1
|
Morin PA, Martien KK, Lang AR, Hancock-Hanser BL, Pease VL, Robertson KM, Sattler M, Slikas E, Rosel PE, Baker CS, Taylor BL, Archer FI. Guidelines and quantitative standards for improved cetacean taxonomy using full mitochondrial genomes. J Hered 2023; 114:612-624. [PMID: 37647537 DOI: 10.1093/jhered/esad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023] Open
Abstract
In many organisms, especially those of conservation concern, traditional lines of evidence for taxonomic delineation, such as morphological data, are often difficult to obtain. In these cases, genetic data are often the only source of information available for taxonomic studies. In particular, population surveys of mitochondrial genomes offer increased resolution and precision in support of taxonomic decisions relative to conventional use of the control region or other gene fragments of the mitochondrial genome. To improve quantitative guidelines for taxonomic decisions in cetaceans, we build on a previous effort targeting the control region and evaluate, for whole mitogenome sequences, a suite of divergence and diagnosability estimates for pairs of recognized cetacean populations, subspecies, and species. From this overview, we recommend new guidelines based on complete mitogenomes, combined with other types of evidence for isolation and divergence, which will improve resolution for taxonomic decisions, especially in the face of small sample sizes or low levels of genetic diversity. We further use simulated data to assist interpretations of divergence in the context of varying forms of historical demography, culture, and ecology.
Collapse
Affiliation(s)
- Phillip A Morin
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, United States
| | - Karen K Martien
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, United States
| | - Aimee R Lang
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, United States
| | - Brittany L Hancock-Hanser
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, United States
| | - Victoria L Pease
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, United States
| | - Kelly M Robertson
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, United States
| | - Maya Sattler
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, United States
| | - Elizabeth Slikas
- School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
| | - Patricia E Rosel
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, National Marine Fisheries Service, NOAA, Lafayette, LA, United States
| | - C Scott Baker
- Marine Mammal Institute, Oregon State University, Newport, OR, United States
| | - Barbara L Taylor
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, United States
| | - Frederick I Archer
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, United States
| |
Collapse
|
2
|
Powell DM. Losing the forest for the tree? On the wisdom of subpopulation management. Zoo Biol 2023; 42:591-604. [PMID: 37218348 DOI: 10.1002/zoo.21776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/24/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023]
Abstract
Animal habitats are changing around the world in many ways, presenting challenges to the survival of species. Zoo animal populations are also challenged by small population sizes and limited genetic diversity. Some ex situ populations are managed as subpopulations based on presumed subspecies or geographic locality and related concerns over genetic purity or taxonomic integrity. However, these decisions can accelerate the loss of genetic diversity and increase the likelihood of population extinction. Here I challenge the wisdom of subpopulation management, pointing out significant concerns in the literature with delineation of species, subspecies, and evolutionarily significant units. I also review literature demonstrating the value of gene flow for preserving adaptive potential, the often-misunderstood role of hybridization in evolution, and the likely overstated concerns about outbreeding depression, and preservation of local adaptations. I argue that the most effective way to manage animal populations for the long term be they in human care, in the wild, or if a captive population is being managed for reintroduction, is to manage for maximum genetic diversity rather than managing subpopulations focusing on taxonomic integrity, genetic purity, or geographic locale because selection in the future, rather than the past, will determine what genotypes and phenotypes are the most fit. Several case studies are presented to challenge the wisdom of subpopulation management and stimulate thinking about the preservation of genomes rather than species, subspecies, or lineages because those units evolved in habitats that are likely very different from those habitats today and in the future.
Collapse
Affiliation(s)
- David M Powell
- Department of Reproductive & Behavioral Sciences, Saint Louis Zoo, Saint Louis, Missouri, USA
| |
Collapse
|
3
|
Gaertner K, Michell C, Tapanainen R, Goffart S, Saari S, Soininmäki M, Dufour E, Pohjoismäki JLO. Molecular phenotyping uncovers differences in basic housekeeping functions among closely related species of hares (
Lepus
spp., Lagomorpha: Leporidae). Mol Ecol 2022. [PMID: 36320183 DOI: 10.1111/mec.16755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022]
Abstract
Speciation is a fundamental evolutionary process, which results in genetic differentiation of populations and manifests as discrete morphological, physiological and behavioural differences. Each species has travelled its own evolutionary trajectory, influenced by random drift and driven by various types of natural selection, making the association of genetic differences between the species with the phenotypic differences extremely complex to dissect. In the present study, we have used an in vitro model to analyse in depth the genetic and gene regulation differences between fibroblasts of two closely related mammals, the arctic/subarctic mountain hare (Lepus timidus Linnaeus) and the temperate steppe-climate adapted brown hare (Lepus europaeus Pallas). We discovered the existence of a species-specific expression pattern of 1623 genes, manifesting in differences in cell growth, cell cycle control, respiration, and metabolism. Interspecific differences in the housekeeping functions of fibroblast cells suggest that speciation acts on fundamental cellular processes, even in these two interfertile species. Our results help to understand the molecular constituents of a species difference on a cellular level, which could contribute to the maintenance of the species boundary.
Collapse
Affiliation(s)
- Kateryna Gaertner
- Mitochondrial Bioenergetics and Metabolism, Faculty of Medicine and Health Technology FI‐33014 Tampere University Tampere Finland
| | - Craig Michell
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Riikka Tapanainen
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| | - Sina Saari
- Mitochondrial Bioenergetics and Metabolism, Faculty of Medicine and Health Technology FI‐33014 Tampere University Tampere Finland
| | - Manu Soininmäki
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| | - Eric Dufour
- Mitochondrial Bioenergetics and Metabolism, Faculty of Medicine and Health Technology FI‐33014 Tampere University Tampere Finland
| | - Jaakko L. O. Pohjoismäki
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| |
Collapse
|
4
|
Faria DM, Steel D, Baker CS, da Silva JM, de Meirelles ACO, Souto LRA, Siciliano S, Barbosa LA, Secchi E, Di Tullio JC, de Oliveira LR, Ott PH, Farro APC. Mitochondrial diversity and inter-specific phylogeny among dolphins of the genus Stenella in the Southwest Atlantic Ocean. PLoS One 2022; 17:e0270690. [PMID: 35834534 PMCID: PMC9282552 DOI: 10.1371/journal.pone.0270690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
The genus Stenella is comprised of five species occurring in all oceans. Despite its wide distribution, genetic diversity information on these species is still scarce especially in the Southwest Atlantic Ocean. Some features of this genus can enhance opportunities for potential introgressive hybridization, e.g. sympatric distibution along the Brazilian coast, mixed known associations among species, karyotype uniformity and genome permeability. In this study we analyzed three genes of the mitochondrial genome to investigate the genetic diversity and occurrence of genetic mixture among eighty specimens of Stenella. All species exhibited moderate to high levels of genetic diversity (h = 0.833 to h = 1.000 and π = 0.006 to π = 0.015). Specimens of S. longirostris, S. attenuata and S. frontalis were clustered into differentiated haplogroups, in contrast, haplotypes of S. coeruleoalba and S. clymene were clustered together. We detected phylogenetic structure of mixed clades for S. clymene and S. coeruleoalba specimens, in the Southwest Atlantic Ocean, and also between S. frontalis and S. attenuata in the Northeast Atlantic Ocean, and between S. frontalis and S. longirostris in the Northwest Atlantic Ocean. These specimes were morphologically identified as one species but exhibited the maternal lineage of another species, by mitochondrial DNA. Our results demonstrate that ongoing gene flow is occurring among species of the genus Stenella reinforcing that this process could be one of the reasons for the confusing taxonomy and difficulties in elucidating phylogenetic relationships within this group.
Collapse
Affiliation(s)
- Drienne Messa Faria
- Laboratório de Genética e Conservação Animal, Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo (UFES), São Mateus, ES, Brazil
- * E-mail:
| | - Debbie Steel
- Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Newport, OR, United States of America
| | - C. Scott Baker
- Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Newport, OR, United States of America
| | - José Martins da Silva
- Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), Fernando de Noronha, PE, Brazil
| | | | | | - Salvatore Siciliano
- Departamento de Ciências Biológicas, Escola Nacional de Saúde Pública/Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | - Eduardo Secchi
- Laboratório de Ecologia e Conservação da Megafauna Marinha, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Juliana Couto Di Tullio
- Laboratório de Ecologia e Conservação da Megafauna Marinha, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil
| | | | - Paulo Henrique Ott
- Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul (GEMARS), Torres, RS, Brazil
- Universidade Estadual do Rio Grande do Sul (Uergs), Osório, RS, Brazil
| | - Ana Paula Cazerta Farro
- Laboratório de Genética e Conservação Animal, Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo (UFES), São Mateus, ES, Brazil
| |
Collapse
|
5
|
Fioravanti T, Maio N, Latini L, Splendiani A, Guarino FM, Mezzasalma M, Petraccioli A, Cozzi B, Mazzariol S, Centelleghe C, Sciancalepore G, Pietroluongo G, Podestà M, Caputo Barucchi V. Nothing is as it seems: genetic analyses on stranded fin whales unveil the presence of a fin-blue whale hybrid in the Mediterranean Sea (Balaenopteridae). THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2063426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- T. Fioravanti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - N. Maio
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia 26, 80126, Napoli, Italy
| | - L. Latini
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - A. Splendiani
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - F. M. Guarino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia 26, 80126, Napoli, Italy
| | - M. Mezzasalma
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia 26, 80126, Napoli, Italy
| | - A. Petraccioli
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia 26, 80126, Napoli, Italy
| | - B. Cozzi
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Viale dell’ Università 16, 35020, Legnaro (PD), Italy
| | - S. Mazzariol
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Viale dell’ Università 16, 35020, Legnaro (PD), Italy
| | - C. Centelleghe
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Viale dell’ Università 16, 35020, Legnaro (PD), Italy
| | - G. Sciancalepore
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Viale dell’ Università 16, 35020, Legnaro (PD), Italy
| | - G. Pietroluongo
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Viale dell’ Università 16, 35020, Legnaro (PD), Italy
| | - M. Podestà
- Sezione di Zoologia dei Vertebrati, Museo Civico di Storia Naturale di Milano, Corso Venezia 55, 2012, Milano, Italy
| | - V. Caputo Barucchi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
6
|
|
7
|
Faria R, Johannesson K, Stankowski S. Speciation in marine environments: Diving under the surface. J Evol Biol 2021; 34:4-15. [PMID: 33460491 DOI: 10.1111/jeb.13756] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/28/2022]
Abstract
Marine environments are inhabited by a broad representation of the tree of life, yet our understanding of speciation in marine ecosystems is extremely limited compared with terrestrial and freshwater environments. Developing a more comprehensive picture of speciation in marine environments requires that we 'dive under the surface' by studying a wider range of taxa and ecosystems is necessary for a more comprehensive picture of speciation. Although studying marine evolutionary processes is often challenging, recent technological advances in different fields, from maritime engineering to genomics, are making it increasingly possible to study speciation of marine life forms across diverse ecosystems and taxa. Motivated by recent research in the field, including the 14 contributions in this issue, we highlight and discuss six axes of research that we think will deepen our understanding of speciation in the marine realm: (a) study a broader range of marine environments and organisms; (b) identify the reproductive barriers driving speciation between marine taxa; (c) understand the role of different genomic architectures underlying reproductive isolation; (d) infer the evolutionary history of divergence using model-based approaches; (e) study patterns of hybridization and introgression between marine taxa; and (f) implement highly interdisciplinary, collaborative research programmes. In outlining these goals, we hope to inspire researchers to continue filling this critical knowledge gap surrounding the origins of marine biodiversity.
Collapse
Affiliation(s)
- Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Kerstin Johannesson
- Department of Marine Sciences-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Sean Stankowski
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.,IST Austria, Klosterneuburg, Austria
| |
Collapse
|
8
|
Lavretsky P, Wilson RE, Talbot SL, Sonsthagen SA. Phylogenomics reveals ancient and contemporary gene flow contributing to the evolutionary history of sea ducks (Tribe Mergini). Mol Phylogenet Evol 2021; 161:107164. [PMID: 33798675 DOI: 10.1016/j.ympev.2021.107164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/05/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022]
Abstract
Insight into complex evolutionary histories continues to build through broad comparative phylogenomic and population genomic studies. In particular, there is a need to understand the extent and scale that gene flow contributes to standing genomic diversity and the role introgression has played in evolutionary processes such as hybrid speciation. Here, we investigate the evolutionary history of the Mergini tribe (sea ducks) by coupling multi-species comparisons with phylogenomic analyses of thousands of nuclear ddRAD-seq loci, including Z-sex chromosome and autosomal linked loci, and the mitogenome assayed across all extant sea duck species in North America. All sea duck species are strongly structured across all sampled marker types (pair-wise species ΦST > 0.2), with clear genetic assignments of individuals to their respective species, and phylogenetic relationships recapitulate known relationships. Despite strong species integrity, we identify at least 18 putative hybrids; with all but one being late generational backcrosses. Most interesting, we provide the first evidence that an ancestral gene flow event between long-tailed ducks (Clangula hyemalis) and true Eiders (Somateria spp.) not only moved genetic material into the former species, but likely generated a novel species - the Steller's eider (Polysticta stelleri) - via hybrid speciation. Despite generally low contemporary levels of gene flow, we conclude that hybridization has and continues to be an important process that shifts novel genetic variation between species within the tribe Mergini. Finally, we outline methods that permit researchers to contrast genomic patterns of contemporary versus ancestral gene flow when attempting to reconstruct potentially complex evolutionary histories.
Collapse
Affiliation(s)
- Philip Lavretsky
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79668, USA; US Geological Survey, Alaska Science Center, 4210 University Dr., Anchorage, AK 99508, USA.
| | - Robert E Wilson
- US Geological Survey, Alaska Science Center, 4210 University Dr., Anchorage, AK 99508, USA
| | - Sandra L Talbot
- US Geological Survey, Alaska Science Center, 4210 University Dr., Anchorage, AK 99508, USA
| | - Sarah A Sonsthagen
- US Geological Survey, Alaska Science Center, 4210 University Dr., Anchorage, AK 99508, USA
| |
Collapse
|
9
|
McGowen MR, Tsagkogeorga G, Álvarez-Carretero S, Dos Reis M, Struebig M, Deaville R, Jepson PD, Jarman S, Polanowski A, Morin PA, Rossiter SJ. Phylogenomic Resolution of the Cetacean Tree of Life Using Target Sequence Capture. Syst Biol 2020; 69:479-501. [PMID: 31633766 PMCID: PMC7164366 DOI: 10.1093/sysbio/syz068] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022] Open
Abstract
The evolution of cetaceans, from their early transition to an aquatic lifestyle to their subsequent diversification, has been the subject of numerous studies. However, although the higher-level relationships among cetacean families have been largely settled, several aspects of the systematics within these groups remain unresolved. Problematic clades include the oceanic dolphins (37 spp.), which have experienced a recent rapid radiation, and the beaked whales (22 spp.), which have not been investigated in detail using nuclear loci. The combined application of high-throughput sequencing with techniques that target specific genomic sequences provide a powerful means of rapidly generating large volumes of orthologous sequence data for use in phylogenomic studies. To elucidate the phylogenetic relationships within the Cetacea, we combined sequence capture with Illumina sequencing to generate data for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\sim $\end{document}3200 protein-coding genes for 68 cetacean species and their close relatives including the pygmy hippopotamus. By combining data from \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$>$\end{document}38,000 exons with existing sequences from 11 cetaceans and seven outgroup taxa, we produced the first comprehensive comparative genomic data set for cetaceans, spanning 6,527,596 aligned base pairs (bp) and 89 taxa. Phylogenetic trees reconstructed with maximum likelihood and Bayesian inference of concatenated loci, as well as with coalescence analyses of individual gene trees, produced mostly concordant and well-supported trees. Our results completely resolve the relationships among beaked whales as well as the contentious relationships among oceanic dolphins, especially the problematic subfamily Delphinidae. We carried out Bayesian estimation of species divergence times using MCMCTree and compared our complete data set to a subset of clocklike genes. Analyses using the complete data set consistently showed less variance in divergence times than the reduced data set. In addition, integration of new fossils (e.g., Mystacodon selenensis) indicates that the diversification of Crown Cetacea began before the Late Eocene and the divergence of Crown Delphinidae as early as the Middle Miocene. [Cetaceans; phylogenomics; Delphinidae; Ziphiidae; dolphins; whales.]
Collapse
Affiliation(s)
- Michael R McGowen
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.,Department of Vertebrate Zoology, Smithsonian Museum of Natural History, 10th & Constitution Ave. NW, Washington DC 20560, USA
| | - Georgia Tsagkogeorga
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Sandra Álvarez-Carretero
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mario Dos Reis
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Monika Struebig
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Robert Deaville
- Institute of Zoology, Zoological Society of London, Outer Circle, London NW1 4RY, UK
| | - Paul D Jepson
- Institute of Zoology, Zoological Society of London, Outer Circle, London NW1 4RY, UK
| | - Simon Jarman
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Perth WA 6009, Australia
| | - Andrea Polanowski
- Australian Antarctic Division, 203 Channel Highway, Kingston TAS 7050, Australia
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Dr., La Jolla CA 92037 USA
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
10
|
Hinojosa JC, Koubínová D, Dincă V, Hernández-Roldán J, Munguira ML, García-Barros E, Vila M, Alvarez N, Mutanen M, Vila R. Rapid colour shift by reproductive character displacement in Cupido butterflies. Mol Ecol 2020; 29:4942-4955. [PMID: 33051915 DOI: 10.1111/mec.15682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
Abstract
Reproductive character displacement occurs when competition for successful breeding imposes a divergent selection on the interacting species, causing a divergence of reproductive traits. Here, we show that a disputed butterfly taxon is actually a case of male wing colour shift, apparently produced by reproductive character displacement. Using double digest restriction-site associated DNA sequencing and mitochondrial DNA sequencing we studied four butterfly taxa of the subgenus Cupido (Lepidoptera: Lycaenidae): Cupido minimus and the taxon carswelli, both characterized by brown males and females, plus C. lorquinii and C. osiris, both with blue males and brown females. Unexpectedly, taxa carswelli and C. lorquinii were close to indistinguishable based on our genomic and mitochondrial data, despite displaying strikingly different male coloration. In addition, we report and analysed a brown male within the C. lorquinii range, which demonstrates that the brown morph occurs at very low frequency in C. lorquinii. Such evidence strongly suggests that carswelli is conspecific with C. lorquinii and represents populations with a fixed male brown colour morph. Considering that these brown populations occur in sympatry with or very close to the blue C. osiris, and that the blue C. lorquinii populations never do, we propose that the taxon carswelli could have lost the blue colour due to reproductive character displacement with C. osiris. Since male colour is important for conspecific recognition during courtship, we hypothesize that the observed colour shift may eventually trigger incipient speciation between blue and brown populations. Male colour seems to be an evolutionarily labile character in the Polyommatinae, and the mechanism described here might be at work in the wide diversification of this subfamily of butterflies.
Collapse
Affiliation(s)
| | | | - Vlad Dincă
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Juan Hernández-Roldán
- Departamento de Biología - Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel L Munguira
- Departamento de Biología - Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Enrique García-Barros
- Departamento de Biología - Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Vila
- GIBE Research Group, Universidade da Coruña, A Coruña, Spain
| | | | - Marko Mutanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| |
Collapse
|
11
|
Lukhtanov VA, Dincă V, Friberg M, Vila R, Wiklund C. Incomplete Sterility of Chromosomal Hybrids: Implications for Karyotype Evolution and Homoploid Hybrid Speciation. Front Genet 2020; 11:583827. [PMID: 33193715 PMCID: PMC7594530 DOI: 10.3389/fgene.2020.583827] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022] Open
Abstract
Heterozygotes for major chromosomal rearrangements such as fusions and fissions are expected to display a high level of sterility due to problems during meiosis. However, some species, especially plants and animals with holocentric chromosomes, are known to tolerate chromosomal heterozygosity even for multiple rearrangements. Here, we studied male meiotic chromosome behavior in four hybrid generations (F1–F4) between two chromosomal races of the Wood White butterfly Leptidea sinapis differentiated by at least 24 chromosomal fusions/fissions. Previous work showed that these hybrids were fertile, although their fertility was reduced as compared to crosses within chromosomal races. We demonstrate that (i) F1 hybrids are highly heterozygous with nearly all chromosomes participating in the formation of trivalents at the first meiotic division, and (ii) that from F1 to F4 the number of trivalents decreases and the number of bivalents increases. We argue that the observed process of chromosome sorting would, if continued, result in a new homozygous chromosomal race, i.e., in a new karyotype with intermediate chromosome number and, possibly, in a new incipient homoploid hybrid species. We also discuss the segregational model of karyotype evolution and the chromosomal model of homoploid hybrid speciation.
Collapse
Affiliation(s)
- Vladimir A Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Saint Petersburg, Russia
| | - Vlad Dincă
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland.,Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Magne Friberg
- Biodiversity Unit, Department of Biology, Lund University, Lund, Sweden
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | | |
Collapse
|
12
|
Characterization of 25 new microsatellite markers for the fin whale (Balaenoptera physalus) and cross-species amplification in other cetaceans. Mol Biol Rep 2020; 47:6983-6996. [PMID: 32893317 DOI: 10.1007/s11033-020-05757-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Cetaceans are large mammals widely distributed on Earth. The fin whale, Balaenoptera physalus, is the second largest living animal. In the 20th century, commercial whaling reduced its global population by 70%, and in the Mediterranean Sea not only was their overall population depleted but the migration between the Mediterranean Sea and the Atlantic Ocean was reduced. Previous genetic studies identified isolation between these two regions, with a limited gene-flow between these adjacent populations based on nuclear and mitochondrial markers. However, only limited information exists for the Mediterranean population as genetic diversity and abundance trends are still unknown. In this study, 39 highly polymorphic microsatellite markers were tested, including 25 markers developed de novo together with 14 markers previously published. An average allelic diversity of 8.3 alleles per locus was reported, ranging from 3 to 15 alleles per locus, for B. physalus. Expected heterozygosity was variable among loci and ranged from 0.34 to 0.91. Only two markers in the new set were significantly deviant from the Hardy Weinberg equilibrium. Cross-species amplification was tested in four other cetacean species. A total of 27 markers were successfully amplified in the four species (Balaenoptera acutorostrata, Megaptera novaeangliae, Physeter macrocephalus and Globicephala melas). A multivariate analysis on the multilocus genotypes successfully discriminated the five species. This new set of microsatellite markers will not only provide a useful tool to identify and understand the genetic diversity and the evolution of the B. physalus population, but it will also be relevant for other cetacean species, and will allow further parentage analyses. Eventually, this new set of microsatellite markers will provide critical data that will shed light on important biological data within a conservation perspective.
Collapse
|
13
|
Moura AE, Shreves K, Pilot M, Andrews KR, Moore DM, Kishida T, Möller L, Natoli A, Gaspari S, McGowen M, Chen I, Gray H, Gore M, Culloch RM, Kiani MS, Willson MS, Bulushi A, Collins T, Baldwin R, Willson A, Minton G, Ponnampalam L, Hoelzel AR. Phylogenomics of the genus Tursiops and closely related Delphininae reveals extensive reticulation among lineages and provides inference about eco-evolutionary drivers. Mol Phylogenet Evol 2020; 146:106756. [DOI: 10.1016/j.ympev.2020.106756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/02/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022]
|
14
|
Spinelli LG, Randi CB, Mari RB, Angrimani DSR, Carvalho VL, Meirelles ACO, Vergara‐Parente JE, Guimarães JP. Morphological description of the male reproductive tract of the Clymene dolphin (
Stenella clymene
, Gray, 1850). ACTA ZOOL-STOCKHOLM 2020. [DOI: 10.1111/azo.12334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lucas G. Spinelli
- Laboratory of Animal Morphophysiology Institute of Biosciences‐Campus do Litoral Paulista São Paulo State University "Júlio de Mesquita Filho" (UNESP) São Vicente Brazil
| | - Caroline B. Randi
- Laboratory of Animal Morphophysiology Institute of Biosciences‐Campus do Litoral Paulista São Paulo State University "Júlio de Mesquita Filho" (UNESP) São Vicente Brazil
| | - Renata B. Mari
- Laboratory of Animal Morphophysiology Institute of Biosciences‐Campus do Litoral Paulista São Paulo State University "Júlio de Mesquita Filho" (UNESP) São Vicente Brazil
| | - Daniel S. R. Angrimani
- Department of Animal Reproduction School of Veterinary Medicine and Animal Science University of São Paulo São Paulo Brazil
| | - Vitor Luz Carvalho
- Centro de Reabilitação de Mamíferos Marinhos Aquatic Ecosystems Research and Preservation Association (AQUASIS) Caucaia Brazil
| | - Ana Carolina Oliveira Meirelles
- Centro de Reabilitação de Mamíferos Marinhos Aquatic Ecosystems Research and Preservation Association (AQUASIS) Caucaia Brazil
| | | | - Juliana P. Guimarães
- Laboratory of Marine and Coastal Organisms Biology Santa Cecilia University (UNISANTA) Santos Brazil
| |
Collapse
|
15
|
Lopez-Oceja A, Lekube X, Ruiz L, Mujika-Alustiza JA, De Pancorbo MM. CYT B L15601 and H15748 primers for genetic identification of cetacean species. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.10.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Springer MS, Foley NM, Brady PL, Gatesy J, Murphy WJ. Evolutionary Models for the Diversification of Placental Mammals Across the KPg Boundary. Front Genet 2019; 10:1241. [PMID: 31850081 PMCID: PMC6896846 DOI: 10.3389/fgene.2019.01241] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/08/2019] [Indexed: 01/29/2023] Open
Abstract
Deciphering the timing of the placental mammal radiation is a longstanding problem in evolutionary biology, but consensus on the tempo and mode of placental diversification remains elusive. Nevertheless, an accurate timetree is essential for understanding the role of important events in Earth history (e.g., Cretaceous Terrestrial Revolution, KPg mass extinction) in promoting the taxonomic and ecomorphological diversification of Placentalia. Archibald and Deutschman described three competing models for the diversification of placental mammals, which are the Explosive, Long Fuse, and Short Fuse Models. More recently, the Soft Explosive Model and Trans-KPg Model have emerged as additional hypotheses for the placental radiation. Here, we review molecular and paleontological evidence for each of these five models including the identification of general problems that can negatively impact divergence time estimates. The Long Fuse Model has received more support from relaxed clock studies than any of the other models, but this model is not supported by morphological cladistic studies that position Cretaceous eutherians outside of crown Placentalia. At the same time, morphological cladistics has a poor track record of reconstructing higher-level relationships among the orders of placental mammals including the results of new pseudoextinction analyses that we performed on the largest available morphological data set for mammals (4,541 characters). We also examine the strengths and weaknesses of different timetree methods (node dating, tip dating, and fossilized birth-death dating) that may now be applied to estimate the timing of the placental radiation. While new methods such as tip dating are promising, they also have problems that must be addressed if these methods are to effectively discriminate among competing hypotheses for placental diversification. Finally, we discuss the complexities of timetree estimation when the signal of speciation times is impacted by incomplete lineage sorting (ILS) and hybridization. Not accounting for ILS results in dates that are older than speciation events. Hybridization, in turn, can result in dates than are younger or older than speciation dates. Disregarding this potential variation in "gene" history across the genome can distort phylogenetic branch lengths and divergence estimates when multiple unlinked genomic loci are combined together in a timetree analysis.
Collapse
Affiliation(s)
- Mark S. Springer
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, Riverside, CA, United States
| | - Nicole M. Foley
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Peggy L. Brady
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, Riverside, CA, United States
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, United States
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
17
|
Maxwell SJ, Bordon AV, Rymer TL, Congdon BC. The birth of a species and the validity of hybrid nomenclature demonstrated with a revision of hybrid taxa within Strombidae (Neostromboidae). P BIOL SOC WASH 2019. [DOI: 10.2988/19-00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Stephen J. Maxwell
- (SJM, TLR, BCC) College of Science and Engineering, James Cook University, Cairns Qld 4870 Australia
| | - Anton V. Bordon
- (AVB) Snezhnaya, 17-2-459, Moscow, 129323, The Russian Federation
| | - Tasmin L. Rymer
- (SJM, TLR, BCC) College of Science and Engineering, James Cook University, Cairns Qld 4870 Australia
| | - Bradley C. Congdon
- (SJM, TLR, BCC) College of Science and Engineering, James Cook University, Cairns Qld 4870 Australia
| |
Collapse
|
18
|
Haines ML, Luikart G, Amish SJ, Smith S, Latch EK. Evidence for adaptive introgression of exons across a hybrid swarm in deer. BMC Evol Biol 2019; 19:199. [PMID: 31684869 PMCID: PMC6827202 DOI: 10.1186/s12862-019-1497-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background Secondary contact between closely related lineages can result in a variety of outcomes, including hybridization, depending upon the strength of reproductive barriers. By examining the extent to which different parts of the genome introgress, it is possible to infer the strength of selection and gain insight into the evolutionary trajectory of lineages. Following secondary contact approximately 8000 years ago in the Pacific Northwest, mule deer (Odocoileus hemionus hemionus) and black-tailed deer (O. h. columbianus) formed a hybrid swarm along the Cascade mountain range despite substantial differences in body size (up to two times) and habitat preference. In this study, we examined genetic population structure, extent of introgression, and selection pressures in freely interbreeding populations of mule deer and black-tailed deer using mitochondrial DNA sequences, 9 microsatellite loci, and 95 SNPs from protein-coding genes. Results We observed bi-directional hybridization and classified approximately one third of the 172 individuals as hybrids, almost all of which were beyond the F1 generation. High genetic differentiation between black-tailed deer and mule deer at protein-coding genes suggests that there is positive divergent selection, though selection on these loci is relatively weak. Contrary to predictions, there was not greater selection on protein-coding genes thought to be associated with immune function and mate choice. Geographic cline analyses were consistent across genetic markers, suggesting long-term stability (over hundreds of generations), and indicated that the center of the hybrid swarm is 20-30 km to the east of the Cascades ridgeline, where there is a steep ecological transition from wet, forested habitat to dry, scrub habitat. Conclusions Our data are consistent with a genetic boundary between mule deer and black-tailed deer that is porous but maintained by many loci under weak selection having a substantial cumulative effect. The absence of clear reproductive barriers and the consistent centering of geographic clines at a sharp ecotone suggests that ecology is a driver of hybrid swarm dynamics. Adaptive introgression in this study (and others) promotes gene flow and provides valuable insight into selection strength on specific genes and the evolutionary trajectory of hybridizing taxa. Electronic supplementary material The online version of this article (10.1186/s12862-019-1497-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Margaret L Haines
- Behavioral and Molecular Ecology Research Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Gordon Luikart
- Montana Conservation Genomics Laboratory, Division of Biological Sciences, The University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA.,Montana Conservation Genomics Laboratory, Flathead Lake Biological Station, Division of Biological Sciences, The University of Montana, 32125 Bio Station Lane, Polson, MT, 59860, USA
| | - Stephen J Amish
- Montana Conservation Genomics Laboratory, Division of Biological Sciences, The University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Seth Smith
- Montana Conservation Genomics Laboratory, Division of Biological Sciences, The University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Emily K Latch
- Behavioral and Molecular Ecology Research Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA.
| |
Collapse
|
19
|
Cytochrome b marker reveals an independent lineage of Stenella coeruleoalba in the Gulf of Taranto. PLoS One 2019; 14:e0213826. [PMID: 30893376 PMCID: PMC6426239 DOI: 10.1371/journal.pone.0213826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 03/03/2019] [Indexed: 11/25/2022] Open
Abstract
Heterogeneity in geomorphological and hydrographical conditions throughout the Mediterranean Sea could be the driving factors behind the significant differences between putative sub-populations, although the existence of a large panmictic population of striped dolphin Stenella coeruleoalba (Meyen 1833) in this marine region could not be excluded. However, understanding the ecological implications of such genetic differentiation is difficult, as inferences about gene flow are usually made on evolutionary time scales and not along the ecological time frame over which most management and conservation practices are applied. In fact, as stated by the IUCN Red List, in the case of species assessed as vulnerable, the degree of genetic exchange between populations within a biogeographic region and its ecological implications represent a fascinating challenge that should be very deeply explored. This is even more significant in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea), where the geomorphological and hydrographic characteristics support the hypothesis of a separated striped dolphin population genetically diverging from its original Mediterranean counterpart. To assess this hypothesis, a genetic analysis was carried out on DNA fragments of the mitochondrial cyt b gene to explore the evolutionary origin of S. coeruleoalba in the investigated area and its genetic diversity in comparison with available sequences from other Mediterranean and Atlantic populations. Results were discussed indicating ecological implications and suggesting conservation objectives. Moreover, a delphinid systematic was also suggested.
Collapse
|
20
|
Sacristán C, Esperón F, Ewbank AC, Díaz-Delgado J, Ferreira-Machado E, Costa-Silva S, Sánchez-Sarmiento AM, Groch KR, Neves E, Pereira Dutra GH, Gravena W, Ferreira Da Silva VM, Marcondes MCC, Castaldo Colosio A, Cremer MJ, Carvalho VL, O Meirelles AC, Marigo J, Catão-Dias JL. Novel herpesviruses in riverine and marine cetaceans from South America. Acta Trop 2019; 190:220-227. [PMID: 30465743 DOI: 10.1016/j.actatropica.2018.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 11/15/2022]
Abstract
Herpesvirus (HV) infections in cetaceans are frequently associated with skin and mucosal lesions. Although HV infections have been reported worldwide, their occurrence in southern Atlantic marine mammals is still poorly understood. We tested skin, oral and genital mucosal beta-actin PCR-positive samples from 109 free-ranging Brazilian cetaceans using a universal herpesvirus DNA polymerase PCR. Herpesvirus-positive skin samples from a Guiana dolphin (Sotalia guianensis), a dwarf sperm whale (Kogia sima), a Bolivian river dolphin (Inia boliviensis), and a lingual sample from an Atlantic spotted dolphin (Stenella frontalis) were histologically evaluated. Additional tissue samples from these animals were also PCR-positive for HV, including a novel sequence obtained from the dwarf sperm whale's stomach and mesenteric lymph node. Four novel HV species were detected in the Guiana dolphin (one), the dwarf sperm whale (two) and the Bolivian river dolphin (one). The cutaneous lesions (marked, focally extensive, chronic proliferative dermatitis) of the Guiana dolphin and the Bolivian river dolphin were similar to previous HV reports in cetaceans, despite the absence of intranuclear inclusion bodies. This is the largest HV survey in South American cetaceans and the first detection of HV infection in riverine dolphins worldwide.
Collapse
Affiliation(s)
- Carlos Sacristán
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil.
| | - Fernando Esperón
- Group of Epidemiology and Environmental Health, Animal Health Research Centre (INIA-CISA), Valdeolmos, Madrid, 28130, Spain
| | - Ana Carolina Ewbank
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - Josué Díaz-Delgado
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - Eduardo Ferreira-Machado
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - Samira Costa-Silva
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - Angélica María Sánchez-Sarmiento
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - Kátia R Groch
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - Elena Neves
- Group of Epidemiology and Environmental Health, Animal Health Research Centre (INIA-CISA), Valdeolmos, Madrid, 28130, Spain
| | | | - Waleska Gravena
- Instituto Nacional de Pesquisas da Amazônia, Manaus, 69067-375, AM, Brazil; Instituto de Saúde e Biotecnologia, Universidade Federal do Amazonas, Coari, 69460-000, AM, Brazil
| | | | | | | | - Marta J Cremer
- Laboratório de Ecologia e Conservação de Tetrápodes Marinhos e Costeiros, Universidade da Região de Joinville, São Francisco do Sul, 89240-000, SC, Brazil
| | - Vitor L Carvalho
- Associação de Pesquisa e Preservação de Ecossistemas Aquáticos, Caucaia, 61627-210, CE, Brazil
| | | | - Juliana Marigo
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - José Luiz Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| |
Collapse
|
21
|
Kundu S, Sharma G, Balakrishnan S, Tyagi K, Chandra K, Kumar V. DNA barcoding identified two endangered dolphins: threats on living aquatic mammals in India. Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2018.1536467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Shantanu Kundu
- 1Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Gopal Sharma
- 2Gangetic Plains Regional Centre, Zoological Survey of India, Patna, India
| | | | - Kaomud Tyagi
- 1Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Kailash Chandra
- 1Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
- 2Gangetic Plains Regional Centre, Zoological Survey of India, Patna, India
- 3Marine Aquarium and Research Centre, Zoological Survey of India, Digha, India
| | - Vikas Kumar
- 1Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| |
Collapse
|
22
|
Antoniou A, Frantzis A, Alexiadou P, Paschou N, Poulakakis N. Evidence of introgressive hybridization between Stenella coeruleoalba and Delphinus delphis in the Greek Seas. Mol Phylogenet Evol 2018; 129:325-337. [PMID: 30218775 DOI: 10.1016/j.ympev.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/29/2018] [Accepted: 09/08/2018] [Indexed: 10/28/2022]
Abstract
Natural interspecific hybridization might be more important for the evolutionary history and speciation of animals than previously thought, considering several demographic and life history traits as well as habitat disturbance as factors that promote it. In this aspect, cetaceans comprise an interesting case in which the occurrence of sympatric species in mixed associations provides excellent opportunities for interspecific sexual interaction and the potential for hybridization. Here, we present evidence of natural hybridization for two cetacean species commonly occurring in the Greek Seas (Stenella coeruleoalba and Delphinus delphis), which naturally overlap in the Gulf of Corinth by analyzing highly resolving microsatellite DNA markers and mitochondrial DNA sequences in skin samples from 45 individuals of S. coeruleoalba, 12 D. delphis and three intermediate morphs. Employing several phylogenetic and population genetic approaches, we found 15 individuals that are potential hybrids including the three intermediate morphs, verifying the occurrence of natural hybridization between species of different genera. Their hybrids are fertile and able to reproduce not only with the other hybrids but also with each of the two-parental species. However, current evidence does not allow firm conclusions whether hybridization might constitute a step towards the generation of a new species and/or the swan song of an already existing species (i.e., D. delphis). Given that the focal species form mixed pods in several areas of Mediterranean, this study is an excellent opportunity to understand the mechanisms leading to hybridization in the context of gene flow and urges for the evaluation of the genetic status of common dolphins in the Mediterranean.
Collapse
Affiliation(s)
- Aglaia Antoniou
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research, Gournes Pediados, P.O. Box 2214, 71003 Irakleio, Crete, Greece.
| | - Alexandros Frantzis
- Pelagos Cetacean Research Institute, Terpsichoris 21, 16671 Vouliagmeni, Greece
| | - Paraskevi Alexiadou
- Pelagos Cetacean Research Institute, Terpsichoris 21, 16671 Vouliagmeni, Greece
| | - Nefeli Paschou
- Department of Biology, School of Sciences and Engineering, University of Crete, Vasilika Vouton, Gr-71300 Heraklion, Crete, Greece; Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Knossos Av., GR-71409 Heraklion, Crete, Greece
| | - Nikos Poulakakis
- Department of Biology, School of Sciences and Engineering, University of Crete, Vasilika Vouton, Gr-71300 Heraklion, Crete, Greece; Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Knossos Av., GR-71409 Heraklion, Crete, Greece
| |
Collapse
|
23
|
Gridley T, Elwen SH, Harris G, Moore DM, Hoelzel AR, Lampen F. Hybridization in bottlenose dolphins-A case study of Tursiops aduncus × T. truncatus hybrids and successful backcross hybridization events. PLoS One 2018; 13:e0201722. [PMID: 30208020 PMCID: PMC6135391 DOI: 10.1371/journal.pone.0201722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 07/20/2018] [Indexed: 11/18/2022] Open
Abstract
The bottlenose dolphin, genus Tursiops is one of the best studied of all the Cetacea with a minimum of two species widely recognised. Common bottlenose dolphins (T. truncatus), are the cetacean species most frequently held in captivity and are known to hybridize with species from at least 6 different genera. In this study, we document several intra-generic hybridization events between T. truncatus and T. aduncus held in captivity. We demonstrate that the F1 hybrids are fertile and can backcross producing apparently healthy offspring, thereby showing introgressive inter-specific hybridization within the genus. We document that female F1 hybrids can reach sexual maturity at 4 yr and 3 mo of age, and can become pregnant and give birth before being fully weaned. The information presented has implications for understanding hybrid reticulation among cetacean species and practical implications for captive facilities housing either Tursiops species or hybrids thereof.
Collapse
Affiliation(s)
- T. Gridley
- Centre for Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, C/o Sea Search Research and Conservation NPC, Muizenberg Cape Town, South Africa
- * E-mail:
| | - S. H. Elwen
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, C/o Sea Search Research and Conservation NPC, Muizenberg Cape Town, South Africa
| | - G. Harris
- The South African Association for Marine Biological Research, uShaka Sea World, Point, Durban, South Africa
| | - D. M. Moore
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - A. R. Hoelzel
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - F. Lampen
- The South African Association for Marine Biological Research, uShaka Sea World, Point, Durban, South Africa
| |
Collapse
|
24
|
Zhang QP, Hu WF, Zhou TT, Kong SS, Liu ZF, Zheng RQ. Interspecies introgressive hybridization in spiny frogs Quasipaa (Family Dicroglossidae) revealed by analyses on multiple mitochondrial and nuclear genes. Ecol Evol 2017; 8:1260-1270. [PMID: 29375796 PMCID: PMC5773314 DOI: 10.1002/ece3.3728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023] Open
Abstract
Introgression may lead to discordant patterns of variation among loci and traits. For example, previous phylogeographic studies on the genus Quasipaa detected signs of genetic introgression from genetically and morphologically divergent Quasipaa shini or Quasipaa spinosa. In this study, we used mitochondrial and nuclear DNA sequence data to verify the widespread introgressive hybridization in the closely related species of the genus Quasipaa, evaluate the level of genetic diversity, and reveal the formation mechanism of introgressive hybridization. In Longsheng, Guangxi Province, signs of asymmetrical nuclear introgression were detected between Quasipaa boulengeri and Q. shini. Unidirectional mitochondrial introgression was revealed from Q. spinosa to Q. shini. By contrast, bidirectional mitochondrial gene introgression was detected between Q. spinosa and Q. shini in Lushan, Jiangxi Province. Our study also detected ancient hybridizations between a female Q. spinosa and a male Q. jiulongensis in Zhejiang Province. Analyses on mitochondrial and nuclear genes verified three candidate cryptic species in Q. spinosa, and a cryptic species may also exist in Q. boulengeri. However, no evidence of introgressive hybridization was found between Q. spinosa and Q. boulengeri. Quasipaa exilispinosa from all the sampling localities appeared to be deeply divergent from other communities. Our results suggest widespread introgressive hybridization in closely related species of Quasipaa and provide a fundamental basis for illumination of the forming mechanism of introgressive hybridization, classification of species, and biodiversity assessment in Quasipaa.
Collapse
Affiliation(s)
- Qi-Peng Zhang
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province Jinhua Zhejiang China.,Institute of Ecology Zhejiang Normal University Jinhua Zhejiang China
| | - Wen-Fang Hu
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province Jinhua Zhejiang China.,Institute of Ecology Zhejiang Normal University Jinhua Zhejiang China
| | - Ting-Ting Zhou
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province Jinhua Zhejiang China.,Institute of Ecology Zhejiang Normal University Jinhua Zhejiang China
| | - Shen-Shen Kong
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province Jinhua Zhejiang China.,Institute of Ecology Zhejiang Normal University Jinhua Zhejiang China
| | - Zhi-Fang Liu
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province Jinhua Zhejiang China.,Institute of Ecology Zhejiang Normal University Jinhua Zhejiang China
| | - Rong-Quan Zheng
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province Jinhua Zhejiang China.,Institute of Ecology Zhejiang Normal University Jinhua Zhejiang China.,Xingzhi College of Zhejiang Normal University Jinhua Zhejiang China
| |
Collapse
|
25
|
Abstract
Many of the most important evolutionary variations that generated phenotypic adaptations and originated novel taxa resulted from complex cellular activities affecting genome content and expression. These activities included (i) the symbiogenetic cell merger that produced the mitochondrion-bearing ancestor of all extant eukaryotes, (ii) symbiogenetic cell mergers that produced chloroplast-bearing ancestors of photosynthetic eukaryotes, and (iii) interspecific hybridizations and genome doublings that generated new species and adaptive radiations of higher plants and animals. Adaptive variations also involved horizontal DNA transfers and natural genetic engineering by mobile DNA elements to rewire regulatory networks, such as those essential to viviparous reproduction in mammals. In the most highly evolved multicellular organisms, biological complexity scales with 'non-coding' DNA content rather than with protein-coding capacity in the genome. Coincidentally, 'non-coding' RNAs rich in repetitive mobile DNA sequences function as key regulators of complex adaptive phenotypes, such as stem cell pluripotency. The intersections of cell fusion activities, horizontal DNA transfers and natural genetic engineering of Read-Write genomes provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCISW123B, 979 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
26
|
Renaud S, Alibert P, Auffray JC. Impact of Hybridization on Shape, Variation and Covariation of the Mouse Molar. Evol Biol 2016. [DOI: 10.1007/s11692-016-9391-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Soubrier J, Gower G, Chen K, Richards SM, Llamas B, Mitchell KJ, Ho SYW, Kosintsev P, Lee MSY, Baryshnikov G, Bollongino R, Bover P, Burger J, Chivall D, Crégut-Bonnoure E, Decker JE, Doronichev VB, Douka K, Fordham DA, Fontana F, Fritz C, Glimmerveen J, Golovanova LV, Groves C, Guerreschi A, Haak W, Higham T, Hofman-Kamińska E, Immel A, Julien MA, Krause J, Krotova O, Langbein F, Larson G, Rohrlach A, Scheu A, Schnabel RD, Taylor JF, Tokarska M, Tosello G, van der Plicht J, van Loenen A, Vigne JD, Wooley O, Orlando L, Kowalczyk R, Shapiro B, Cooper A. Early cave art and ancient DNA record the origin of European bison. Nat Commun 2016; 7:13158. [PMID: 27754477 PMCID: PMC5071849 DOI: 10.1038/ncomms13158] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/09/2016] [Indexed: 11/09/2022] Open
Abstract
The two living species of bison (European and American) are among the few terrestrial megafauna to have survived the late Pleistocene extinctions. Despite the extensive bovid fossil record in Eurasia, the evolutionary history of the European bison (or wisent, Bison bonasus) before the Holocene (<11.7 thousand years ago (kya)) remains a mystery. We use complete ancient mitochondrial genomes and genome-wide nuclear DNA surveys to reveal that the wisent is the product of hybridization between the extinct steppe bison (Bison priscus) and ancestors of modern cattle (aurochs, Bos primigenius) before 120 kya, and contains up to 10% aurochs genomic ancestry. Although undetected within the fossil record, ancestors of the wisent have alternated ecological dominance with steppe bison in association with major environmental shifts since at least 55 kya. Early cave artists recorded distinct morphological forms consistent with these replacement events, around the Last Glacial Maximum (LGM, ∼21-18 kya).
Collapse
Affiliation(s)
- Julien Soubrier
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Graham Gower
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Kefei Chen
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Stephen M. Richards
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Kieren J. Mitchell
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Simon Y. W. Ho
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Pavel Kosintsev
- Institute of Plant and Animal Ecology, Russian Academy of Sciences, 202 8 Marta Street, 620144 Ekaterinburg, Russia
| | - Michael S. Y. Lee
- School of Biological Sciences, Flinders University, South Australia 5001, Australia
- Earth Sciences Section, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Gennady Baryshnikov
- Zoological Institute RAS, Universitetskaya Naberezhnaya 1, 199034 St Petersburg, Russia
| | - Ruth Bollongino
- Palaeogenetics Group, Institute of Anthropology, University of Mainz D-55128, Mainz, Germany
| | - Pere Bover
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Department of Biodiversity and Conservation, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Cr. Miquel Marquès 21, 07190 Esporles, Illes Balears
| | - Joachim Burger
- Palaeogenetics Group, Institute of Anthropology, University of Mainz D-55128, Mainz, Germany
| | - David Chivall
- Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
| | - Evelyne Crégut-Bonnoure
- Museum Requien, 67 rue Joseph Vernet, 84000 Avignon, France
- Laboratoire TRACES UMR5608, Université Toulouse Jean Jaurès - Maison de la Recherche, 5 allée Antonio Machado, 31058 Toulouse, France
| | - Jared E. Decker
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | - Katerina Douka
- Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
| | - Damien A. Fordham
- Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Federica Fontana
- Dipartimento di Studi Umanistici, Università degli Studi di Ferrara, 12 Via Paradiso, 44121 Ferrara, Italy
| | - Carole Fritz
- CNRS, TRACES, UMR 5608 et CREAP, MSHS Toulouse, USR 3414, Maison de la Recherche, 5 allées Antonio Machado, 31058 Toulouse, France
| | - Jan Glimmerveen
- CERPOLEX/Mammuthus, Anna Paulownastraat 25A, NL-2518 BA Den Haag, The Netherlands
| | | | - Colin Groves
- School of Archaeology and Anthropology, Australian National University, Building 14, Canberra, Australian National University 0200, Australia
| | - Antonio Guerreschi
- Dipartimento di Studi Umanistici, Università degli Studi di Ferrara, 12 Via Paradiso, 44121 Ferrara, Italy
| | - Wolfgang Haak
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Tom Higham
- Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
| | - Emilia Hofman-Kamińska
- Mammal Research Institute, Polish Academy of Sciences, Waszkiewicza 1c, 17-230 Białowieża, Poland
| | - Alexander Immel
- Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Marie-Anne Julien
- Department of Archaeology, Centre for the Archaeology of Human Origins, University of Southampton, Avenue Campus, Southampton SO17 1BF, UK
- Unité Histoire naturelle de l'Homme préhistorique (UMR 7194), Sorbonne Universités, Muséum national d'Histoire narurelle, CNRS, 1 rue René Panhard, 75013 Paris, France
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Oleksandra Krotova
- Department of Stone Age, Institute of Archaeology, National Ukrainian Academy of Science, 04210 Kiev, Ukraine
| | - Frauke Langbein
- Institute for Archaeological Sciences, Archaeo and Palaeogenetics, University of Tübingen, 72070 Tübingen, Germany
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK
| | - Adam Rohrlach
- School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Amelie Scheu
- Palaeogenetics Group, Institute of Anthropology, University of Mainz D-55128, Mainz, Germany
| | - Robert D. Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Jeremy F. Taylor
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Małgorzata Tokarska
- Mammal Research Institute, Polish Academy of Sciences, Waszkiewicza 1c, 17-230 Białowieża, Poland
| | - Gilles Tosello
- Chercheur associé, CREAP, MSHS Toulouse, URS 3414, Maison de la Recherche, 5 allées Antonio Machado, 31058 Toulouse, France
| | - Johannes van der Plicht
- Centre for Isotope Research, Radiocarbon Laboratory, University of Groningen, Nijenborg 4, NI-9747 AG Groningen, The Netherlands
| | - Ayla van Loenen
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jean-Denis Vigne
- Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Sorbonne Universités, UMR7209, ‘Archéozoologie, archéobotanique: sociétés, pratiques et environnements', CP56, 55 rue Buffon, 75005 Paris, France
| | - Oliver Wooley
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, ØsterVoldgade 5-7, Copenhagen 1350K, Denmark
- Université de Toulouse, University Paul Sabatier, Laboratoire AMIS, CNRS UMR 5288, 37 Allées Jules Guesde, Toulouse 31000, France
| | - Rafał Kowalczyk
- Mammal Research Institute, Polish Academy of Sciences, Waszkiewicza 1c, 17-230 Białowieża, Poland
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA
- UCSC Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA
| | - Alan Cooper
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
28
|
Bearzi G, Bonizzoni S, Santostasi NL, Furey NB, Eddy L, Valavanis VD, Gimenez O. Dolphins in a Scaled-Down Mediterranean: The Gulf of Corinth's Odontocetes. ADVANCES IN MARINE BIOLOGY 2016; 75:297-331. [PMID: 27770988 DOI: 10.1016/bs.amb.2016.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The Gulf of Corinth is a 2400-km2 semi-enclosed inland system (a mediterraneus) in central Greece. Its continental shelf areas, steep bottom relief, and waters up to 500-900m deep offer suitable habitat to neritic and pelagic species. We used photographic capture-recapture, distribution modelling, and direct observations to investigate the abundance, status, habitat preferences, movements, and group size of four odontocete species regularly observed in the Gulf, based on five years (2011-2015) of survey effort from small boats. Striped dolphins (Stenella coeruleoalba) are more abundant (1324 individuals, 95%CI 1158-1515) than was determined from previous estimates. Striped dolphins appear to be confined to the Gulf, where they favour deep and oligotrophic waters, and were encountered in single-species and mixed-species groups. Short-beaked common dolphins (Delphinus delphis) (22 individuals, 95%CI 16-31), individuals with intermediate pigmentation (possibly striped/common dolphin hybrids) (55, 95%CI 36-83), and a single Risso's dolphin (Grampus griseus) were only encountered in mixed-species groups with striped dolphins. Short-beaked common dolphins constitute a discrete conservation unit (subpopulation), and based on the current estimate, would qualify as Critically Endangered according to International Union for the Conservation of Nature (IUCN) Red List criteria. Common bottlenose dolphins (Tursiops truncatus) (39 animals, 95%CI 33-47) occur in single-species groups; they prefer continental shelf waters and areas near fish farms in the northern sector, and several animals appear to move into and out of the Gulf. Additionally, we contribute records of marine fauna and an assessment of the fishing fleet operating in the Gulf. Our study shows that the importance of this vulnerable marine environment has been underestimated, and management action must be taken to mitigate human impact and ensure long-term protection.
Collapse
Affiliation(s)
- G Bearzi
- Dolphin Biology and Conservation, Oria, Italy; OceanCare, Wädenswil, Switzerland; Texas A&M University at Galveston, Galveston, TX, United States.
| | - S Bonizzoni
- Dolphin Biology and Conservation, Oria, Italy; OceanCare, Wädenswil, Switzerland; Texas A&M University at Galveston, Galveston, TX, United States
| | - N L Santostasi
- Dolphin Biology and Conservation, Oria, Italy; Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier, France
| | - N B Furey
- Dolphin Biology and Conservation, Oria, Italy; University of British Columbia, Vancouver, BC, Canada
| | - L Eddy
- Dolphin Biology and Conservation, Oria, Italy; OceanCare, Wädenswil, Switzerland
| | - V D Valavanis
- Marine Geographic Information Systems Lab, Hellenic Centre for Marine Research, Heraklion, Greece
| | - O Gimenez
- Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier, France
| |
Collapse
|
29
|
Capblancq T, Després L, Rioux D, Mavárez J. Hybridization promotes speciation in Coenonympha butterflies. Mol Ecol 2016; 24:6209-22. [PMID: 26581657 DOI: 10.1111/mec.13479] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 01/16/2023]
Abstract
Hybridization has become a central element in theories of animal evolution during the last decade. New methods in population genomics and statistical model testing now allow the disentangling of the complexity that hybridization brings into key evolutionary processes such as local adaptation, colonization of new environments, species diversification and extinction. We evaluated the consequences of hybridization in a complex of three alpine butterflies in the genus Coenonympha, by combining morphological, genetic and ecological analyses. A series of approximate Bayesian computation procedures based on a large SNP data set strongly suggest that the Darwin's Heath (Coenonympha darwiniana) originated through hybridization between the Pearly Heath (Coenonympha arcania) and the Alpine Heath (Coenonympha gardetta) with different parental contributions. As a result of hybridization, the Darwin's Heath presents an intermediate morphology between the parental species, while its climatic niche seems more similar to the Alpine Heath. Our results also reveal a substantial genetic and morphologic differentiation between the two geographically disjoint Darwin's Heath lineages leading us to propose the splitting of this taxon into two different species.
Collapse
Affiliation(s)
- Thibaut Capblancq
- LECA, Université Grenoble Alpes, F-38000, Grenoble, France.,LECA, CNRS, F-38000, Grenoble, France
| | - Laurence Després
- LECA, Université Grenoble Alpes, F-38000, Grenoble, France.,LECA, CNRS, F-38000, Grenoble, France
| | - Delphine Rioux
- LECA, Université Grenoble Alpes, F-38000, Grenoble, France.,LECA, CNRS, F-38000, Grenoble, France
| | - Jesús Mavárez
- LECA, Université Grenoble Alpes, F-38000, Grenoble, France.,LECA, CNRS, F-38000, Grenoble, France
| |
Collapse
|
30
|
Lukhtanov VA, Shapoval NA, Anokhin BA, Saifitdinova AF, Kuznetsova VG. Homoploid hybrid speciation and genome evolution via chromosome sorting. Proc Biol Sci 2016; 282:20150157. [PMID: 25925097 DOI: 10.1098/rspb.2015.0157] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genomes of numerous diploid plant and animal species possess traces of interspecific crosses, and many researches consider them as support for homoploid hybrid speciation (HHS), a process by which a new reproductively isolated species arises through hybridization and combination of parts of the parental genomes, but without an increase in ploidy. However, convincing evidence for a creative role of hybridization in the origin of reproductive isolation between hybrid and parental forms is extremely limited. Here, through studying Agrodiaetus butterflies, we provide proof of a previously unknown mode of HHS based on the formation of post-zygotic reproductive isolation via hybridization of chromosomally divergent parental species and subsequent fixation of a novel combination of chromosome fusions/fissions in hybrid descendants. We show that meiotic segregation, operating in the hybrid lineage, resulted in the formation of a new diploid genome, drastically rearranged in terms of chromosome number. We also demonstrate that during the heterozygous stage of the hybrid species formation, recombination was limited between rearranged chromosomes of different parental origin, representing evidence that the reproductive isolation was a direct consequence of hybridization.
Collapse
Affiliation(s)
- Vladimir A Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034, St Petersburg, Russia Department of Entomology, St Petersburg State University, Universitetskaya nab. 7/9, 199034, St Petersburg, Russia
| | - Nazar A Shapoval
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034, St Petersburg, Russia Department of Entomology, St Petersburg State University, Universitetskaya nab. 7/9, 199034, St Petersburg, Russia
| | - Boris A Anokhin
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034, St Petersburg, Russia
| | - Alsu F Saifitdinova
- Department of Cytology and Histology, St Petersburg State University, Universitetskaya nab. 7/9, 199034, St Petersburg, Russia
| | - Valentina G Kuznetsova
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034, St Petersburg, Russia
| |
Collapse
|
31
|
Kong S, Sánchez-Pacheco SJ, Murphy RW. On the use of median-joining networks in evolutionary biology. Cladistics 2015; 32:691-699. [DOI: 10.1111/cla.12147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sungsik Kong
- Department of Ecology and Evolutionary Biology; University of Toronto; 25 Willcocks Street Toronto ON M5S 3B2 Canada
| | - Santiago J. Sánchez-Pacheco
- Department of Ecology and Evolutionary Biology; University of Toronto; 25 Willcocks Street Toronto ON M5S 3B2 Canada
| | - Robert W. Murphy
- Department of Ecology and Evolutionary Biology; University of Toronto; 25 Willcocks Street Toronto ON M5S 3B2 Canada
- Department of Natural History; Royal Ontario Museum; 100 Queen's Park Toronto ON M5S 2C6 Canada
| |
Collapse
|
32
|
Jančúchová-Lásková J, Landová E, Frynta D. Experimental Crossing of Two Distinct Species of Leopard Geckos, Eublepharis angramainyu and E. macularius: Viability, Fertility and Phenotypic Variation of the Hybrids. PLoS One 2015; 10:e0143630. [PMID: 26633648 PMCID: PMC4669172 DOI: 10.1371/journal.pone.0143630] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/07/2015] [Indexed: 12/01/2022] Open
Abstract
Hybridization between distinct species of animals and subsequent genetic introgression plays a considerable role in the speciation process and the emergence of adaptive characters. Fitness of between-species hybrids usually sharply decreases with the divergence time of the concerned species and the divergence depth, which still allows for a successful crossing differs among principal clades of vertebrates. Recently, a review of hybridization events among distinct lizard species revealed that lizards belong to vertebrates with a highly developed ability to hybridize. In spite of this, reliable reports of experimental hybridizations between genetically fairly divergent species are only exceptional. Here, we show the results of the crossing of two distinct allopatric species of eyelid geckos possessing temperature sex determination and lacking sex chromosomes: Eublepharis macularius distributed in Pakistan/Afghanistan area and E. angramainyu, which inhabits Mesopotamia and adjacent areas. We demonstrated that F1 hybrids were viable and fertile, and the introgression of E. angramainyu genes into the E. macularius genome can be enabled via a backcrossing. The examined hybrids (except those of the F2 generation) displayed neither malformations nor a reduced survival. Analyses of morphometric and coloration traits confirmed phenotypic distinctness of both parental species and their F1 hybrids. These findings contrast with long-term geographic and an evolutionary separation of the studied species. Thus, the occurrence of fertile hybrids of comparably divergent species, such as E. angramainyu and E. macularius, may also be expected in other taxa of squamates. This would violate the current estimates of species diversity in lizards.
Collapse
Affiliation(s)
| | - Eva Landová
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Daniel Frynta
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
33
|
Cunha HA, de Castro RL, Secchi ER, Crespo EA, Lailson-Brito J, Azevedo AF, Lazoski C, Solé-Cava AM. Molecular and Morphological Differentiation of Common Dolphins (Delphinus sp.) in the Southwestern Atlantic: Testing the Two Species Hypothesis in Sympatry. PLoS One 2015; 10:e0140251. [PMID: 26559411 PMCID: PMC4641715 DOI: 10.1371/journal.pone.0140251] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 09/23/2015] [Indexed: 11/18/2022] Open
Abstract
The taxonomy of common dolphins (Delphinus sp.) has always been controversial, with over twenty described species since the original description of the type species of the genus (Delphinus delphis Linnaeus, 1758). Two species and four subspecies are currently accepted, but recent molecular data have challenged this view. In this study we investigated the molecular taxonomy of common dolphins through analyses of cytochrome b sequences of 297 individuals from most of their distribution. We included 37 novel sequences from the Southwestern Atlantic Ocean, a region where the short- and long-beaked morphotypes occur in sympatry, but which had not been well sampled before. Skulls of individuals from the Southwestern Atlantic were measured to test the validity of the rostral index as a diagnostic character and confirmed the presence of the two morphotypes in our genetic sample. Our genetic results show that all common dolphins in the Atlantic Ocean belong to a single species, Delphinus delphis. According to genetic data, the species Delphinus capensis is invalid. Long-beaked common dolphins from the Northeastern Pacific Ocean may constitute a different species. Our conclusions prompt the need for revision of currently accepted common dolphin species and subspecies and of Delphinus delphis distribution.
Collapse
Affiliation(s)
- Haydée A. Cunha
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biodiversidade Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rocio Loizaga de Castro
- Laboratorio de Mamíferos Marinos, Centro Nacional Patagónico–CONICET, Puerto Madryn, Chubut, Argentina
| | - Eduardo R. Secchi
- Laboratório de Ecologia e Conservação da Megafauna Marinha (EcoMega), Instituto de Oceanografia, Fundação Universitária do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Enrique A. Crespo
- Laboratorio de Mamíferos Marinos, Centro Nacional Patagónico–CONICET, Puerto Madryn, Chubut, Argentina
| | - José Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre F. Azevedo
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiano Lazoski
- Laboratório de Biodiversidade Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio M. Solé-Cava
- Laboratório de Biodiversidade Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
A systemic approach for modeling biological evolution using Parallel DEVS. Biosystems 2015; 134:56-70. [DOI: 10.1016/j.biosystems.2015.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 03/26/2015] [Accepted: 06/17/2015] [Indexed: 12/22/2022]
|
35
|
Weir CR, Coles P, Ferguson A, May D, Baines M, Figueirdo I, Reichelt M, Goncalves L, de Boer MN, Rose B, Edwards M, Travers S, Ambler M, Félix H, Wall D, Azhakesan VAA, Betenbaugh M, Fennelly L, Haaland S, Hak G, Juul T, Leslie RW, McNamara B, Russell N, Smith JA, Tabisola HM, Teixeira A, Vermeulen E, Vines J, Williams A. Clymene dolphins (Stenella clymene) in the eastern tropical Atlantic: distribution, group size, and pigmentation pattern. J Mammal 2014. [DOI: 10.1644/14-mamm-a-115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
Brown AM, Kopps AM, Allen SJ, Bejder L, Littleford-Colquhoun B, Parra GJ, Cagnazzi D, Thiele D, Palmer C, Frère CH. Population differentiation and hybridisation of Australian snubfin (Orcaella heinsohni) and Indo-Pacific humpback (Sousa chinensis) dolphins in north-western Australia. PLoS One 2014; 9:e101427. [PMID: 24988113 PMCID: PMC4079686 DOI: 10.1371/journal.pone.0101427] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/06/2014] [Indexed: 12/02/2022] Open
Abstract
Little is known about the Australian snubfin (Orcaella heinsohni) and Indo-Pacific humpback (Sousa chinensis) dolphins (‘snubfin’ and ‘humpback dolphins’, hereafter) of north-western Australia. While both species are listed as ‘near threatened’ by the IUCN, data deficiencies are impeding rigorous assessment of their conservation status across Australia. Understanding the genetic structure of populations, including levels of gene flow among populations, is important for the assessment of conservation status and the effective management of a species. Using nuclear and mitochondrial DNA markers, we assessed population genetic diversity and differentiation between snubfin dolphins from Cygnet (n = 32) and Roebuck Bays (n = 25), and humpback dolphins from the Dampier Archipelago (n = 19) and the North West Cape (n = 18). All sampling locations were separated by geographic distances >200 km. For each species, we found significant genetic differentiation between sampling locations based on 12 (for snubfin dolphins) and 13 (for humpback dolphins) microsatellite loci (FST = 0.05–0.09; P<0.001) and a 422 bp sequence of the mitochondrial control region (FST = 0.50–0.70; P<0.001). The estimated proportion of migrants in a population ranged from 0.01 (95% CI 0.00–0.06) to 0.13 (0.03–0.24). These are the first estimates of genetic diversity and differentiation for snubfin and humpback dolphins in Western Australia, providing valuable information towards the assessment of their conservation status in this rapidly developing region. Our results suggest that north-western Australian snubfin and humpback dolphins may exist as metapopulations of small, largely isolated population fragments, and should be managed accordingly. Management plans should seek to maintain effective population size and gene flow. Additionally, while interactions of a socio-sexual nature between these two species have been observed previously, here we provide strong evidence for the first documented case of hybridisation between a female snubfin dolphin and a male humpback dolphin.
Collapse
Affiliation(s)
- Alexander M. Brown
- Murdoch University Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
- * E-mail:
| | - Anna M. Kopps
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
- Marine Evolution and Conservation, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| | - Simon J. Allen
- Murdoch University Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Lars Bejder
- Murdoch University Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | | | - Guido J. Parra
- Cetacean Ecology, Behaviour and Evolution Lab, School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia
- South Australian Research and Development Institute, Adelaide, South Australia, Australia
| | - Daniele Cagnazzi
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Deborah Thiele
- Fenner School of Environment & Society, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Carol Palmer
- Marine Ecosystems, Flora and Fauna Division, Department of Land Resource Management, Palmerston, Northern Territory, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Celine H. Frère
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| |
Collapse
|
37
|
Morphological Variation in Wild Marmosets (Callithrix penicillata and C. geoffroyi) and Their Hybrids. Evol Biol 2014. [DOI: 10.1007/s11692-014-9284-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Schumer M, Rosenthal GG, Andolfatto P. HOW COMMON IS HOMOPLOID HYBRID SPECIATION? Evolution 2014; 68:1553-60. [DOI: 10.1111/evo.12399] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/28/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Molly Schumer
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton New Jersey 08544
| | - Gil G. Rosenthal
- Department of Biology; Texas A&M University (TAMU); College Station Texas 77843
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca,” Calnali; Hidalgo 43230 Mexico
| | - Peter Andolfatto
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton New Jersey 08544
- Lewis-Sigler Institute for Integrative Genomics, Princeton University; Princeton New Jersey 08544
| |
Collapse
|