interleaved pulsatile sequences (ABAB…) that mimicked key features of the species' advertisement call, and in which alternating pulses differed in pulse rise time, which is a robust species recognition cue in eastern grey treefrogs. Using phonotaxis assays, we found no evidence that perceptually salient differences in pulse rise time promoted the segregation of interleaved pulse sequences into distinct auditory streams. These results do not support the hypothesis that any perceptually salient acoustic difference can be exploited as a cue for stream segregation in all species. We discuss these findings in the context of cues used for species recognition and auditory streaming.
Collapse
Affiliation(s)
- Lata Kalra
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA.
| | - Shoshana Altman
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Mark A Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
3
|
Noda T, Takahashi H. Stochastic resonance in sparse neuronal network: functional role of ongoing activity to detect weak sensory input in awake auditory cortex of rat. Cereb Cortex 2024; 34:bhad428. [PMID: 37955660 PMCID: PMC10793590 DOI: 10.1093/cercor/bhad428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
The awake cortex is characterized by a higher level of ongoing spontaneous activity, but it has a better detectability of weak sensory inputs than the anesthetized cortex. However, the computational mechanism underlying this paradoxical nature of awake neuronal activity remains to be elucidated. Here, we propose a hypothetical stochastic resonance, which improves the signal-to-noise ratio (SNR) of weak sensory inputs through nonlinear relations between ongoing spontaneous activities and sensory-evoked activities. Prestimulus and tone-evoked activities were investigated via in vivo extracellular recording with a dense microelectrode array covering the entire auditory cortex in rats in both awake and anesthetized states. We found that tone-evoked activities increased supralinearly with the prestimulus activity level in the awake state and that the SNR of weak stimulus representation was optimized at an intermediate level of prestimulus ongoing activity. Furthermore, the temporally intermittent firing pattern, but not the trial-by-trial reliability or the fluctuation of local field potential, was identified as a relevant factor for SNR improvement. Since ongoing activity differs among neurons, hypothetical stochastic resonance or "sparse network stochastic resonance" might offer beneficial SNR improvement at the single-neuron level, which is compatible with the sparse representation in the sensory cortex.
Collapse
Affiliation(s)
- Takahiro Noda
- Department of Mechano-informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hirokazu Takahashi
- Department of Mechano-informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Melland P, Curtu R. Attractor-Like Dynamics Extracted from Human Electrocorticographic Recordings Underlie Computational Principles of Auditory Bistable Perception. J Neurosci 2023; 43:3294-3311. [PMID: 36977581 PMCID: PMC10162465 DOI: 10.1523/jneurosci.1531-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
In bistable perception, observers experience alternations between two interpretations of an unchanging stimulus. Neurophysiological studies of bistable perception typically partition neural measurements into stimulus-based epochs and assess neuronal differences between epochs based on subjects' perceptual reports. Computational studies replicate statistical properties of percept durations with modeling principles like competitive attractors or Bayesian inference. However, bridging neuro-behavioral findings with modeling theory requires the analysis of single-trial dynamic data. Here, we propose an algorithm for extracting nonstationary timeseries features from single-trial electrocorticography (ECoG) data. We applied the proposed algorithm to 5-min ECoG recordings from human primary auditory cortex obtained during perceptual alternations in an auditory triplet streaming task (six subjects: four male, two female). We report two ensembles of emergent neuronal features in all trial blocks. One ensemble consists of periodic functions that encode a stereotypical response to the stimulus. The other comprises more transient features and encodes dynamics associated with bistable perception at multiple time scales: minutes (within-trial alternations), seconds (duration of individual percepts), and milliseconds (switches between percepts). Within the second ensemble, we identified a slowly drifting rhythm that correlates with the perceptual states and several oscillators with phase shifts near perceptual switches. Projections of single-trial ECoG data onto these features establish low-dimensional attractor-like geometric structures invariant across subjects and stimulus types. These findings provide supporting neural evidence for computational models with oscillatory-driven attractor-based principles. The feature extraction techniques described here generalize across recording modality and are appropriate when hypothesized low-dimensional dynamics characterize an underlying neural system.SIGNIFICANCE STATEMENT Irrespective of the sensory modality, neurophysiological studies of multistable perception have typically investigated events time-locked to the perceptual switching rather than the time course of the perceptual states per se. Here, we propose an algorithm that extracts neuronal features of bistable auditory perception from largescale single-trial data while remaining agnostic to the subject's perceptual reports. The algorithm captures the dynamics of perception at multiple timescales, minutes (within-trial alternations), seconds (durations of individual percepts), and milliseconds (timing of switches), and distinguishes attributes of neural encoding of the stimulus from those encoding the perceptual states. Finally, our analysis identifies a set of latent variables that exhibit alternating dynamics along a low-dimensional manifold, similar to trajectories in attractor-based models for perceptual bistability.
Collapse
Affiliation(s)
- Pake Melland
- Department of Mathematics, Southern Methodist University, Dallas, Texas 75275
- Applied Mathematical & Computational Sciences, The University of Iowa, Iowa City, Iowa 52242
| | - Rodica Curtu
- Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242
- The Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
5
|
Information flow in the rat thalamo-cortical system: spontaneous vs. stimulus-evoked activities. Sci Rep 2021; 11:19252. [PMID: 34584151 PMCID: PMC8479136 DOI: 10.1038/s41598-021-98660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
The interaction between the thalamus and sensory cortex plays critical roles in sensory processing. Previous studies have revealed pathway-specific synaptic properties of thalamo-cortical connections. However, few studies to date have investigated how each pathway routes moment-to-moment information. Here, we simultaneously recorded neural activity in the auditory thalamus (or ventral division of the medial geniculate body; MGv) and primary auditory cortex (A1) with a laminar resolution in anesthetized rats. Transfer entropy (TE) was used as an information theoretic measure to operationalize “information flow”. Our analyses confirmed that communication between the thalamus and cortex was strengthened during presentation of auditory stimuli. In the resting state, thalamo-cortical communications almost disappeared, whereas intracortical communications were strengthened. The predominant source of information was the MGv at the onset of stimulus presentation and layer 5 during spontaneous activity. In turn, MGv was the major recipient of information from layer 6. TE suggested that a small but significant population of MGv-to-A1 pairs was “information-bearing,” whereas A1-to-MGv pairs typically exhibiting small effects played modulatory roles. These results highlight the capability of TE analyses to unlock novel avenues for bridging the gap between well-established anatomical knowledge of canonical microcircuits and physiological correlates via the concept of dynamic information flow.
Collapse
|
6
|
Rogalla MM, Rauser I, Schulze K, Osterhagen L, Hildebrandt KJ. Mice tune out not in: violation of prediction drives auditory saliency. Proc Biol Sci 2020; 287:20192001. [PMID: 31992168 PMCID: PMC7015331 DOI: 10.1098/rspb.2019.2001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/07/2020] [Indexed: 01/21/2023] Open
Abstract
Successful navigation in complex acoustic scenes requires focusing on relevant sounds while ignoring irrelevant distractors. It has been argued that the ability to track stimulus statistics and generate predictions supports the choice of what to attend and what to ignore. However, the role of these predictions about future auditory events in drafting decisions remains elusive. While most psychophysical studies in humans indicate that expected stimuli are more easily detected, most work studying physiological auditory processing in animals highlights the detection of unexpected, surprising stimuli. Here, we tested whether in the mouse, high target probability results in enhanced detectability or whether detection is biased towards low-probability deviants using an auditory detection task. We implemented a probabilistic choice model to investigate whether a possible dependence on stimulus statistics arises from short-term serial correlations or from integration over longer periods. Our results demonstrate that target detectability in mice decreases with increasing probability, contrary to humans. We suggest that mice indeed track probability over a timescale of at least several minutes but do not use this information in the same way as humans do: instead of maximizing reward by focusing on high-probability targets, the saliency of a target is determined by surprise.
Collapse
Affiliation(s)
- Meike M. Rogalla
- Department of Neuroscience, Division of Auditory Neuroscience, Carl von Ossietzky University, Oldenburg, Lower Saxony 26129, Germany
- Cluster of Excellence, Hearing4all, Carl von Ossietzky University, Oldenburg, Lower Saxony 26129, Germany
| | - Inga Rauser
- Department of Neuroscience, Division of Auditory Neuroscience, Carl von Ossietzky University, Oldenburg, Lower Saxony 26129, Germany
| | - Karsten Schulze
- Department of Neuroscience, Division of Auditory Neuroscience, Carl von Ossietzky University, Oldenburg, Lower Saxony 26129, Germany
| | - Lasse Osterhagen
- Department of Neuroscience, Division of Auditory Neuroscience, Carl von Ossietzky University, Oldenburg, Lower Saxony 26129, Germany
- Cluster of Excellence, Hearing4all, Carl von Ossietzky University, Oldenburg, Lower Saxony 26129, Germany
| | - K. Jannis Hildebrandt
- Department of Neuroscience, Division of Auditory Neuroscience, Carl von Ossietzky University, Oldenburg, Lower Saxony 26129, Germany
- Cluster of Excellence, Hearing4all, Carl von Ossietzky University, Oldenburg, Lower Saxony 26129, Germany
| |
Collapse
|
7
|
Ross B, Dobri S, Schumann A. Speech-in-noise understanding in older age: The role of inhibitory cortical responses. Eur J Neurosci 2019; 51:891-908. [PMID: 31494988 DOI: 10.1111/ejn.14573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/23/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023]
Abstract
Studies of central auditory processing underlying speech-in-noise (SIN) recognition in aging have mainly concerned the degrading neural representation of speech sound in the auditory brainstem and cortex. Less attention has been paid to the aging-related decline of inhibitory function, which reduces the ability to suppress distraction from irrelevant sensory input. In a response suppression paradigm, young and older adults listened to sequences of three short sounds during MEG recording. The amplitudes of the cortical P30 response and the 40-Hz transient gamma response were compared with age, hearing loss and SIN performance. Sensory gating, indicated by the P30 amplitude ratio between the last and the first responses, was reduced in older compared to young listeners. Sensory gating was correlated with age in the older adults but not with hearing loss nor with SIN understanding. The transient gamma response expressed less response suppression. However, the gamma amplitude increased with age and SIN loss. Comparisons of linear multi-variable modeling showed a stronger brain-behavior relationship between the gamma amplitude and SIN performance than between gamma and age or hearing loss. The findings support the hypothesis that aging-related changes in the balance between inhibitory and excitatory neural mechanisms modify the generation of gamma oscillations, which impacts on perceptual binding and consequently on SIN understanding abilities. In conclusion, SIN recognition in older age is less affected by central auditory processing at the level of sensation, indicated by sensory gating, but is strongly affected at the level of perceptual organization, indicated by the correlation with the gamma responses.
Collapse
Affiliation(s)
- Bernhard Ross
- Baycrest Centre for Geriatric Care, Rotman Research Institute, Toronto, ON, Canada.,Department for Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Simon Dobri
- Baycrest Centre for Geriatric Care, Rotman Research Institute, Toronto, ON, Canada.,Department for Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Annette Schumann
- Baycrest Centre for Geriatric Care, Rotman Research Institute, Toronto, ON, Canada
| |
Collapse
|
8
|
Evoked Response Strength in Primary Auditory Cortex Predicts Performance in a Spectro-Spatial Discrimination Task in Rats. J Neurosci 2019; 39:6108-6121. [PMID: 31175214 DOI: 10.1523/jneurosci.0041-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/19/2019] [Accepted: 05/12/2019] [Indexed: 11/21/2022] Open
Abstract
The extent to which the primary auditory cortex (A1) participates in instructing animal behavior remains debated. Although multiple studies have shown A1 activity to correlate with animals' perceptual judgments (Jaramillo and Zador, 2011; Bizley et al., 2013; Rodgers and DeWeese, 2014), others have found no relationship between A1 responses and reported auditory percepts (Lemus et al., 2009; Dong et al., 2011). To address this ambiguity, we performed chronic recordings of evoked local field potentials (eLFPs) in A1 of head-fixed female rats performing a two-alternative forced-choice auditory discrimination task. Rats were presented with two interleaved sequences of pure tones from opposite sides and had to indicate the side from which the higher-frequency target stimulus was played. Animal performance closely correlated (r rm = 0.68) with the difference between the target and distractor eLFP responses: the more the target response exceeded the distractor response, the better the animals were at identifying the side of the target frequency. Reducing the evoked response of either frequency through stimulus-specific adaptation affected performance in the expected way: target localization accuracy was degraded when the target frequency was adapted and improved when the distractor frequency was adapted. Target frequency eLFPs were stronger on hit trials than on error trials. Our results suggest that the degree to which one stimulus stands out over others within A1 activity may determine its perceptual saliency for the animals and accordingly bias their behavioral choices.SIGNIFICANCE STATEMENT The brain must continuously calibrate the saliency of sensory percepts against their relevance to the current behavioral goal. The inability to ignore irrelevant distractors characterizes a spectrum of human attentional disorders. Meanwhile, the connection between the neural underpinnings of stimulus saliency and sensory decisions remains elusive. Here, we record local field potentials in the primary auditory cortex of rats engaged in auditory discrimination to investigate how the cortical representation of target and distractor stimuli impacts behavior. We find that the amplitude difference between target- and distractor-evoked activity predicts discrimination performance (r rm = 0.68). Specific adaptation of target or distractor shifts performance either below or above chance, respectively. It appears that recent auditory history profoundly influences stimulus saliency, biasing animals toward diametrically-opposed decisions.
Collapse
|
9
|
Foik AT, Ghazaryan A, Waleszczyk WJ. Oscillations in Spontaneous and Visually Evoked Neuronal Activity in the Superficial Layers of the Cat's Superior Colliculus. Front Syst Neurosci 2018; 12:60. [PMID: 30559653 PMCID: PMC6287086 DOI: 10.3389/fnsys.2018.00060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Oscillations are ubiquitous features of neuronal activity in sensory systems and are considered as a substrate for the integration of sensory information. Several studies have described oscillatory activity in the geniculate visual pathway, but little is known about this phenomenon in the extrageniculate visual pathway. We describe oscillations in evoked and background activity in the cat's superficial layers of the superior colliculus, a retinorecipient structure in the extrageniculate visual pathway. Extracellular single-unit activity was recorded during periods with and without visual stimulation under isoflurane anesthesia in the mixture of N2O/O2. Autocorrelation, FFT and renewal density analyses were used to detect and characterize oscillations in the neuronal activity. Oscillations were common in the background and stimulus-evoked activity. Frequency range of background oscillations spanned between 5 and 90 Hz. Oscillations in evoked activity were observed in about half of the cells and could appear in two forms —stimulus-phase-locked (10–100 Hz), and stimulus-phase-independent (8–100 Hz) oscillations. Stimulus-phase-independent and background oscillatory frequencies were very similar within activity of particular neurons suggesting that stimulus-phase-independent oscillations may be a form of enhanced “spontaneous” oscillations. Stimulus-phase-locked oscillations were present in responses to moving and flashing stimuli. In contrast to stimulus-phase-independent oscillations, the strength of stimulus-phase-locked oscillations was positively correlated with stimulus velocity and neuronal firing rate. Our results suggest that in the superficial layers of the superior colliculus stimulus-phase-independent oscillations may be generated by the same mechanism(s) that lie in the base of “spontaneous” oscillations, while stimulus-phase-locked oscillations may result from interactions within the intra-collicular network and/or from a phase reset of oscillations present in the background activity.
Collapse
Affiliation(s)
- Andrzej T Foik
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anaida Ghazaryan
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Wioletta J Waleszczyk
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
10
|
Noda T, Takahashi H. Behavioral evaluation of auditory stream segregation in rats. Neurosci Res 2018; 141:52-62. [PMID: 29580889 DOI: 10.1016/j.neures.2018.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
Perceptual organization of sound sequences into separate sound sources or streams is called auditory stream segregation. Neural substrates for this process in both the spectral and temporal domains remain to be elucidated. Despite abundant knowledge about their auditory physiology, behavioral evidence for auditory streaming in rodents is still limited. We provided behavioral evidence for auditory streaming in the go/no-go discrimination task, but not in the two-alternative choice task. In the go/no-go discrimination phase, rats were able to discriminate different rhythms corresponding to segregated or integrated tone sequences in both short inter-tone interval (ITI) and long ITI conditions. Nevertheless, performance was poorer in the long ITI group. In probe testing, which assessed the ability to discriminate one of the segregated tone sequences from ABA- tone sequences, the detection rate increased with the difference in frequency (ΔF) for short (100 ms), but not long (200 ms) ITIs. Our results indicate that auditory streaming in rats on both the spectral and temporal features in the ABA- tone paradigm is qualitatively analogous to that observed in human psychophysics studies. This suggests that rodents are a valuable model for investigating the neural substrates of auditory streaming.
Collapse
Affiliation(s)
- Takahiro Noda
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hirokazu Takahashi
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
11
|
Knyazeva S, Selezneva E, Gorkin A, Aggelopoulos NC, Brosch M. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences. Front Integr Neurosci 2018; 12:4. [PMID: 29440999 PMCID: PMC5797536 DOI: 10.3389/fnint.2018.00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/16/2018] [Indexed: 11/13/2022] Open
Abstract
This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman’s population separation model of auditory streaming.
Collapse
Affiliation(s)
- Stanislava Knyazeva
- Speziallabor Primatenneurobiologie, Leibniz-Institute für Neurobiologie, Magdeburg, Germany
| | - Elena Selezneva
- Speziallabor Primatenneurobiologie, Leibniz-Institute für Neurobiologie, Magdeburg, Germany
| | - Alexander Gorkin
- Speziallabor Primatenneurobiologie, Leibniz-Institute für Neurobiologie, Magdeburg, Germany.,Laboratory of Psychophysiology, Institute of Psychology, Moscow, Russia
| | | | - Michael Brosch
- Speziallabor Primatenneurobiologie, Leibniz-Institute für Neurobiologie, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
12
|
Noda T, Amemiya T, Shiramatsu TI, Takahashi H. Stimulus Phase Locking of Cortical Oscillations for Rhythmic Tone Sequences in Rats. Front Neural Circuits 2017; 11:2. [PMID: 28184188 PMCID: PMC5266736 DOI: 10.3389/fncir.2017.00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
Humans can rapidly detect regular patterns (i.e., within few cycles) without any special attention to the acoustic environment. This suggests that human sensory systems are equipped with a powerful mechanism for automatically predicting forthcoming stimuli to detect regularity. It has recently been hypothesized that the neural basis of sensory predictions exists for not only what happens (predictive coding) but also when a particular stimulus occurs (predictive timing). Here, we hypothesize that the phases of neural oscillations are critical in predictive timing, and these oscillations are modulated in a band-specific manner when acoustic patterns become predictable, i.e., regular. A high-density microelectrode array (10 × 10 within 4 × 4 mm2) was used to characterize spatial patterns of band-specific oscillations when a random-tone sequence was switched to a regular-tone sequence. Increasing the regularity of the tone sequence enhanced phase locking in a band-specific manner, notwithstanding the type of the regular sound pattern. Gamma-band phase locking increased immediately after the transition from random to regular sequences, while beta-band phase locking gradually evolved with time after the transition. The amplitude of the tone-evoked response, in contrast, increased with frequency separation with respect to the prior tone, suggesting that the evoked-response amplitude encodes sequence information on a local scale, i.e., the local order of tones. The phase locking modulation spread widely over the auditory cortex, while the amplitude modulation was confined around the activation foci. Thus, our data suggest that oscillatory phase plays a more important role than amplitude in the neuronal detection of tone sequence regularity, which is closely related to predictive timing. Furthermore, band-specific contributions may support recent theories that gamma oscillations encode bottom-up prediction errors, whereas beta oscillations are involved in top-down prediction.
Collapse
Affiliation(s)
- Takahiro Noda
- Research Center for Advanced Science and Technology, University of TokyoTokyo, Japan; Institute of Neuroscience, Technical University MunichMunich, Germany
| | - Tomoki Amemiya
- Graduate School of Information Science and Technology, University of Tokyo Tokyo, Japan
| | - Tomoyo I Shiramatsu
- Research Center for Advanced Science and Technology, University of Tokyo Tokyo, Japan
| | - Hirokazu Takahashi
- Research Center for Advanced Science and Technology, University of TokyoTokyo, Japan; Graduate School of Information Science and Technology, University of TokyoTokyo, Japan
| |
Collapse
|
13
|
Itatani N, Klump GM. Animal models for auditory streaming. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0112. [PMID: 28044022 DOI: 10.1098/rstb.2016.0112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2016] [Indexed: 11/12/2022] Open
Abstract
Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons' response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis.This article is part of the themed issue 'Auditory and visual scene analysis'.
Collapse
Affiliation(s)
- Naoya Itatani
- Cluster of Excellence Hearing4all, Animal Physiology and Behaviour Group, Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Georg M Klump
- Cluster of Excellence Hearing4all, Animal Physiology and Behaviour Group, Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
14
|
Shiramatsu TI, Noda T, Akutsu K, Takahashi H. Tonotopic and Field-Specific Representation of Long-Lasting Sustained Activity in Rat Auditory Cortex. Front Neural Circuits 2016; 10:59. [PMID: 27559309 PMCID: PMC4978722 DOI: 10.3389/fncir.2016.00059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/26/2016] [Indexed: 11/13/2022] Open
Abstract
Cortical information processing of the onset, offset, and continuous plateau of an acoustic stimulus should play an important role in acoustic object perception. To date, transient activities responding to the onset and offset of a sound have been well investigated and cortical subfields and topographic representation in these subfields, such as place code of sound frequency, have been well characterized. However, whether these cortical subfields with tonotopic representation are inherited in the sustained activities that follow transient activities and persist during the presentation of a long-lasting stimulus remains unknown, because sustained activities do not exhibit distinct, reproducible, and time-locked responses in their amplitude to be characterized by grand averaging. To address this gap in understanding, we attempted to decode sound information from densely mapped sustained activities in the rat auditory cortex using a sparse parameter estimation method called sparse logistic regression (SLR), and investigated whether and how these activities represent sound information. A microelectrode array with a grid of 10 × 10 recording sites within an area of 4.0 mm × 4.0 mm was implanted in the fourth layer of the auditory cortex in rats under isoflurane anesthesia. Sustained activities in response to long-lasting constant pure tones were recorded. SLR then was applied to discriminate the sound-induced band-specific power or phase-locking value from those of spontaneous activities. The highest decoding performance was achieved in the high-gamma band, indicating that cortical inhibitory interneurons may contribute to the sparse tonotopic representation in sustained activities by mediating synchronous activities. The estimated parameter in the SLR decoding revealed that the informative recording site had a characteristic frequency close to the test frequency. In addition, decoding of the four test frequencies demonstrated that the decoding performance of the SLR deteriorated when the test frequencies were close, supporting the hypothesis that the sustained activities were organized in a tonotopic manner. Finally, unlike transient activities, sustained activities were more informative in the belt than in the core region, indicating that higher-order auditory areas predominate over lower-order areas during sustained activities. Taken together, our results indicate that the auditory cortex processes sound information tonotopically and in a hierarchical manner.
Collapse
Affiliation(s)
- Tomoyo I Shiramatsu
- Research Center for Advanced Science and Technology, The University of Tokyo Tokyo, Japan
| | - Takahiro Noda
- Research Center for Advanced Science and Technology, The University of TokyoTokyo, Japan; Technical University of MunichMunich, Germany
| | - Kan Akutsu
- Graduate School of Information Science and Technology, The University of Tokyo Tokyo, Japan
| | - Hirokazu Takahashi
- Research Center for Advanced Science and Technology, The University of Tokyo Tokyo, Japan
| |
Collapse
|
15
|
Microelectrode mapping of tonotopic, laminar, and field-specific organization of thalamo-cortical pathway in rat. Neuroscience 2016; 332:38-52. [PMID: 27329334 DOI: 10.1016/j.neuroscience.2016.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/17/2016] [Accepted: 06/13/2016] [Indexed: 11/20/2022]
Abstract
The rat has long been considered an important model system for studying neural mechanisms of auditory perception and learning, and particularly mechanisms involving auditory thalamo-cortical processing. However, the functional topography of the auditory thalamus, or medial geniculate body (MGB) has not yet been fully characterized in the rat, and the anatomically-defined features of field-specific, layer-specific and tonotopic thalamo-cortical projections have never been confirmed electrophysiologically. In the present study, we have established a novel technique for recording simultaneously from a surface microelectrode array on the auditory cortex, and a depth electrode array across auditory cortical layers and within the MGB, and characterized the rat MGB and thalamo-cortical projections under isoflurane anesthesia. We revealed that the ventral division of the MGB (MGv) exhibited a low-high-low CF gradient and long-short-long latency gradient along the dorsolateral-to-ventromedial axis, suggesting that the rat MGv is divided into two subdivisions. We also demonstrated that microstimulation in the MGv elicited cortical activation in layer-specific, region-specific and tonotopically organized manners. To our knowledge, the present study has provided the first and most compelling electrophysiological confirmation of the anatomical organization of the primary thalamo-cortical pathway in the rat, setting the groundwork for further investigation.
Collapse
|
16
|
Noda T, Kanzaki R, Takahashi H. Correction: Stimulus Phase Locking of Cortical Oscillation for Auditory Stream Segregation in Rats. PLoS One 2015; 10:e0146206. [PMID: 26714265 PMCID: PMC4699906 DOI: 10.1371/journal.pone.0146206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Kingyon J, Behroozmand R, Kelley R, Oya H, Kawasaki H, Narayanan NS, Greenlee JDW. High-gamma band fronto-temporal coherence as a measure of functional connectivity in speech motor control. Neuroscience 2015; 305:15-25. [PMID: 26232713 DOI: 10.1016/j.neuroscience.2015.07.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/13/2015] [Accepted: 07/25/2015] [Indexed: 11/19/2022]
Abstract
The neural basis of human speech is unclear. Intracranial electrophysiological recordings have revealed that high-gamma band oscillations (70-150Hz) are observed in the frontal lobe during speech production and in the temporal lobe during speech perception. Here, we tested the hypothesis that the frontal and temporal brain regions had high-gamma coherence during speech. We recorded electrocorticography (ECoG) from the frontal and temporal cortices of five humans who underwent surgery for medically intractable epilepsy, and studied coherence between the frontal and temporal cortex during vocalization and playback of vocalization. We report two novel results. First, we observed high-gamma band as well as theta (4-8Hz) coherence between frontal and temporal lobes. Second, both high-gamma and theta coherence were stronger when subjects were actively vocalizing as compared to playback of the same vocalizations. These findings provide evidence that coupling between sensory-motor networks measured by high-gamma coherence plays a key role in feedback-based monitoring and control of vocal output for human vocalization.
Collapse
Affiliation(s)
- J Kingyon
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - R Behroozmand
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States; Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States
| | - R Kelley
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| | - H Oya
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| | - H Kawasaki
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| | - N S Narayanan
- Department of Neurology, University of Iowa, Iowa City, IA, United States; Aging Mind and Brain Initiative, Carver College of Medicine, University of Iowa, Iowa City, IA, United States.
| | - J D W Greenlee
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
18
|
Noda T, Takahashi H. Anesthetic effects of isoflurane on the tonotopic map and neuronal population activity in the rat auditory cortex. Eur J Neurosci 2015; 42:2298-311. [PMID: 26118739 DOI: 10.1111/ejn.13007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 12/01/2022]
Abstract
Since its discovery nearly four decades ago, sequential microelectrode mapping using hundreds of recording sites has been able to reveal a precise tonotopic organization of the auditory cortex. Despite concerns regarding the effects that anesthesia might have on neuronal responses to tones, anesthesia was essential for these experiments because such dense mapping was elaborate and time-consuming. Here, taking an 'all-at-once' approach, we investigated how isoflurane modifies spatiotemporal activities by using a dense microelectrode array. The array covered the entire auditory cortex in rats, including the core and belt cortices. By comparing neuronal activity in the awake state with activity under isoflurane anesthesia, we made four observations. First, isoflurane anesthesia did not modify the tonotopic topography within the auditory cortex. Second, in terms of general response properties, isoflurane anesthesia decreased the number of active single units and increased their response onset latency. Third, in terms of tuning properties, isoflurane anesthesia shifted the response threshold without changing the shape of the frequency response area and decreased the response quality. Fourth, in terms of population activities, isoflurane anesthesia increased the noise correlations in discharges and phase synchrony in local field potential (LFP) oscillations, suggesting that the anesthesia made neuronal activities redundant at both single-unit and LFP levels. Thus, while isoflurane anesthesia had little effect on the tonotopic topography, its profound effects on neuronal activities decreased the encoding capacity of the auditory cortex.
Collapse
Affiliation(s)
- Takahiro Noda
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hirokazu Takahashi
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8904, Japan.,PRESTO, JST, Kawaguchi, Saitama, Japan
| |
Collapse
|
19
|
Liu AS, Tsunada J, Gold JI, Cohen YE. Temporal Integration of Auditory Information Is Invariant to Temporal Grouping Cues. eNeuro 2015; 2:ENEURO.0077-14.2015. [PMID: 26464975 PMCID: PMC4596088 DOI: 10.1523/eneuro.0077-14.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/01/2015] [Accepted: 03/30/2015] [Indexed: 11/29/2022] Open
Abstract
Auditory perception depends on the temporal structure of incoming acoustic stimuli. Here, we examined whether a temporal manipulation that affects the perceptual grouping also affects the time dependence of decisions regarding those stimuli. We designed a novel discrimination task that required human listeners to decide whether a sequence of tone bursts was increasing or decreasing in frequency. We manipulated temporal perceptual-grouping cues by changing the time interval between the tone bursts, which led to listeners hearing the sequences as a single sound for short intervals or discrete sounds for longer intervals. Despite these strong perceptual differences, this manipulation did not affect the efficiency of how auditory information was integrated over time to form a decision. Instead, the grouping manipulation affected subjects' speed-accuracy trade-offs. These results indicate that the temporal dynamics of evidence accumulation for auditory perceptual decisions can be invariant to manipulations that affect the perceptual grouping of the evidence.
Collapse
Affiliation(s)
| | - Joji Tsunada
- Department of Otorhinolaryngology, Perelman School of Medicine
| | - Joshua I. Gold
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yale E. Cohen
- Department of Otorhinolaryngology, Perelman School of Medicine
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|