1
|
Frank J, Tehrani L, Gamer J, Van Booven DJ, Ballarin S, Rossman R, Edelstein A, Uppalati S, Reuthebuck A, Collado F, Klimas NG, Nathanson L. Gulf War Illness Induced Sex-Specific Transcriptional Differences Under Stressful Conditions. Int J Mol Sci 2025; 26:3610. [PMID: 40332133 PMCID: PMC12026906 DOI: 10.3390/ijms26083610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Gulf War Illness (GWI) is a multi-symptom disorder affecting 1990-1991 Persian Gulf War veterans and is characterized by post-exertional malaise, neurological symptoms, immune deregulation, and exhaustion. Causation is not understood, and effective diagnostics and therapies have not yet been developed. In this work, we analyzed stress-related, sex-specific transcriptomic shifts in GWI subjects and healthy controls through RNA sequencing of peripheral blood mononuclear cells (PBMCs). Blood samples at baseline (T0), at maximal exertion (T1), and four hours post-exertion (T2) were analyzed. In female subjects with GWI, pathways associated with pro-inflammatory processes were found to be deregulated, and in male GWI subjects, pathways related to IL-12 signaling and lymphocytic activation were deregulated at T1 compared to T0. During recovery from stress, pathways corresponding to immune responses and microglial cell activation were altered in female GWI subjects, and apoptotic signaling changed in males with GWI. Documented sex-specific immune deregulation leads to finding better biomarkers. Targeting sex-specific transcriptomic markers of the disease could lead to new therapies for GWI.
Collapse
Affiliation(s)
- Joshua Frank
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.F.); (F.C.); (N.G.K.)
| | - Lily Tehrani
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (L.T.); (J.G.); (S.B.); (R.R.); (A.E.)
| | - Jackson Gamer
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (L.T.); (J.G.); (S.B.); (R.R.); (A.E.)
| | - Derek J. Van Booven
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33146, USA;
| | - Sarah Ballarin
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (L.T.); (J.G.); (S.B.); (R.R.); (A.E.)
| | - Raquel Rossman
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (L.T.); (J.G.); (S.B.); (R.R.); (A.E.)
| | - Abraham Edelstein
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (L.T.); (J.G.); (S.B.); (R.R.); (A.E.)
| | - Sadhika Uppalati
- Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.U.); (A.R.)
| | - Ana Reuthebuck
- Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.U.); (A.R.)
| | - Fanny Collado
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.F.); (F.C.); (N.G.K.)
| | - Nancy G. Klimas
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.F.); (F.C.); (N.G.K.)
- Department of Veterans Affairs, Miami VA Healthcare System, Geriatric Research Education and Clinical Center (GRECC), Miami, FL 33125, USA
| | - Lubov Nathanson
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.F.); (F.C.); (N.G.K.)
| |
Collapse
|
2
|
Shrestha DS, Manandhar S, Chalise BS, Rajbhandari SK, Bastola A, Bhandari P, Das SK, Pant P, Sharma S, Kattel HP, Jha RK, Shrestha MR, Shrestha A, Love RR. Symptoms 6 months following SARS-CoV-2 infection in Nepali women. PLoS One 2024; 19:e0299141. [PMID: 38466665 PMCID: PMC10927087 DOI: 10.1371/journal.pone.0299141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
In Nepal, over 1 million individuals have tested positive for SARS-CoV-2. We sought to describe the frequency of nonrecovery from this infection at 6 months and associated symptoms. We conducted a retrospective cohort study of 6142 women who had positive and negative PCR tests for this infection 6 months previously at 3 institutions in Kathmandu. In telephone interviews women provided information on 22 symptoms and their intensities, health status and history, and functional status. Of 3732 women who had tested PCR positive, 630 (16.9%) reported that they were unrecovered. These 630 unrecovered women were distinguished statistically from the 3102 recovered women by more frequent histories of allergies, rheumatoid disease, BCG immunization, Covid vaccination, strep throat and recent URIs, and both weight gain and weight losses of more than 5 kg in the 6 months following testing, and stressful events in the preceding year. Fatigue, pain, difficulty remembering, shortness of breath, heat and cold intolerance and unrefreshing sleep were reported in 41.9% to 10.5% of these 630 unrecovered women. Six months after confirmed SARS-CoV-2 infection 16.9% of Nepali women have long-COVID manifested as an immune, metabolic, and hormonal systems disruptive and dysfunction syndrome.
Collapse
Affiliation(s)
- Deepak S. Shrestha
- Department of Internal Medicine, People’s Dental College and Hospital, Kathmandu, Nepal
| | | | | | | | - Anup Bastola
- Sukraraj Tropical and Infectious Disease Hospital, Kathmandu, Nepal
| | | | | | - Pankaj Pant
- Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Sangita Sharma
- Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | | | | | | | - Anil Shrestha
- Nepal Armed Police Forces Hospital, Kathmandu, Nepal
| | | |
Collapse
|
3
|
Finch F, Parker P, Nollett C, Burns S. The novel application of the Lightning Process to treat Long COVID in primary care - Case report. Explore (NY) 2024; 20:248-252. [PMID: 38176975 DOI: 10.1016/j.explore.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 01/06/2024]
Abstract
As a result of the COVID-19 pandemic, Long COVID (LC) is now prevalent in many countries. Little evidence exists regarding how this chronic condition should be treated, but guidelines suggest for most people it can be managed symptomatically in primary care. The Lightning Process is a trademarked positive psychology focused self-management programme which has shown to be effective in reducing fatigue and accompanying symptoms in other chronic conditions including Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. Here we outline its novel application to two patients with LC who both reported improvements in fatigue and a range of physical and emotional symptoms post-treatment and at 3 months follow-up.
Collapse
Affiliation(s)
| | - P Parker
- London Metropolitan University, UK
| | | | | |
Collapse
|
4
|
Huitsing K, Tritsch T, Arias FJC, Collado F, Aenlle KK, Nathason L, Fletcher MA, Klimas NG, Craddock TJA. The potential role of ocular and otolaryngological mucus proteins in myalgic encephalomyelitis/chronic fatigue syndrome. Mol Med 2024; 30:1. [PMID: 38172662 PMCID: PMC10763106 DOI: 10.1186/s10020-023-00766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating illness associated with a constellation of other symptoms. While the most common symptom is unrelenting fatigue, many individuals also report suffering from rhinitis, dry eyes and a sore throat. Mucin proteins are responsible for contributing to the formation of mucosal membranes throughout the body. These mucosal pathways contribute to the body's defense mechanisms involving pathogenic onset. When compromised by pathogens the epithelium releases numerous cytokines and enters a prolonged state of inflammation to eradicate any particular infection. Based on genetic analysis, and computational theory and modeling we hypothesize that mucin protein dysfunction may contribute to ME/CFS symptoms due to the inability to form adequate mucosal layers throughout the body, especially in the ocular and otolaryngological pathways leading to low grade chronic inflammation and the exacerbation of symptoms.
Collapse
Affiliation(s)
- Kaylin Huitsing
- Department of Psychology and Neuroscience, College of Psychology, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Tara Tritsch
- Department of Psychology and Neuroscience, College of Psychology, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Francisco Javier Carrera Arias
- Department of Psychology and Neuroscience, College of Psychology, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Fanny Collado
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
- Miami Veterans Affairs Medical Center, 1201 NW 16th St, Miami, FL, 33125-1624, USA
| | - Kristina K Aenlle
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
- Miami Veterans Affairs Medical Center, 1201 NW 16th St, Miami, FL, 33125-1624, USA
- Department of Clinical Immunology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Lubov Nathason
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
- Department of Clinical Immunology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Mary Ann Fletcher
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
- Miami Veterans Affairs Medical Center, 1201 NW 16th St, Miami, FL, 33125-1624, USA
- Department of Clinical Immunology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
- Miami Veterans Affairs Medical Center, 1201 NW 16th St, Miami, FL, 33125-1624, USA
- Department of Clinical Immunology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Travis J A Craddock
- Department of Psychology and Neuroscience, College of Psychology, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA.
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA.
- Miami Veterans Affairs Medical Center, 1201 NW 16th St, Miami, FL, 33125-1624, USA.
- Department of Clinical Immunology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA.
- Department of Computer Science, College of Engineering and Computing, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA.
- Center for Collaborative Research, Room 440, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA.
| |
Collapse
|
5
|
Berkis U, Svirskis S, Krumina A, Gravelsina S, Vilmane A, Araja D, Nora-Krukle Z, Murovska M. Exploring the joint potential of inflammation, immunity, and receptor-based biomarkers for evaluating ME/CFS progression. Front Immunol 2023; 14:1294758. [PMID: 38187396 PMCID: PMC10771384 DOI: 10.3389/fimmu.2023.1294758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic condition with no identified diagnostic biomarkers to date. Its prevalence is as high as 0.89% according to metastudies, with a quarter of patients bed- or home-bound, which presents a serious public health challenge. Investigations into the inflammation-immunity axis is encouraged by links to outbreaks and disease waves. Recently, the research of our group revealed that antibodies to beta2-adrenergic (anti-β2AdR) and muscarinic acetylcholine (anti-M4) receptors demonstrate sensitivity to the progression of ME/CFS. The purpose of this study is to investigate the joint potential of inflammatome-characterized by interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-2, IL-21, Il-23, IL-6, IL-17A, Activin-B, immunome (IgG1, IgG2, IgG3, IgG4, IgM, and IgA), and receptor-based biomarkers (anti-M3, anti-M4, and anti-β2AdR)-for evaluating ME/CFS progression, and to identify an optimal selection for future validation in prospective clinical studies. Methods A dataset was used originating from 188 individuals, namely, 54 healthy controls, 30 patients with a "mild" condition, 73 patients with a "moderate" condition, and 31 patients with a "severe" condition, clinically assessed by Fukuda/CDC 1994 and international consensus criteria. Inflammatome, immunome, and receptor-based biomarkers were determined in blood plasma via ELISA and multiplex methods. Statistical analysis was done via correlation analysis, principal component analysis, linear discriminant analysis, and random forest classification; inter-group differences were tested via nonparametric Kruskal-Wallis H test followed by the two-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli, and via Mann-Whitney U test. Results The association between inflammatome and immunome markers is broader and stronger (coupling) in the severe group. Principal component factoring separates components associated with inflammatome, immunome, and receptor biomarkers. Random forest modeling demonstrates an excellent accuracy of over 90% for splitting healthy/with condition groups, and 45% for splitting healthy/severity groups. Classifiers with the highest potential are anti-β2AdR, anti-M4, IgG4, IL-2, and IL-6. Discussion The association between inflammatome and immunome markers is a candidate for controlled clinical study of ME/CFS progression markers that could be used for treatment individualization. Thus, the coupling effects between inflammation and immunity are potentially beneficial for the identification of prognostic factors in the context of ME/CFS progression mechanism studies.
Collapse
Affiliation(s)
- Uldis Berkis
- Development and Project Department, Riga Stradins University, Riga, Latvia
| | - Simons Svirskis
- Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| | - Angelika Krumina
- Department of Infectology, Riga Stradins University, Riga, Latvia
| | - Sabine Gravelsina
- Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| | - Anda Vilmane
- Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| | - Diana Araja
- Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| | - Zaiga Nora-Krukle
- Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| | - Modra Murovska
- Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| |
Collapse
|
6
|
Huitsing K, Tritsch T, Arias FJC, Collado F, Aenlle K, Nathason L, Fletcher MA, Klimas NG, Craddock T. The Potential Role of Ocular and Otolaryngological Mucus Proteins in Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome. RESEARCH SQUARE 2023:rs.3.rs-3171709. [PMID: 37546944 PMCID: PMC10402253 DOI: 10.21203/rs.3.rs-3171709/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating illness associated with a constellation of other symptoms. While the most common symptom is unrelenting fatigue, many individuals also report suffering from rhinitis, dry eyes and a sore throat. Mucin proteins are responsible for contributing to the formation of mucosal membranes throughout the body. These mucosal pathways contribute to the body's defense mechanisms involving pathogenic onset. When compromised by pathogens the epithelium releases numerous cytokines and enters a prolonged state of inflammation to eradicate any particular infection. Based on genetic analysis, and computational theory and modeling we hypothesize that mucin protein dysfunction may contribute to ME/CFS symptoms due to the inability to form adequate mucosal layers throughout the body, especially in the ocular and otolaryngological pathways leading to low grade chronic inflammation and the exacerbation of symptoms.
Collapse
Affiliation(s)
- Kaylin Huitsing
- Nova Southeastern University - Fort Lauderdale/Davie Campus: Nova Southeastern University
| | - Tara Tritsch
- Nova Southeastern University - Fort Lauderdale/Davie Campus: Nova Southeastern University
| | | | - Fanny Collado
- Bruce W Carter Department of Veterans Affairs Medical Center: Miami VA Healthcare System
| | - Kristina Aenlle
- Bruce W Carter Department of Veterans Affairs Medical Center: Miami VA Healthcare System
| | - Lubov Nathason
- Nova Southeastern University - Fort Lauderdale/Davie Campus: Nova Southeastern University
| | - Mary Ann Fletcher
- Nova Southeastern University - Fort Lauderdale/Davie Campus: Nova Southeastern University
| | - Nancy G Klimas
- Nova Southeastern University - Fort Lauderdale/Davie Campus: Nova Southeastern University
| | | |
Collapse
|
7
|
García-Diéguez L, Diaz-Tang G, Marin Meneses E, Cruise V, Barraza I, Craddock TJ, Smith RP. Periodically disturbing biofilms reduces expression of quorum sensing-regulated virulence factors in Pseudomonas aeruginosa. iScience 2023; 26:106843. [PMID: 37255658 PMCID: PMC10225924 DOI: 10.1016/j.isci.2023.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Pseudomonas aeruginosa uses quorum sensing to regulate the expression of virulence factors. In static environments, spatial structures, such as biofilms, can increase the expression of these virulence factors. However, in natural settings, biofilms are exposed to physical forces that disrupt spatial structure, which may affect the expression of virulence factors regulated by quorum sensing. We show that periodically disturbing biofilms composed of P. aeruginosa using a physical force reduces the expression of quorum sensing-regulated virulence factors. At an intermediate disturbance frequency, the expression of virulence factors in the las, rhl, and pqs regulons is reduced. Mathematical modeling suggests that perturbation of the pqsR receptor is critical for this reduction. Removing the lasR receptor enhances the reduction in the expression of virulence factors as a result of disturbance. Our results allow identification of environments where virulence is reduced and implicate the lasR receptor as having a buffering role against disturbance.
Collapse
Affiliation(s)
- Laura García-Diéguez
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale FL 33314, USA
| | - Gabriela Diaz-Tang
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale FL 33314, USA
| | - Estefania Marin Meneses
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale FL 33314, USA
| | - Vanessa Cruise
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale FL 33314, USA
| | - Ivana Barraza
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale FL 33314, USA
| | - Travis J.A. Craddock
- Clinical Systems Biology Group, Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale FL 33314, USA
- Department of Psychology & Neuroscience, College of Psychology, Nova Southeastern University, Fort Lauderdale FL 33314, USA
- Department of Computer Science, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale FL 33314, USA
- Department of Clinical Immunology, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale FL 33314, USA
| | - Robert P. Smith
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale FL 33314, USA
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale FL 33314, USA
| |
Collapse
|
8
|
Michalovicz LT, Kelly KA, Craddock TJA, O’Callaghan JP. A Projectile Concussive Impact Model Produces Neuroinflammation in Both Mild and Moderate-Severe Traumatic Brain Injury. Brain Sci 2023; 13:623. [PMID: 37190590 PMCID: PMC10136957 DOI: 10.3390/brainsci13040623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability and is experienced by nearly 3 million people annually as a result of falls, vehicular accidents, or from being struck by or against an object. While TBIs can range in severity, the majority of injuries are considered to be mild. However, TBI of any severity has the potential to have long-lasting neurological effects, including headaches, cognitive/memory impairments, mood dysfunction, and fatigue as a result of neural damage and neuroinflammation. Here, we modified a projectile concussive impact (PCI) model of TBI to deliver a closed-head impact with variable severity dependent on the material of the ball-bearing projectile. Adult male Sprague Dawley rats were evaluated for neurobehavioral, neuroinflammatory, and neural damage endpoints both acutely and longer-term (up to 72 h) post-TBI following impact with either an aluminum or stainless-steel projectile. Animals that received TBI using the stainless-steel projectile exhibited outcomes strongly correlated to moderate-severe TBI, such as prolonged unconsciousness, impaired neurobehavior, increased risk for hematoma and death, as well as significant neuronal degeneration and neuroinflammation throughout the cortex, hippocampus, thalamus, and cerebellum. In contrast, rats that received TBI with the aluminum projectile exhibited characteristics more congruous with mild TBI, such as a trend for longer periods of unconsciousness in the absence of neurobehavioral deficits, a lack of neurodegeneration, and mild neuroinflammation. Moreover, alignment of cytokine mRNA expression from the cortex of these rats with a computational model of neuron-glia interaction found that the moderate-severe TBI produced by the stainless-steel projectile strongly associated with the neuroinflammatory state, while the mild TBI existed in a state between normal and inflammatory neuron-glia interactions. Thus, these modified PCI protocols are capable of producing TBIs that model the clinical and experimental manifestations associated with both moderate-severe and mild TBI producing relevant models for the evaluation of the potential underlying roles of neuroinflammation and other chronic pathophysiology in the long-term outcomes associated with TBI.
Collapse
Affiliation(s)
- Lindsay T. Michalovicz
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26508, USA
| | - Kimberly A. Kelly
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26508, USA
| | - Travis J. A. Craddock
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Clinical Immunology, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Psychology & Neuroscience, College of Psychology, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Computer Science, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - James P. O’Callaghan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26508, USA
| |
Collapse
|
9
|
Cruz-Hernandez A, Roney A, Goswami DG, Tewari-Singh N, Brown JM. A review of chemical warfare agents linked to respiratory and neurological effects experienced in Gulf War Illness. Inhal Toxicol 2022; 34:412-432. [PMID: 36394251 PMCID: PMC9832991 DOI: 10.1080/08958378.2022.2147257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Over 40% of veterans from the Persian Gulf War (GW) (1990-1991) suffer from Gulf War Illness (GWI). Thirty years since the GW, the exposure and mechanism contributing to GWI remain unclear. One possible exposure that has been attributed to GWI are chemical warfare agents (CWAs). While there are treatments for isolated symptoms of GWI, the number of respiratory and cognitive/neurological issues continues to rise with minimum treatment options. This issue does not only affect veterans of the GW, importantly these chronic multisymptom illnesses (CMIs) are also growing amongst veterans who have served in the Afghanistan-Iraq war. What both wars have in common are their regions and inhaled exposures. In this review, we will describe the CWA exposures, such as sarin, cyclosarin, and mustard gas in both wars and discuss the various respiratory and neurocognitive issues experienced by veterans. We will bridge the respiratory and neurological symptoms experienced to the various potential mechanisms described for each CWA provided with the most up-to-date models and hypotheses.
Collapse
Affiliation(s)
- Angela Cruz-Hernandez
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Roney
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Dinesh G Goswami
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
10
|
Jones RP, Ponomarenko A. System Complexity in Influenza Infection and Vaccination: Effects upon Excess Winter Mortality. Infect Dis Rep 2022; 14:287-309. [PMID: 35645214 PMCID: PMC9149983 DOI: 10.3390/idr14030035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Unexpected outcomes are usually associated with interventions in complex systems. Excess winter mortality (EWM) is a measure of the net effect of all competing forces operating each winter, including influenza(s) and non-influenza pathogens. In this study over 2400 data points from 97 countries are used to look at the net effect of influenza vaccination rates in the elderly aged 65+ against excess winter mortality (EWM) each year from the winter of 1980/81 through to 2019/20. The observed international net effect of influenza vaccination ranges from a 7.8% reduction in EWM estimated at 100% elderly vaccination for the winter of 1989/90 down to a 9.3% increase in EWM for the winter of 2018/19. The average was only a 0.3% reduction in EWM for a 100% vaccinated elderly population. Such outcomes do not contradict the known protective effect of influenza vaccination against influenza mortality per se—they merely indicate that multiple complex interactions lie behind the observed net effect against all-causes (including all pathogen causes) of winter mortality. This range from net benefit to net disbenefit is proposed to arise from system complexity which includes environmental conditions (weather, solar cycles), the antigenic distance between constantly emerging circulating influenza clades and the influenza vaccine makeup, vaccination timing, pathogen interference, and human immune diversity (including individual history of host-virus, host-antigen interactions and immunosenescence) all interacting to give the observed outcomes each year. We propose that a narrow focus on influenza vaccine effectiveness misses the far wider complexity of winter mortality. Influenza vaccines may need to be formulated in different ways, and perhaps administered over a shorter timeframe to avoid the unanticipated adverse net outcomes seen in around 40% of years.
Collapse
Affiliation(s)
- Rodney P. Jones
- Healthcare Analysis & Forecasting, Wantage OX12 0NE, UK
- Correspondence:
| | - Andriy Ponomarenko
- Department of Biophysics, Informatics and Medical Instrumentation, Odessa National Medical University, Valikhovsky Lane 2, 65082 Odessa, Ukraine;
| |
Collapse
|
11
|
Stanculescu D, Bergquist J. Perspective: Drawing on Findings From Critical Illness to Explain Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Med (Lausanne) 2022; 9:818728. [PMID: 35345768 PMCID: PMC8957276 DOI: 10.3389/fmed.2022.818728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
We propose an initial explanation for how myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) could originate and perpetuate by drawing on findings from critical illness research. Specifically, we combine emerging findings regarding (a) hypoperfusion and endotheliopathy, and (b) intestinal injury in these illnesses with our previously published hypothesis about the role of (c) pituitary suppression, and (d) low thyroid hormone function associated with redox imbalance in ME/CFS. Moreover, we describe interlinkages between these pathophysiological mechanisms as well as “vicious cycles” involving cytokines and inflammation that may contribute to explain the chronic nature of these illnesses. This paper summarizes and expands on our previous publications about the relevance of findings from critical illness for ME/CFS. New knowledge on diagnostics, prognostics and treatment strategies could be gained through active collaboration between critical illness and ME/CFS researchers, which could lead to improved outcomes for both conditions.
Collapse
Affiliation(s)
| | - Jonas Bergquist
- Division of Analytical Chemistry and Neurochemistry, Department of Chemistry - Biomedical Center, Uppsala University, Uppsala, Sweden.,The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Shastry N, Sultana E, Jeffrey M, Collado F, Kibler J, DeLucia C, Fletcher MA, Klimas N, Craddock TJA. The impact of post-traumatic stress on quality of life and fatigue in women with Gulf War Illness. BMC Psychol 2022; 10:42. [PMID: 35216624 PMCID: PMC8876751 DOI: 10.1186/s40359-022-00752-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/11/2022] [Indexed: 12/01/2022] Open
Abstract
Background Gulf War Illness (GWI) is a chronic, multi-symptomatic disorder characterized by fatigue, muscle pain, cognitive problems, insomnia, rashes, and gastrointestinal issues affecting an estimated 30% of the ~ 750,000 returning military Veterans of the 1990–1991 Persian Gulf War. Female Veterans deployed to combat in this war report medical symptoms, like cognition and respiratory troubles, at twice the rate compared to non-deployed female Veterans of the same era. The heterogeneity of GWI symptom presentation complicates diagnosis as well as the identification of effective treatments. This is exacerbated by the presence of co-morbidities. Defining subgroups of the illness may help alleviate these complications. One clear grouping is along the lines of gender. Our aim is to determine if women with GWI can be further subdivided into distinct subgroups based on post-traumatic stress disorder (PTSD) symptom presentation. Methods Veterans diagnosed with GWI (n = 35) and healthy sedentary controls (n = 35) were recruited through the Miami Veterans Affairs Medical Health Center. Symptoms were assessed via the RAND short form health survey, the multidimensional fatigue inventory, and the Davidson trauma scale. Hierarchal regression modeling was performed on measures of health and fatigue with PTSD symptoms as a covariate. This was followed by univariate analyses conducted with two separate GWI groups based on a cut-point of 70 for their total Davidson trauma scale value and performing heteroscedastic t-tests across all measures. Results Based on the distinct differences found in PTSD symptomology regarding all health and trauma symptoms, two subgroups were derived within female GWI Veterans. Hierarchical regression models displayed the comorbid effects of GWI and PTSD, as both conditions had measurable impacts on quality of life and fatigue (ΔR2 = 0.08–0.672), with notable differences in mental and emotional measures. Overall, a cut point analysis indicated poorer quality of life and greater fatigue within all measures for women with GWI and PTSD symptoms in comparison to those women with GWI without PTSD symptoms and healthy controls. Conclusions Our current findings support the understanding that comorbid symptoms of GWI and PTSD subsequently result in poorer quality of life and fatigue, along with establishing the possibility of varying clinical presentations.
Collapse
Affiliation(s)
- Nandan Shastry
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Esha Sultana
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Mary Jeffrey
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA.,Geriatric Research, Education, and Clinical Center, Miami Veterans Affairs Medical Center, Miami, USA
| | - Fanny Collado
- Geriatric Research, Education, and Clinical Center, Miami Veterans Affairs Medical Center, Miami, USA
| | - Jeffrey Kibler
- Department of Clinical and School Psychology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Christian DeLucia
- Department of Clinical and School Psychology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Mary Ann Fletcher
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Geriatric Research, Education, and Clinical Center, Miami Veterans Affairs Medical Center, Miami, USA.,Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Geriatric Research, Education, and Clinical Center, Miami Veterans Affairs Medical Center, Miami, USA.,Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Travis J A Craddock
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Department of Computer Science, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
13
|
Cohen DE, Sullivan KA, McNeil RB, McNeil RB, Ashford W, Bested A, Bunker J, Cheema A, Cohen DE, Cook D, Cournoyer J, Craddock T, Golier J, Hardie A, Helmer D, Lindheimer JB, Lloyd PJ, Kerr K, Krengel M, Nadkarni S, Nugent S, Paris B, Reinhard M, Rumm P, Schneiderman A, Sims KJ, Steele L, Turner M, Sullivan KA, Abdullah L, Abreu M, Abu-Donia M, Aenlle K, Arocho J, Balbin E, Baraniuk J, Block K, Block M, DeBeer B, Engdahl B, Filipov N, Fletcher MA, Kalasinsky V, Kokkotou E, Lidie K, Little D, Loging W, Morris M, Nathanson L, Nichols MD, Pasinetti G, Shungu D, Waziry P, VanLeeuwen J, Younger J. A common language for Gulf War Illness (GWI) research studies: GWI common data elements. Life Sci 2022; 290:119818. [PMID: 34352259 PMCID: PMC9267452 DOI: 10.1016/j.lfs.2021.119818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/17/2022]
Abstract
AIMS The Gulf War Illness programs (GWI) of the United States Department of Veteran Affairs and the Department of Defense Congressionally Directed Medical Research Program collaborated with experts to develop Common Data Elements (CDEs) to standardize and systematically collect, analyze, and share data across the (GWI) research community. MAIN METHODS A collective working group of GWI advocates, Veterans, clinicians, and researchers convened to provide consensus on instruments, case report forms, and guidelines for GWI research. A similar initiative, supported by the National Institute of Neurologic Disorders and Stroke (NINDS) was completed for a comparative illness, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), and provided the foundation for this undertaking. The GWI working group divided into two sub-groups (symptoms and systems assessment). Both groups reviewed the applicability of instruments and forms recommended by the NINDS ME/CFS CDE to GWI research within specific domains and selected assessments of deployment exposures. The GWI CDE recommendations were finalized in March 2018 after soliciting public comments. KEY FINDINGS GWI CDE recommendations are organized in 12 domains that include instruments, case report forms, and guidelines. Recommendations were categorized as core (essential), supplemental-highly recommended (essential for specified conditions, study types, or designs), supplemental (commonly collected, but not required), and exploratory (reasonable to use, but require further validation). Recommendations will continually be updated as GWI research progresses. SIGNIFICANCE The GWI CDEs reflect the consensus recommendations of GWI research community stakeholders and will allow studies to standardize data collection, enhance data quality, and facilitate data sharing.
Collapse
Affiliation(s)
- Devra E Cohen
- Miami VA Healthcare System, Miami, FL, United States; Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States.
| | - Kimberly A Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | | | | | - Wes Ashford
- War Related Illness and Injury Study Center, VA Palo Healthcare System, Palo Alto, CA, United States
| | - Alison Bested
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - James Bunker
- National Gulf War Resource Center, Inc., Topeka, KS, United States
| | - Amanpreet Cheema
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Devra E Cohen
- Miami VA Healthcare System, Miami, FL, United States; Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Dane Cook
- University of Wisconsin-Madison, Madison, WI, United States
| | - Jeffrey Cournoyer
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Travis Craddock
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Julia Golier
- James J. Peters VA Medical Center; Icahn School of Medicine at Mount Sinai, Bronx, NY, United States
| | - Anthony Hardie
- Veterans for Common Sense and former U.S. Army, Bradenton, FL, United States
| | - Drew Helmer
- Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Jacob B Lindheimer
- William S. Middleton Veterans Memorial Hospital, University of Wisconsin- Madison, Madison, WI, United States
| | | | | | - Maxine Krengel
- Boston VA Healthcare System; Boston University, Boston, MA, United States
| | - Shree Nadkarni
- War Related Illness and Injury Study Center, VA New Jersey Health Care System, East Orange, NJ, United States
| | - Shannon Nugent
- VA Portland Health Care System, Portland, OR, United States
| | - Bonnie Paris
- VA Information Resource Center (VIReC), Hines, IL, United States
| | - Matthew Reinhard
- War Related Illness and Injury Study Center, Washington DC VA Medical Center, Washington, DC, United States
| | - Peter Rumm
- United States Department of Veterans Affairs, Washington, DC, United States
| | - Aaron Schneiderman
- United States Department of Veterans Affairs, Washington, DC, United States
| | - Kellie J Sims
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham, NC, United States
| | - Lea Steele
- Baylor College of Medicine, Houston, TX, United States
| | - Marsha Turner
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham, NC, United States
| | - Kimberly A Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | | | - Maria Abreu
- Miami VA Healthcare System, Miami, FL, United States; Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | | | - Kristina Aenlle
- Miami VA Healthcare System, Miami, FL, United States; Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Jimmy Arocho
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States; United States Army (Retired), United States
| | - Elizabeth Balbin
- Miami VA Healthcare System, Miami, FL, United States; Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | | | - Karen Block
- Office of Research and Development, US Department of Veterans Affairs, Washington, DC, United States
| | | | - Bryann DeBeer
- Texas A&M Health Science Center, Central Texas Veterans Healthcare System, Waco, TX, United States
| | - Brian Engdahl
- Minneapolis VA Health Care System, University of Minnesota, Minneapolis, MN, United States
| | | | - Mary Ann Fletcher
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Victor Kalasinsky
- Office of Research and Development, US Department of Veterans Affairs, Washington, DC, United States
| | - Efi Kokkotou
- Harvard University, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Kristy Lidie
- United States Army and Medical Research and Material Command, Fort Detrick, MD, United States
| | | | - William Loging
- United States Marine Corps (Retired), Ft. Lauderdale, FL, United States
| | - Marianna Morris
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | | | - Giulio Pasinetti
- Icahn School of Medicine at Mount Sinai, Bronx, NY, United States
| | - Dikoma Shungu
- Weill Cornell Medical Center, New York, NY, United States
| | - Paula Waziry
- Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Jon VanLeeuwen
- University of California, VA Research Advisory Committee on Gulf War Veterans' Illnesses, San Francisco, CA, United States
| | - Jarred Younger
- The University of Alabama, Birmingham, AL, United States
| |
Collapse
|
14
|
Stanculescu D, Sepúlveda N, Lim CL, Bergquist J. Lessons From Heat Stroke for Understanding Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Neurol 2021; 12:789784. [PMID: 34966354 PMCID: PMC8710546 DOI: 10.3389/fneur.2021.789784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/11/2021] [Indexed: 01/01/2023] Open
Abstract
We here provide an overview of the pathophysiological mechanisms during heat stroke and describe similar mechanisms found in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Both conditions are characterized by disturbed homeostasis in which inflammatory pathways play a central role. Splanchnic vasoconstriction, increased gut permeability, gut-related endotoxemia, systemic inflammatory response, central nervous system dysfunction, blood coagulation disorder, endothelial-cell injury, and mitochondrial dysfunction underlie heat stroke. These mechanisms have also been documented in ME/CFS. Moreover, initial transcriptomic studies suggest that similar gene expressions are altered in both heat stroke and ME/CFS. Finally, some predisposing factors for heat stroke, such as pre-existing inflammation or infection, overlap with those for ME/CFS. Notwithstanding important differences - and despite heat stroke being an acute condition - the overlaps between heat stroke and ME/CFS suggest common pathways in the physiological responses to very different forms of stressors, which are manifested in different clinical outcomes. The human studies and animal models of heat stroke provide an explanation for the self-perpetuation of homeostatic imbalance centered around intestinal wall injury, which could also inform the understanding of ME/CFS. Moreover, the studies of novel therapeutics for heat stroke might provide new avenues for the treatment of ME/CFS. Future research should be conducted to investigate the similarities between heat stroke and ME/CFS to help identify the potential treatments for ME/CFS.
Collapse
Affiliation(s)
| | - Nuno Sepúlveda
- CEAUL—Centro de Estatística e Aplicações da Universidade de Lisboa, Lisbon, Portugal
- Department of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Chin Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry—BMC, Uppsala University, Uppsala, Sweden
- The ME/CFS Collaborative Research Center at Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Michalovicz LT, Kelly KA, Miller DB, Sullivan K, O'Callaghan JP. The β-adrenergic receptor blocker and anti-inflammatory drug propranolol mitigates brain cytokine expression in a long-term model of Gulf War Illness. Life Sci 2021; 285:119962. [PMID: 34563566 PMCID: PMC9047058 DOI: 10.1016/j.lfs.2021.119962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/03/2022]
Abstract
Aims: Growing evidence suggests that Gulf War Illness (GWI) is the result of underlying neuroimmune dysfunction. For example, previously we found that several GWI-relevant organophosphate acetylcholinesterase inhibitors produce heightened neuroinflammatory responses following subchronic exposure to stress hormone as a mimic of high physiological stress. The goal of the current study was to evaluate the potential for the β-adrenergic receptor inhibitor and anti-inflammatory drug, propranolol, to treat neuroinflammation in a novel long-term mouse model of GWI. Main methods: Adult male C57BL/6J mice received a subchronic exposure to corticosterone (CORT) at levels mimicking high physiological stress followed by exposure to the sarin surrogate, diisopropyl fluorophosphate (DFP). These mice were then re-exposed to CORT every other week for a total of five weeks, followed by a systemic immune challenge with lipopolysaccharide (LPS). Animals receiving the propranolol treatment were given a single dose (20 mg/kg, i.p.) either four or 11 days prior to the LPS challenge. The potential anti-neuroinflammatory effects of propranolol were interrogated by analysis of cytokine mRNA expression. Key findings: We found that our long-term GWI model produces a primed neuroinflammatory response to subsequent immune challenge that is dependent upon GWI-relevant organophosphate exposure. Propranolol treatment abrogated the elaboration of inflammatory cytokine mRNA expression in the brain instigated in our model, having no treatment effects in non-DFP exposed groups. Significance: Our results indicate that propranolol may be a promising therapy for GWI with the potential to treat the underlying neuroinflammation associated with the illness.
Collapse
Affiliation(s)
- Lindsay T Michalovicz
- Health Effects Laboratory Division, Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Kimberly A Kelly
- Health Effects Laboratory Division, Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diane B Miller
- Health Effects Laboratory Division, Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| |
Collapse
|
16
|
Brady CB, Robey I, Stein TD, Huber BR, Riley J, Abdul Rauf N, Spencer KR, Walt G, Adams L, Averill JG, Walker S, McKee AC, Thomson SP, Kowall NW. The Department of Veterans Affairs Gulf War Veterans' Illnesses Biorepository: Supporting Research on Gulf War Veterans' Illnesses. Brain Sci 2021; 11:1349. [PMID: 34679413 PMCID: PMC8533803 DOI: 10.3390/brainsci11101349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022] Open
Abstract
AIMS To introduce a resource supporting research on Gulf War illness (GWI) and related disorders, the Gulf War Veterans' Illnesses Biorepository (GWVIB). METHODS Gulf War era veterans (GWVs) are recruited nationally and enrolled via telephone and email/postal mail. Enrolled veterans receive annual telephone and mail follow-up to collect health data until their passing. A postmortem neuropathological examination is performed, and fixed and frozen brain and spinal cord samples are banked to support research. Investigators studying GWI and related disorders may request tissue and data from the GWVIB. RESULTS As of September 2021, 127 GWVs from 39 states were enrolled; 60 met the criteria for GWI, and 14 met the criteria for chronic multisymptom illness (CMI). Enrollees have been followed up to six years. Postmortem tissue recoveries were performed on 14 GWVs. The most commonly found neuropathologies included amyotrophic lateral sclerosis, chronic traumatic encephalopathy, and Lewy body disease. Tissue was of good quality with an average RNA integrity number of 5.8 (SD = 1.0) and ≥4.8 in all of the cases. DISCUSSION The availability of health data and high-quality CNS tissue from this well-characterized GWV cohort will support research on GWI and related disorders affecting GWVs. Enrollment is ongoing.
Collapse
Affiliation(s)
- Christopher B. Brady
- Research and Development Service, VA Boston Healthcare System, Boston, MA 02130, USA; (J.R.); (N.A.R.); (K.R.S.); (G.W.); (L.A.)
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; (B.R.H.); (N.W.K.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Ian Robey
- Southern Arizona VA Healthcare System, Tucson, AZ 85723, USA; (I.R.); (J.G.A.); (S.W.); (S.P.T.)
- Department of Endocrinology, University of Arizona, Tucson, AZ 85724, USA
| | - Thor D. Stein
- Pathology Service, VA Boston Healthcare System, Boston, MA 02130, USA; (T.D.S.); (A.C.M.)
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Veterans Affairs Medical Center, Bedford, MA 01730, USA
| | - Bertrand R. Huber
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; (B.R.H.); (N.W.K.)
- Pathology Service, VA Boston Healthcare System, Boston, MA 02130, USA; (T.D.S.); (A.C.M.)
- National Center for Posttraumatic Stress Disorder, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Jessica Riley
- Research and Development Service, VA Boston Healthcare System, Boston, MA 02130, USA; (J.R.); (N.A.R.); (K.R.S.); (G.W.); (L.A.)
| | - Nazifa Abdul Rauf
- Research and Development Service, VA Boston Healthcare System, Boston, MA 02130, USA; (J.R.); (N.A.R.); (K.R.S.); (G.W.); (L.A.)
| | - Keith R. Spencer
- Research and Development Service, VA Boston Healthcare System, Boston, MA 02130, USA; (J.R.); (N.A.R.); (K.R.S.); (G.W.); (L.A.)
| | - Gabriel Walt
- Research and Development Service, VA Boston Healthcare System, Boston, MA 02130, USA; (J.R.); (N.A.R.); (K.R.S.); (G.W.); (L.A.)
| | - Latease Adams
- Research and Development Service, VA Boston Healthcare System, Boston, MA 02130, USA; (J.R.); (N.A.R.); (K.R.S.); (G.W.); (L.A.)
| | - James G. Averill
- Southern Arizona VA Healthcare System, Tucson, AZ 85723, USA; (I.R.); (J.G.A.); (S.W.); (S.P.T.)
| | - Sean Walker
- Southern Arizona VA Healthcare System, Tucson, AZ 85723, USA; (I.R.); (J.G.A.); (S.W.); (S.P.T.)
| | - Ann C. McKee
- Pathology Service, VA Boston Healthcare System, Boston, MA 02130, USA; (T.D.S.); (A.C.M.)
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Stephen P. Thomson
- Southern Arizona VA Healthcare System, Tucson, AZ 85723, USA; (I.R.); (J.G.A.); (S.W.); (S.P.T.)
- Department of Endocrinology, University of Arizona, Tucson, AZ 85724, USA
| | - Neil W. Kowall
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; (B.R.H.); (N.W.K.)
- Neurology Service, VA Boston Healthcare System, Boston, MA 02130, USA
| |
Collapse
|
17
|
Patterson KM, Vajdic TG, Martinez GJ, Feller AG, Reynolds JM. IL-17 and IL-17C Signaling Protects the Intestinal Epithelium against Diisopropyl Fluorophosphate Exposure in an Acute Model of Gulf War Veterans' Illnesses. Immune Netw 2021; 21:e35. [PMID: 34796039 PMCID: PMC8568910 DOI: 10.4110/in.2021.21.e35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/01/2022] Open
Abstract
Gulf War Veterans' Illnesses (GWI) encompasses a broad range of unexplained symptomology specific to Veterans of the Persian Gulf War. Gastrointestinal (GI) distress is prominent in veterans with GWI and often presents as irritable bowel syndrome (IBS). Neurotoxins, including organophosphorus pesticides and sarin gas, are believed to have contributed to the development of GWI, at least in a subset of Veterans. However, the effects of such agents have not been extensively studied for their potential impact to GI disorders and immunological stability. Here we utilized an established murine model of GWI to investigate deleterious effects of diisopropyl fluorophosphate (DFP) exposure on the mucosal epithelium in vivo and in vitro. In vivo, acute DFP exposure negatively impacts the mucosal epithelium by reducing tight junction proteins and antimicrobial peptides as well as altering intestinal microbiome composition. Furthermore, DFP treatment reduced the expression of IL-17 in the colonic epithelium. Conversely, both IL-17 and IL-17C treatment could combat the negative effects of DFP and other cholinesterase inhibitors in murine intestinal organoid cells. Our findings demonstrate that acute exposure to DFP can result in rapid deterioration of mechanisms protecting the GI tract from disease. These results are relevant to suspected GWI exposures and could help explain the propensity for GI disorders in GWI Veterans.
Collapse
Affiliation(s)
- Kristen M. Patterson
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Tyler G. Vajdic
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Gustavo J. Martinez
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Axel G. Feller
- Gastroenterology Section, Captain James A. Lovell Federal Health Care Center, North Chicago, IL 60064, USA
| | - Joseph M. Reynolds
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Gastroenterology Section, Captain James A. Lovell Federal Health Care Center, North Chicago, IL 60064, USA
| |
Collapse
|
18
|
Grant SG, Ibrahim OM, Jin XL, Klimas NG, Sullivan K, Latimer JJ. Elevated somatic mutation and evidence of genomic instability in veterans with Gulf War illness. Life Sci 2021; 281:119746. [PMID: 34181965 PMCID: PMC12070809 DOI: 10.1016/j.lfs.2021.119746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 11/20/2022]
Abstract
AIMS Gulf War illness (GWI) is thought to be associated with exposures experienced by soldiers deployed in the 1991 Gulf War. A major question is how these exposures continue to influence the health of these individuals three decades later. One potentially permanent effect of such exposures is the induction of genetic mutations. We investigated whether veterans with GWI exhibited persistently elevated levels of somatic mutation. MATERIALS AND METHODS We applied the blood-based glycophorin A (GPA) somatic mutation assay to a cohort of veterans diagnosed with GWI and a set of both concurrent and historic age-matched controls. This assay quantifies red blood cells with a phenotype consistent with loss of one allele at the genetic determinant for the MN blood group, the GPA gene. KEY FINDINGS As a population, those affected with GWI exhibited an uninduced mutation frequency at the GPA locus that was effectively twice that observed in controls, a result that was statistically significant. This result was influenced by an increase in the incidence of individuals with aberrantly high mutation frequencies, seemingly higher than would be expected by dose extrapolation and consistent with the induction of localized genomic instability in the hematopoietic bone marrow stem cells. When these "outliers" were removed from consideration, the remaining affected population retained a significantly higher mean allele loss mutation frequency, suggesting that both dose-dependent bone marrow genotoxicity and induction of genomic instability are contributing to the elevation in mutation frequency in these affected veterans. SIGNIFICANCE This study provides evidence that manifestation of GWI is associated with increased cumulative exposure to agents capable of inducing persistent mutations in bone marrow stem cells. Whether these mutations are involved in the clinical aspects of the condition or are simply biomarkers of overall exposure has yet to be determined. The increased incidence of genomic instability suggests that this persistent mutation can have important delayed effects on cellular integrity.
Collapse
Affiliation(s)
- Stephen G Grant
- Department of Public Health, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America; AutoNation Institute for Breast Cancer Research, Fort Lauderdale, FL, United States of America.
| | - Omar M Ibrahim
- AutoNation Institute for Breast Cancer Research, Fort Lauderdale, FL, United States of America; Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Xiao-Lu Jin
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Nancy G Klimas
- Department of Clinical Immunology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America; Department of Medicine, Miami VA Healthcare System, Miami, FL, United States of America
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States of America
| | - Jean J Latimer
- AutoNation Institute for Breast Cancer Research, Fort Lauderdale, FL, United States of America; Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| |
Collapse
|
19
|
Carrera Arias FJ, Aenlle K, Abreu M, Holschbach MA, Michalovicz LT, Kelly KA, Klimas N, O’Callaghan JP, Craddock TJA. Modeling Neuroimmune Interactions in Human Subjects and Animal Models to Predict Subtype-Specific Multidrug Treatments for Gulf War Illness. Int J Mol Sci 2021; 22:ijms22168546. [PMID: 34445252 PMCID: PMC8395153 DOI: 10.3390/ijms22168546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023] Open
Abstract
Gulf War Illness (GWI) is a persistent chronic neuroinflammatory illness exacerbated by external stressors and characterized by fatigue, musculoskeletal pain, cognitive, and neurological problems linked to underlying immunological dysfunction for which there is no known treatment. As the immune system and the brain communicate through several signaling pathways, including the hypothalamic–pituitary–adrenal (HPA) axis, it underlies many of the behavioral and physiological responses to stressors via blood-borne mediators, such as cytokines, chemokines, and hormones. Signaling by these molecules is mediated by the semipermeable blood–brain barrier (BBB) made up of a monocellular layer forming an integral part of the neuroimmune axis. BBB permeability can be altered and even diminished by both external factors (e.g., chemical agents) and internal conditions (e.g., acute or chronic stress, or cross-signaling from the hypothalamic–pituitary–gonadal (HPG) axis). Such a complex network of regulatory interactions that possess feed-forward and feedback connections can have multiple response dynamics that may include several stable homeostatic states beyond normal health. Here we compare immune and hormone measures in the blood of human clinical samples and mouse models of Gulf War Illness (GWI) subtyped by exposure to traumatic stress for subtyping this complex illness. We do this via constructing a detailed logic model of HPA–HPG–Immune regulatory behavior that also considers signaling pathways across the BBB to neuronal–glial interactions within the brain. We apply conditional interactions to model the effects of changes in BBB permeability. Several stable states are identified in the system beyond typical health. Following alignment of the human and mouse blood profiles in the context of the model, mouse brain sample measures were used to infer the neuroinflammatory state in human GWI and perform treatment simulations using a genetic algorithm to optimize the Monte Carlo simulations of the putative treatment strategies aimed at returning the ill system back to health. We identify several ideal multi-intervention strategies and potential drug candidates that may be used to treat chronic neuroinflammation in GWI.
Collapse
Affiliation(s)
- Francisco J. Carrera Arias
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (F.J.C.A.); (K.A.); (M.A.); (N.K.)
| | - Kristina Aenlle
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (F.J.C.A.); (K.A.); (M.A.); (N.K.)
- Department of Clinical Immunology, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| | - Maria Abreu
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (F.J.C.A.); (K.A.); (M.A.); (N.K.)
- Department of Clinical Immunology, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| | - Mary A. Holschbach
- Department of Psychology & Neuroscience, College of Psychology, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
| | - Lindsay T. Michalovicz
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA; (L.T.M.); (K.A.K.); (J.P.O.)
| | - Kimberly A. Kelly
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA; (L.T.M.); (K.A.K.); (J.P.O.)
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (F.J.C.A.); (K.A.); (M.A.); (N.K.)
- Department of Clinical Immunology, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| | - James P. O’Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA; (L.T.M.); (K.A.K.); (J.P.O.)
| | - Travis J. A. Craddock
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (F.J.C.A.); (K.A.); (M.A.); (N.K.)
- Department of Clinical Immunology, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Psychology & Neuroscience, College of Psychology, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
- Department of Computer Science, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Correspondence: ; Tel.: +1-954-262-2868
| |
Collapse
|
20
|
Stanculescu D, Larsson L, Bergquist J. Theory: Treatments for Prolonged ICU Patients May Provide New Therapeutic Avenues for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front Med (Lausanne) 2021; 8:672370. [PMID: 34026797 PMCID: PMC8137963 DOI: 10.3389/fmed.2021.672370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
We here provide an overview of treatment trials for prolonged intensive care unit (ICU) patients and theorize about their relevance for potential treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Specifically, these treatment trials generally target: (a) the correction of suppressed endocrine axes, notably through a "reactivation" of the pituitary gland's pulsatile secretion of tropic hormones, or (b) the interruption of the "vicious circle" between inflammation, oxidative and nitrosative stress (O&NS), and low thyroid hormone function. There are significant parallels in the treatment trials for prolonged critical illness and ME/CFS; this is consistent with the hypothesis of an overlap in the mechanisms that prevent recovery in both conditions. Early successes in the simultaneous reactivation of pulsatile pituitary secretions in ICU patients-and the resulting positive metabolic effects-could indicate an avenue for treating ME/CFS. The therapeutic effects of thyroid hormones-including in mitigating O&NS and inflammation and in stimulating the adreno-cortical axis-also merit further studies. Collaborative research projects should further investigate the lessons from treatment trials for prolonged critical illness for solving ME/CFS.
Collapse
Affiliation(s)
| | - Lars Larsson
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry–Biomedical Center, Uppsala University, Uppsala, Sweden
- The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Latimer JJ, Alhamed A, Sveiven S, Almutairy A, Klimas NG, Abreu M, Sullivan K, Grant SG. Preliminary Evidence for a Hormetic Effect on DNA Nucleotide Excision Repair in Veterans with Gulf War Illness. Mil Med 2021; 185:e47-e52. [PMID: 31334811 PMCID: PMC7353836 DOI: 10.1093/milmed/usz177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Introduction Veterans of the 1991 Gulf War were potentially exposed to a mixture of stress, chemicals and radiation that may have contributed to the persistent symptoms of Gulf War Illness (GWI). The genotoxic effects of some of these exposures are mediated by the DNA nucleotide excision repair (NER) pathway. We hypothesized that individuals with relatively low DNA repair capacity would suffer greater damage from cumulative genotoxic exposures, some of which would persist, causing ongoing problems. Materials and Methods Blood samples were obtained from symptomatic Gulf War veterans and age-matched controls. The unscheduled DNA synthesis assay, a functional measurement of NER capacity, was performed on cultured lymphocytes, and lymphocyte mRNA was extracted and analyzed by sequencing. Results Despite our hypothesis that GWI would be associated with DNA repair deficiency, NER capacity in lymphocytes from affected GWI veterans actually exhibited a significantly elevated level of DNA repair (p = 0.016). Both total gene expression and NER gene expression successfully differentiated individuals with GWI from unaffected controls. The observed functional increase in DNA repair capacity was accompanied by an overexpression of genes in the NER pathway, as determined by RNA sequencing analysis. Conclusion We suggest that the observed elevations in DNA repair capacity and NER gene expression are indicative of a “hormetic,” i.e., induced or adaptive protective response to battlefield exposures. Normally such effects are short-term, but in these individuals this response has resulted in a long-term metabolic shift that may also be responsible for the persistent symptoms of GWI.
Collapse
Affiliation(s)
- Jean J Latimer
- Department of Pharmaceutical Sciences, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328.,South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328
| | - Abdullah Alhamed
- Department of Pharmaceutical Sciences, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328.,South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328
| | - Stefanie Sveiven
- South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328
| | - Ali Almutairy
- Department of Pharmaceutical Sciences, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328.,South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328
| | - Nancy G Klimas
- Department of Clinical Immunology, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328.,Department of Medicine, Miami VA Healthcare System, 1201 NW 16th St, Miami, FL 33313
| | - Maria Abreu
- Department of Clinical Immunology, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, 715 Albany St, Boston, MA 02118
| | - Stephen G Grant
- South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328.,Department of Public Health, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328
| |
Collapse
|
22
|
Stanculescu D, Larsson L, Bergquist J. Hypothesis: Mechanisms That Prevent Recovery in Prolonged ICU Patients Also Underlie Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front Med (Lausanne) 2021; 8:628029. [PMID: 33585528 PMCID: PMC7876311 DOI: 10.3389/fmed.2021.628029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Here the hypothesis is advanced that maladaptive mechanisms that prevent recovery in some intensive care unit (ICU) patients may also underlie Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Specifically, these mechanisms are: (a) suppression of the pituitary gland's pulsatile secretion of tropic hormones, and (b) a "vicious circle" between inflammation, oxidative and nitrosative stress (O&NS), and low thyroid hormone function. This hypothesis should be investigated through collaborative research projects.
Collapse
Affiliation(s)
| | - Lars Larsson
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry – Biomedical Center, Uppsala University, Uppsala, Sweden
- The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Abou-Donia MB, Krengel MH, Lapadula ES, Zundel CG, LeClair J, Massaro J, Quinn E, Conboy LA, Kokkotou E, Nguyen DD, Abreu M, Klimas NG, Sullivan K. Sex-Based Differences in Plasma Autoantibodies to Central Nervous System Proteins in Gulf War Veterans versus Healthy and Symptomatic Controls. Brain Sci 2021; 11:148. [PMID: 33498629 PMCID: PMC7911379 DOI: 10.3390/brainsci11020148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Veterans from the 1991 Gulf War (GW) have suffered from Gulf War illness (GWI) for nearly 30 years. This illness encompasses multiple body systems, including the central nervous system (CNS). Diagnosis and treatment of GWI is difficult because there has not been an objective diagnostic biomarker. Recently, we reported on a newly developed blood biomarker that discriminates GWI from GW healthy controls, and symptomatic controls with irritable bowel syndrome (IBS) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The present study was designed to compare levels of these biomarkers between men and women with GWI, as well as sex-specific effects in comparison to healthy GW veterans and symptomatic controls (IBS, ME/CFS). The results showed that men and women with GWI differ in 2 of 10 plasma autoantibodies, with men showing significantly elevated levels. Men and women with GWI showed significantly different levels of autoantibodies in 8 of 10 biomarkers to neuronal and glial proteins in plasma relative to controls. In summary, the present study addressed the utility of the use of plasma autoantibodies for CNS proteins to distinguish among both men and women veterans with GWI and other healthy and symptomatic control groups.
Collapse
Affiliation(s)
- Mohamed B. Abou-Donia
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Maxine H. Krengel
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; (M.H.K.); (C.G.Z.)
| | - Elizabeth S. Lapadula
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Clara G. Zundel
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; (M.H.K.); (C.G.Z.)
| | - Jessica LeClair
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA; (J.L.); (J.M.); (E.Q.)
| | - Joseph Massaro
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA; (J.L.); (J.M.); (E.Q.)
| | - Emily Quinn
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA; (J.L.); (J.M.); (E.Q.)
| | - Lisa A. Conboy
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; (L.A.C.); (E.K.)
| | - Efi Kokkotou
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; (L.A.C.); (E.K.)
| | - Daniel D. Nguyen
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA;
| | - Maria Abreu
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuroimmune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (M.A.); (N.G.K.)
- Department of Immunology, Miami VA Medical Center, Miami, FL 33125, USA
| | - Nancy G. Klimas
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuroimmune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (M.A.); (N.G.K.)
- Department of Immunology, Miami VA Medical Center, Miami, FL 33125, USA
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA;
| |
Collapse
|
24
|
Vashishtha S, Broderick G, Craddock TJA, Barnes ZM, Collado F, Balbin EG, Fletcher MA, Klimas NG. Leveraging Prior Knowledge to Recover Characteristic Immune Regulatory Motifs in Gulf War Illness. Front Physiol 2020; 11:358. [PMID: 32411011 PMCID: PMC7198798 DOI: 10.3389/fphys.2020.00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Abstract
Potentially linked to the basic physiology of stress response, Gulf War Illness (GWI) is a debilitating condition presenting with complex immune, endocrine and neurological symptoms. Here we interrogate the immune response to physiological stress by measuring 16 blood-borne immune markers at 8 time points before, during and after maximum exercise challenge in n = 12 GWI veterans and n = 11 healthy veteran controls deployed to the same theater. Immune markers were combined into functional sets and the dynamics of their joint expression described as classical rate equations. These empirical networks were further informed structurally by projection onto prior knowledge networks mined from the literature. Of the 49 literature-informed immune signaling interactions, 21 were found active in the combined exercise response data. However, only 4 signals were common to both subject groups while 7 were uniquely active in GWI and 10 uniquely active in healthy veterans. Feedforward mediation of IL-23 and IL-17 by IL-6 and IL-10 emerged as distinguishing control elements that were characteristically active in GWI versus healthy subjects. Simulated restructuring of the regulatory circuitry in GWI as a result of applying an IL-6 receptor antagonist in combination with either a Th1 (IL-2, IFNγ, and TNFα) or IL-23 receptor antagonist predicted a partial rescue of immune response elements previously associated with illness severity. Overall, results suggest that pharmacologically altering the topology of the immune response circuitry identified as active in GWI can inform on strategies that while not curative, may nonetheless deliver a reduction in symptom burden. A lasting and more complete remission in GWI may therefore require manipulation of a broader physiology, namely one that includes endocrine oversight of immune function.
Collapse
Affiliation(s)
- Saurabh Vashishtha
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, United States
| | - Gordon Broderick
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, United States.,Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Travis J A Craddock
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States.,Departments of Psychology & Neuroscience, Computer Science and Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Zachary M Barnes
- Diabetes Research Institute, University of Miami, Miami, FL, United States.,Miami Veterans Affairs Medical Center, Miami, FL, United States
| | - Fanny Collado
- Miami Veterans Affairs Medical Center, Miami, FL, United States
| | - Elizabeth G Balbin
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States.,Miami Veterans Affairs Medical Center, Miami, FL, United States
| | - Mary Ann Fletcher
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States.,Departments of Psychology & Neuroscience, Computer Science and Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, United States.,Miami Veterans Affairs Medical Center, Miami, FL, United States
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States.,Departments of Psychology & Neuroscience, Computer Science and Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, United States.,Miami Veterans Affairs Medical Center, Miami, FL, United States
| |
Collapse
|
25
|
Cheema AK, Sarria L, Bekheit M, Collado F, Almenar‐Pérez E, Martín‐Martínez E, Alegre J, Castro‐Marrero J, Fletcher MA, Klimas NG, Oltra E, Nathanson L. Unravelling myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): Gender-specific changes in the microRNA expression profiling in ME/CFS. J Cell Mol Med 2020; 24:5865-5877. [PMID: 32291908 PMCID: PMC7214164 DOI: 10.1111/jcmm.15260] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem illness characterized by medically unexplained debilitating fatigue with suggested altered immunological state. Our study aimed to explore peripheral blood mononuclear cells (PBMCs) for microRNAs (miRNAs) expression in ME/CFS subjects under an exercise challenge. The findings highlight the immune response and inflammation links to differential miRNA expression in ME/CFS. The present study is particularly important in being the first to uncover the differences that exist in miRNA expression patterns in males and females with ME/CFS in response to exercise. This provides new evidence for the understanding of differential miRNA expression patterns and post-exertional malaise in ME/CFS. We also report miRNA expression pattern differences associating with the nutritional status in individuals with ME/CFS, highlighting the effect of subjects' metabolic state on molecular changes to be considered in clinical research within the NINDS/CDC ME/CFS Common Data Elements. The identification of gender-based miRNAs importantly provides new insights into gender-specific ME/CFS susceptibility and demands exploration of sex-suited ME/CFS therapeutics.
Collapse
Affiliation(s)
- Amanpreet K. Cheema
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of NutritionDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
| | - Leonor Sarria
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
| | - Mina Bekheit
- Halmos College of Natural Sciences and OceanographyNova Southeastern UniversityFort LauderdaleFLUSA
| | - Fanny Collado
- Department of Veterans AffairsMiami VA Healthcare System, Research ServiceMiamiFLUSA
- South Florida Veterans Affairs Foundation for Research and Education IncFort LauderdaleFLUSA
| | - Eloy Almenar‐Pérez
- Escuela de DoctoradoUniversidad Católica de Valencia San Vicente MártirValenciaSpain
| | | | - Jose Alegre
- Vall d'Hebron University HospitalVall d'Hebron Research InstituteUniversitat Autónoma de BarcelonaBarcelonaSpain
| | - Jesus Castro‐Marrero
- Vall d'Hebron University HospitalVall d'Hebron Research InstituteUniversitat Autónoma de BarcelonaBarcelonaSpain
| | - Mary A. Fletcher
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of Veterans AffairsMiami VA Healthcare System, Research ServiceMiamiFLUSA
- South Florida Veterans Affairs Foundation for Research and Education IncFort LauderdaleFLUSA
| | - Nancy G. Klimas
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of Veterans AffairsMiami VA Healthcare System, Research ServiceMiamiFLUSA
- South Florida Veterans Affairs Foundation for Research and Education IncFort LauderdaleFLUSA
| | - Elisa Oltra
- School of MedicineUniversidad Católica de Valencia San Vicente MártirValenciaSpain
| | - Lubov Nathanson
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of NutritionDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Halmos College of Natural Sciences and OceanographyNova Southeastern UniversityFort LauderdaleFLUSA
| |
Collapse
|
26
|
Jaundoo R, Craddock TJA. DRUGPATH: The Drug Gene Pathway Meta-Database. Int J Mol Sci 2020; 21:E3171. [PMID: 32365960 PMCID: PMC7246871 DOI: 10.3390/ijms21093171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 01/10/2023] Open
Abstract
The complexity of modern-day diseases often requires drug treatment therapies consisting of multiple pharmaceutical interventions, which can lead to adverse drug reactions for patients. A priori prediction of these reactions would not only improve the quality of life for patients but also save both time and money in regards to pharmaceutical research. Consequently, the drug-gene-pathway (DRUGPATH) meta-database was developed to map known interactions between drugs, genes, and pathways among other information in order to easily identify potential adverse drug events. DRUGPATH utilizes expert-curated sources such as PharmGKB, DrugBank, and the FDA's NDC database to identify known as well as previously unknown/overlooked relationships, and currently contains 12,940 unique drugs, 3933 unique pathways, 5185 unique targets, and 3662 unique genes. Moreover, there are 59,561 unique drug-gene interactions, 77,808 unique gene-pathway interactions, and over 1 million unique drug-pathway interactions.
Collapse
Affiliation(s)
- Rajeev Jaundoo
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Travis J. A. Craddock
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33313, USA
- Departments of Psychology and Neuroscience, Computer Science, and Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL 33313, USA
| |
Collapse
|
27
|
O'Callaghan JP, Miller DB. Neuroinflammation disorders exacerbated by environmental stressors. Metabolism 2019; 100S:153951. [PMID: 31610852 PMCID: PMC6800732 DOI: 10.1016/j.metabol.2019.153951] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023]
Abstract
Neuroinflammation is a condition characterized by the elaboration of proinflammatory mediators within the central nervous system. Neuroinflammation has emerged as a dominant theme in contemporary neuroscience due to its association with neurodegenerative disease states such as Alzheimer's disease, Parkinson's disease and Huntington's disease. While neuroinflammation often is associated with damage to the CNS, it also can occur in the absence of neurodegeneration, e.g., in association with systemic infection. The "acute phase" inflammatory response to tissue injury or infections instigates neuroinflammation-driven "sickness behavior," i.e. a constellation of symptoms characterized by loss of appetite, fever, muscle pain, fatigue and cognitive problems. Typically, sickness behavior accompanies an inflammatory response that resolves quickly and serves to restore the body to homeostasis. However, recurring and sometimes chronic sickness behavior disorders can occur in the absence of an underlying cause or attendant neuropathology. Here, we review myalgic enchepalomyelitis/chronic fatigue syndrome (ME/CFS), Gulf War Illness (GWI), and chemobrain as examples of such disorders and propose that they can be exacerbated and perhaps initiated by a variety of environmental stressors. Diverse environmental stressors may disrupt the hypothalamic pituitary adrenal (HPA) axis and contribute to the degree and duration of a variety of neuroinflammation-driven diseases.
Collapse
Affiliation(s)
- James P O'Callaghan
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America.
| | - Diane B Miller
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| |
Collapse
|
28
|
Jeffrey MG, Krengel M, Kibler JL, Zundel C, Klimas NG, Sullivan K, Craddock TJA. Neuropsychological Findings in Gulf War Illness: A Review. Front Psychol 2019; 10:2088. [PMID: 31616335 PMCID: PMC6775202 DOI: 10.3389/fpsyg.2019.02088] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 08/28/2019] [Indexed: 12/11/2022] Open
Abstract
This review paper summarizes the accumulation of research investigating neuropsychological outcomes in veterans with Gulf War illness (GWI). Earlier research focused on Gulf War veterans (GW) who were deployed versus non-deployed, as well as those who were symptomatic versus asymptomatic, or compared neuropsychological test results to published norms. Further research became more sophisticated, investigating specific GWI criteria, as well as the result of neurotoxicant exposure and the relationship to possible neurocognitive outcomes. As the early research supported both psychological and physiological effects on GWI; current research as summarized in this literature review supports the presence of neuropsychological deficits, particularly in the domains of attention, executive functioning, memory, and motor functioning related to chemical exposures that can be exacerbated by comorbid mood-related conditions. The same test battery has not been used consistently making it difficult to compare results among studies. Therefore, researchers created a resource to provide recommendations for the recently listed Neuropsychological Tests for Common Data Elements (CDEs) for use in all future GWI studies. Future research is necessary to further understand patterns of neuropsychological test data and how these decrements may relate to immunological or other biological markers, and the impact of trauma from physical and psychological stressors. In conclusion, there is consistent evidence that GWI is characterized by neuropsychological decrements - with future research these findings may aid in the diagnosis and assessment of treatment trial efficacy of GW veterans.
Collapse
Affiliation(s)
- Mary G. Jeffrey
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | | | - Jeffrey L. Kibler
- Department of Clinical and School Psychology, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Clara Zundel
- VA Boston Healthcare System, Boston, MA, United States
| | - Nancy G. Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, United States
- Miami VA Medical Center, Miami, FL, United States
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Travis J. A. Craddock
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Computer Science, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
29
|
Kashi AA, Davis RW, Phair RD. The IDO Metabolic Trap Hypothesis for the Etiology of ME/CFS. Diagnostics (Basel) 2019; 9:E82. [PMID: 31357483 PMCID: PMC6787624 DOI: 10.3390/diagnostics9030082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating noncommunicable disease brandishing an enormous worldwide disease burden with some evidence of inherited genetic risk. Absence of measurable changes in patients' standard blood work has necessitated ad hoc symptom-driven therapies and a dearth of mechanistic hypotheses regarding its etiology and possible cure. A new hypothesis, the indolamine-2,3-dioxygenase (IDO) metabolic trap, was developed and formulated as a mathematical model. The historical occurrence of ME/CFS outbreaks is a singular feature of the disease and implies that any predisposing genetic mutation must be common. A database search for common damaging mutations in human enzymes produces 208 hits, including IDO2 with four such mutations. Non-functional IDO2, combined with well-established substrate inhibition of IDO1 and kinetic asymmetry of the large neutral amino acid transporter, LAT1, yielded a mathematical model of tryptophan metabolism that displays both physiological and pathological steady-states. Escape from the pathological one requires an exogenous perturbation. This model also identifies a critical point in cytosolic tryptophan abundance beyond which descent into the pathological steady-state is inevitable. If, however, means can be discovered to return cytosolic tryptophan below the critical point, return to the normal physiological steady-state is assured. Testing this hypothesis for any cell type requires only labelled tryptophan, a means to measure cytosolic tryptophan and kynurenine, and the standard tools of tracer kinetics.
Collapse
Affiliation(s)
- Alex A Kashi
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Ronald W Davis
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
- Departments of Biochemistry and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Robert D Phair
- Integrative Bioinformatics Inc., Mountain View, CA 94041, USA.
| |
Collapse
|
30
|
Missailidis D, Annesley SJ, Fisher PR. Pathological Mechanisms Underlying Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Diagnostics (Basel) 2019; 9:E80. [PMID: 31330791 PMCID: PMC6787592 DOI: 10.3390/diagnostics9030080] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The underlying molecular basis of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is not well understood. Characterized by chronic, unexplained fatigue, a disabling payback following exertion ("post-exertional malaise"), and variably presenting multi-system symptoms, ME/CFS is a complex disease, which demands a concerted biomedical investigation from disparate fields of expertise. ME/CFS research and patient treatment have been challenged by the lack of diagnostic biomarkers and finding these is a prominent direction of current work. Despite these challenges, modern research demonstrates a tangible biomedical basis for the disorder across many body systems. This evidence is mostly comprised of disturbances to immunological and inflammatory pathways, autonomic and neurological dysfunction, abnormalities in muscle and mitochondrial function, shifts in metabolism, and gut physiology or gut microbiota disturbances. It is possible that these threads are together entangled as parts of an underlying molecular pathology reflecting a far-reaching homeostatic shift. Due to the variability of non-overlapping symptom presentation or precipitating events, such as infection or other bodily stresses, the initiation of body-wide pathological cascades with similar outcomes stemming from different causes may be implicated in the condition. Patient stratification to account for this heterogeneity is therefore one important consideration during exploration of potential diagnostic developments.
Collapse
Affiliation(s)
- Daniel Missailidis
- Department of Physiology Anatomy and Microbiology, La Trobe University, VIC 3086, Australia
| | - Sarah J Annesley
- Department of Physiology Anatomy and Microbiology, La Trobe University, VIC 3086, Australia
| | - Paul R Fisher
- Department of Physiology Anatomy and Microbiology, La Trobe University, VIC 3086, Australia.
| |
Collapse
|
31
|
Trivedi MS, Abreu MM, Sarria L, Rose N, Ahmed N, Beljanski V, Fletcher MA, Klimas NG, Nathanson L. Alterations in DNA Methylation Status Associated with Gulf War Illness. DNA Cell Biol 2019; 38:561-571. [DOI: 10.1089/dna.2018.4469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Malav S. Trivedi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida
| | - Maria M. Abreu
- Miami VAMC, Miami, Florida
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida
| | - Leonor Sarria
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida
| | - Natasha Rose
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida
| | - Nida Ahmed
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida
| | - Vladimir Beljanski
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida
| | - Mary A. Fletcher
- Miami VAMC, Miami, Florida
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida
| | - Nancy G. Klimas
- Miami VAMC, Miami, Florida
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida
| | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida
| |
Collapse
|
32
|
Morris MC, Cooney KE, Sedghamiz H, Abreu M, Collado F, Balbin EG, Craddock TJA, Klimas NG, Broderick G, Fletcher MA. Leveraging Prior Knowledge of Endocrine Immune Regulation in the Therapeutically Relevant Phenotyping of Women With Chronic Fatigue Syndrome. Clin Ther 2019; 41:656-674.e4. [PMID: 30929860 PMCID: PMC6478538 DOI: 10.1016/j.clinthera.2019.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE The complex and varied presentation of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has made it difficult to diagnose, study, and treat. Its symptoms and likely etiology involve multiple components of endocrine and immune regulation, including the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-gonadal axis, and their interactive oversight of immune function. We propose that the persistence of ME/CFS may involve changes in the regulatory interactions across these physiological axes. We also propose that the robustness of this new pathogenic equilibrium may at least in part explain the limited success of conventional single-target therapies. METHODS A comprehensive model was constructed of female endocrine-immune signaling consisting of 28 markers linked by 214 documented regulatory interactions. This detailed model was then constrained to adhere to experimental measurements in a subset of 17 candidate immune markers measured in peripheral blood of patients with ME/CFS and healthy control subjects before, during, and after a maximal exercise challenge. A set of 26 competing numerical models satisfied these data to within 5% error. FINDINGS Mechanistically informed predictions of endocrine and immune markers that were either unmeasured or exhibited high subject-to-subject variability pointed to possible context-specific overexpression in ME/CFS at rest of corticotropin-releasing hormone, chemokine (C-X-C motif) ligand 8, estrogen, follicle-stimulating hormone (FSH), gonadotropin-releasing hormone 1, interleukin (IL)-23, and luteinizing hormone, and underexpression of adrenocorticotropic hormone, cortisol, interferon-γ, IL-10, IL-17, and IL-1α. Simulations of rintatolimod and rituximab treatment predicted a shift in the repertoire of available endocrine-immune regulatory regimens. Rintatolimod was predicted to make available substantial remission in a significant subset of subjects, in particular those with low levels of IL-1α, IL-17, and cortisol; intermediate levels of progesterone and FSH; and high estrogen levels. Rituximab treatment was predicted to support partial remission in a smaller subset of patients with ME/CFS, specifically those with low norepinephrine, IL-1α, chemokine (C-X-C motif) ligand 8, and cortisol levels; intermediate FSH and gonadotropin-releasing hormone 1 levels; and elevated expression of tumor necrosis factor-α, luteinizing hormone, IL-12, and B-cell activation. IMPLICATIONS Applying a rigorous filter of known signaling mechanisms to experimentally measured immune marker expression in ME/CFS has highlighted potential new context-specific markers of illness. These novel endocrine and immune markers may offer useful candidates in delineating new subtypes of ME/CFS and may inform on refinements to the inclusion criteria and instrumentation of new and ongoing trials involving rintatolimod and rituximab treatment protocols.
Collapse
Affiliation(s)
- Matthew C Morris
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA
| | - Katherine E Cooney
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA
| | - Hooman Sedghamiz
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA
| | - Maria Abreu
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Fanny Collado
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Elizabeth G Balbin
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Travis J A Craddock
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Departments of Psychology and Neuroscience, Computer Science, and Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Nancy G Klimas
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Gordon Broderick
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA; Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA.
| | - Mary Ann Fletcher
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Miami Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
33
|
Zundel CG, Krengel MH, Heeren T, Yee MK, Grasso CM, Janulewicz Lloyd PA, Coughlin SS, Sullivan K. Rates of Chronic Medical Conditions in 1991 Gulf War Veterans Compared to the General Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16060949. [PMID: 30884809 PMCID: PMC6466358 DOI: 10.3390/ijerph16060949] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 11/16/2022]
Abstract
Prevalence of nine chronic medical conditions in the population-based Ft. Devens Cohort (FDC) of GW veterans were compared with the population-based 2013–2014 National Health and Nutrition Examination Survey (NHANES) cohort. Excess prevalence was calculated as the difference in prevalence estimates from the Ft. Devens and NHANES cohorts; and confidence intervals and p-values are based on the standard errors for the two prevalence estimates. FDC males were at increased risk for reporting seven chronic medical conditions compared with NHANES males. FDC females were at decreased risk for high blood pressure and increased risk for diabetes when compared with NHANES females. FDC veterans reporting war-related chemical weapons exposure showed higher risk of high blood pressure; diabetes; arthritis and chronic bronchitis while those reporting taking anti-nerve gas pills had increased risk of heart attack and diabetes. GW veterans are at higher risk of chronic conditions than the general population and these risks are associated with self-reported toxicant exposures.
Collapse
Affiliation(s)
- Clara G Zundel
- Research Service, VA Boston Healthcare System, Boston, MA 02130, USA.
- Division of Graduate Medical Sciences, Behavioral Neuroscience, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Maxine H Krengel
- Research Service, VA Boston Healthcare System, Boston, MA 02130, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Timothy Heeren
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA.
| | - Megan K Yee
- Research Service, VA Boston Healthcare System, Boston, MA 02130, USA.
| | - Claudia M Grasso
- Research Service, VA Boston Healthcare System, Boston, MA 02130, USA.
| | | | - Steven S Coughlin
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA.
| |
Collapse
|
34
|
Richman S, Morris MC, Broderick G, Craddock TJA, Klimas NG, Fletcher MA. Pharmaceutical Interventions in Chronic Fatigue Syndrome: A Literature-based Commentary. Clin Ther 2019; 41:798-805. [PMID: 30871727 DOI: 10.1016/j.clinthera.2019.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/11/2019] [Indexed: 12/22/2022]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disorder characterized by prolonged periods of fatigue, chronic pain, depression, and a complex constellation of other symptoms. Currently, ME/CFS has no known cause, nor are the mechanisms of illness well understood. Therefore, with few exceptions, attempts to treat ME/CFS have been directed mainly toward symptom management. These treatments include antivirals, pain relievers, antidepressants, and oncologic agents as well as other single-intervention treatments. Results of these trials have been largely inconclusive and, in some cases, contradictory. Contributing factors include a lack of well-designed and -executed studies and the highly heterogeneous nature of ME/CFS, which has made a single etiology difficult to define. Because the majority of single-intervention treatments have shown little efficacy, it may instead be beneficial to explore broader-acting combination therapies in which a more focused precision-medicine approach is supported by a systems-level analysis of endocrine and immune co-regulation.
Collapse
Affiliation(s)
- Spencer Richman
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA; Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA
| | - Matthew C Morris
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA; Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA
| | - Gordon Broderick
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA; Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA; Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA.
| | - Travis J A Craddock
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Departments of Psychology and Neuroscience, Computer Science, Nova Southeastern University, Fort Lauderdale, FL, USA; Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Nancy G Klimas
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Mary Ann Fletcher
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
35
|
Jeffrey MG, Nathanson L, Aenlle K, Barnes ZM, Baig M, Broderick G, Klimas NG, Fletcher MA, Craddock TJA. Treatment Avenues in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Split-gender Pharmacogenomic Study of Gene-expression Modules. Clin Ther 2019; 41:815-835.e6. [PMID: 30851951 DOI: 10.1016/j.clinthera.2019.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/09/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating multisymptom illness impacting up to 1 million people in the United States. As the pathogenesis and etiology of this complex condition are unclear, prospective treatments are limited. Identifying US Food and Drug Administration-approved drugs that may be repositioned as treatments for ME/CFS may offer a rapid and cost-effective solution. METHODS Here we used gene-expression data from 33 patients with Fukuda-defined ME/CFS (23 females, 10 males) and 21 healthy demographically comparable controls (15 females, 6 males) to identify differential expression of predefined gene-module sets based on nonparametric statistics. Differentially expressed gene modules were then annotated via over-representation analysis using the Consensus Pathway database. Differentially expressed modules were then regressed onto measures of fatigue and cross-referenced with drug atlas and pharmacogenomics databases to identify putative treatment agents. FINDINGS The top 1% of modules identified in males indicated small effect sizes in modules associated with immune regulation and mitochondrial dysfunction. In females, modules identified included those related to immune factors and cardiac/blood factors, returning effect sizes ranging from very small to intermediate (0.147 < Cohen δ < 0.532). Regression analysis indicated that B-cell receptors, T-cell receptors, tumor necrosis factor α, transforming growth factor β, and metabolic and cardiac modules were strongly correlated with multiple composite measures of fatigue. Cross-referencing identified genes with pharmacogenomics data indicated immunosuppressants as potential treatments of ME/CFS symptoms. IMPLICATIONS The findings from our analysis suggest that ME/CFS symptoms are perpetuated by immune dysregulation that may be approached via immune modulation-based treatment strategies.
Collapse
Affiliation(s)
- Mary G Jeffrey
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA; College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Lubov Nathanson
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA; Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Kristina Aenlle
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA; Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale, FL, USA; Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Zachary M Barnes
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA; Miami Veterans Affairs Medical Center, Miami, FL, USA; Miller School of Medicine, University of Miami, Miami, FL, USA; Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Mirza Baig
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Gordon Broderick
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA; College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, USA; Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale, FL, USA; Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA; College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, USA; Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Mary Ann Fletcher
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA; Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale, FL, USA; Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Travis J A Craddock
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA; College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, USA; Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale, FL, USA; Department of Computer Science, Nova Southeastern University, Ft. Lauderdale, FL, USA.
| |
Collapse
|
36
|
Using a Consensus Docking Approach to Predict Adverse Drug Reactions in Combination Drug Therapies for Gulf War Illness. Int J Mol Sci 2018; 19:ijms19113355. [PMID: 30373189 PMCID: PMC6274917 DOI: 10.3390/ijms19113355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic multisymptom illness characterized by fatigue, musculoskeletal pain, and gastrointestinal and cognitive dysfunction believed to stem from chemical exposures during the 1990⁻1991 Persian Gulf War. There are currently no treatments; however, previous studies have predicted a putative multi-intervention treatment composed of inhibiting Th1 immune cytokines followed by inhibition of the glucocorticoid receptor (GCR) to treat GWI. These predictions suggest the use of specific monoclonal antibodies or suramin to target interleukin-2 and tumor necrosis factor α , followed by mifepristone to inhibit the GCR. In addition to this putative treatment strategy, there exist a variety of medications that target GWI symptomatology. As pharmaceuticals are promiscuous molecules, binding to multiple sites beyond their intended targets, leading to off-target interactions, it is key to ensure that none of these medications interfere with the proposed treatment avenue. Here, we used the drug docking programs AutoDock 4.2, AutoDock Vina, and Schrödinger's Glide to assess the potential off-target immune and hormone interactions of 43 FDA-approved drugs commonly used to treat GWI symptoms in order to determine their putative polypharmacology and minimize adverse drug effects in a combined pharmaceutical treatment. Several of these FDA-approved drugs were predicted to be novel binders of immune and hormonal targets, suggesting caution for their use in the proposed GWI treatment strategy symptoms.
Collapse
|
37
|
Craddock TJA, Michalovicz LT, Kelly KA, Rice MA, Miller DB, Klimas NG, Morris M, O'Callaghan JP, Broderick G. A Logic Model of Neuronal-Glial Interaction Suggests Altered Homeostatic Regulation in the Perpetuation of Neuroinflammation. Front Cell Neurosci 2018; 12:336. [PMID: 30374291 PMCID: PMC6196274 DOI: 10.3389/fncel.2018.00336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022] Open
Abstract
Aberrant inflammatory signaling between neuronal and glial cells can develop into a persistent sickness behavior-related disorders, negatively impacting learning, memory, and neurogenesis. While there is an abundance of literature describing these interactions, there still lacks a comprehensive mathematical model describing the complex feed-forward and feedback mechanisms of neural-glial interaction. Here we compile molecular and cellular signaling information from various studies and reviews in the literature to create a logically-consistent, theoretical model of neural-glial interaction in the brain to explore the role of neuron-glia homeostatic regulation in the perpetuation of neuroinflammation. Logic rules are applied to this connectivity diagram to predict the system's homeostatic behavior. We validate our model predicted homeostatic profiles against RNAseq gene expression profiles in a mouse model of stress primed neuroinflammation. A meta-analysis was used to calculate the significance of similarity between the inflammatory profiles of mice exposed to diisopropyl fluorophostphate (DFP) [with and without prior priming by the glucocorticoid stress hormone corticosterone (CORT)], with the equilibrium states predicted by the model, and to provide estimates of the degree of the neuroinflammatory response. Beyond normal homeostatic regulation, our model predicts an alternate self-perpetuating condition consistent with chronic neuroinflammation. RNAseq gene expression profiles from the cortex of mice exposed to DFP and CORT+DFP align with this predicted state of neuroinflammation, whereas the alignment to CORT alone was negligible. Simulations of putative treatment strategies post-exposure were shown to be theoretically capable of returning the system to a state of typically healthy regulation with broad-acting anti-inflammatory agents showing the highest probability of success. The results support a role for the brain's own homeostatic drive in perpetuating the chronic neuroinflammation associated with exposure to the organophosphate DFP, with and without CORT priming. The deviation of illness profiles from exact model predictions suggests the presence of additional factors or of lasting changes to the brain's regulatory circuitry specific to each exposure.
Collapse
Affiliation(s)
- Travis J A Craddock
- Department of Psychology & Neuroscience, Nova Southeastern University, Ft. Lauderdale, FL, United States.,Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States.,Department of Computer Science, Nova Southeastern University, Ft. Lauderdale, FL, United States.,Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Lindsay T Michalovicz
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Kimberly A Kelly
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Mark A Rice
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Diane B Miller
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States.,Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale, FL, United States.,Miami Veterans Affairs Medical Center, Miami, FL, United States
| | - Mariana Morris
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States.,Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Gordon Broderick
- Department of Psychology & Neuroscience, Nova Southeastern University, Ft. Lauderdale, FL, United States.,Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States.,Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, United States
| |
Collapse
|
38
|
Macht VA, Woodruff JL, Grillo CA, Wood CS, Wilson MA, Reagan LP. Pathophysiology in a model of Gulf War Illness: Contributions of pyridostigmine bromide and stress. Psychoneuroendocrinology 2018; 96:195-202. [PMID: 30041099 DOI: 10.1016/j.psyneuen.2018.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/29/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
Abstract
During the Gulf War, prophylactic treatment with pyridostigmine bromide (PB) along with the stress of deployment may have caused unexpected alterations in neural and immune function, resulting in a host of cognitive deficits which have become clinically termed Gulf War Illness (GWI). In order to test this interaction between PB and stress, the following study used a rodent model of GWI to examine how combinations of repeated restraint stress and PB induced alterations of peripheral cholinesterase (ChE) activity, corticosterone (CORT) levels, and cytokines on the last day of treatment, and then 10 days and three months post-treatment. Results indicate that PB decreases ChE activity acutely but sensitizes it by three months post-treatment selectively in rats subjected to stress. Similarly, while stress increased CORT levels acutely, rats in the PB/stressed condition continued to exhibit elevations in CORT at the delayed time point, indicating that PB and stress interact to progressively disrupt homeostasis in several peripheral measures. Because memory deficits are also common in clinical populations with GWI, we examined the effects of PB and stress on contextual fear conditioning. PB exacerbates stress-induced impairments in contextual fear conditioning ten days post-treatment, but protects against stress-induced augmentation of contextual fear conditioning at three months post-treatment. Collectively, these results provide critical insight as to how PB and stress may interact to contribute to the pathophysiological progression of GWI.
Collapse
Affiliation(s)
- V A Macht
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; University of South Carolina, Department of Psychology, Columbia, SC, USA
| | - J L Woodruff
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - C A Grillo
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - C S Wood
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - M A Wilson
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; University of South Carolina, Department of Psychology, Columbia, SC, USA; Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC, USA
| | - L P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC, USA.
| |
Collapse
|
39
|
Sedghamiz H, Morris M, Craddock TJA, Whitley D, Broderick G. High-fidelity discrete modeling of the HPA axis: a study of regulatory plasticity in biology. BMC SYSTEMS BIOLOGY 2018; 12:76. [PMID: 30016990 PMCID: PMC6050677 DOI: 10.1186/s12918-018-0599-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/26/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND The hypothalamic-pituitary-adrenal (HPA) axis is a central regulator of stress response and its dysfunction has been associated with a broad range of complex illnesses including Gulf War Illness (GWI) and Chronic Fatigue Syndrome (CFS). Though classical mathematical approaches have been used to model HPA function in isolation, its broad regulatory interactions with immune and central nervous function are such that the biological fidelity of simulations is undermined by the limited availability of reliable parameter estimates. METHOD Here we introduce and apply a generalized discrete formalism to recover multiple stable regulatory programs of the HPA axis using little more than connectivity between physiological components. This simple discrete model captures cyclic attractors such as the circadian rhythm by applying generic constraints to a minimal parameter set; this is distinct from Ordinary Differential Equation (ODE) models, which require broad and precise parameter sets. Parameter tuning is accomplished by decomposition of the overall regulatory network into isolated sub-networks that support cyclic attractors. Network behavior is simulated using a novel asynchronous updating scheme that enforces priority with memory within and between physiological compartments. RESULTS Consistent with much more complex conventional models of the HPA axis, this parsimonious framework supports two cyclic attractors, governed by higher and lower levels of cortisol respectively. Importantly, results suggest that stress may remodel the stability landscape of this system, favoring migration from one stable circadian cycle to the other. Access to each regime is dependent on HPA axis tone, captured here by the tunable parameters of the multi-valued logic. Likewise, an idealized glucocorticoid receptor blocker alters the regulatory topology such that maintenance of persistently low cortisol levels is rendered unstable, favoring a return to normal circadian oscillation in both cortisol and glucocorticoid receptor expression. CONCLUSION These results emphasize the significance of regulatory connectivity alone and how regulatory plasticity may be explored using simple discrete logic and minimal data compared to conventional methods.
Collapse
Affiliation(s)
- Hooman Sedghamiz
- Center for Clinical Systems Biology, Rochester General Hospital, 1425 Portland Ave, Rochester, 14621 US
| | - Matthew Morris
- Center for Clinical Systems Biology, Rochester General Hospital, 1425 Portland Ave, Rochester, 14621 US
| | - Travis J. A. Craddock
- Institute for Neuro Immune Medicine, Nova Southeastern University, 8501 SW 124th Avenue, Davie, 33183 US
- Departments of Psychology and Neuroscience, Computer Science, and Clinical Immunology, Nova Southeastern University, 8501 SW 124th Avenue, Davie, 33183 US
| | - Darrell Whitley
- School of Computer Science, Colorado State University, University Ave, Fort Collins, 80521 US
| | - Gordon Broderick
- Center for Clinical Systems Biology, Rochester General Hospital, 1425 Portland Ave, Rochester, 14621 US
- Biomedical Engineering Department, Rochester Institute of Technology, One Lomb Memorial Drive, Rochester, 14623 US
| |
Collapse
|
40
|
Breaking Away: The Role of Homeostatic Drive in Perpetuating Depression. Methods Mol Biol 2018. [PMID: 29705846 DOI: 10.1007/978-1-4939-7828-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
We propose that the complexity of regulatory interactions modulating brain neurochemistry and behavior is such that multiple stable responses may be supported, and that some of these alternate regulatory programs may play a role in perpetuating persistent psychological dysfunction. To explore this, we constructed a model network representing major neurotransmission and behavioral mechanisms reported in literature as discrete logic circuits. Connectivity and information flow through this biobehavioral circuitry supported two distinct and stable regulatory programs. One such program perpetuated a depressive state with a characteristic neurochemical signature including low serotonin. Further analysis suggested that small irregularities in glutamate levels may render this pathology more directly accessible. Computer simulations mimicking selective serotonin reuptake inhibitor (SSRI) therapy in the presence of everyday stressors predicted recidivism rates similar to those reported clinically and highlighted the potentially significant benefit of concurrent behavioral stress management therapy.
Collapse
|
41
|
Tory Toole J, Rice MA, Cargill J, Craddock TJA, Nierenberg B, Klimas NG, Fletcher MA, Morris M, Zysman J, Broderick G. Increasing Resilience to Traumatic Stress: Understanding the Protective Role of Well-Being. Methods Mol Biol 2018; 1781:87-100. [PMID: 29705844 DOI: 10.1007/978-1-4939-7828-1_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The brain maintains homeostasis in part through a network of feedback and feed-forward mechanisms, where neurochemicals and immune markers act as mediators. Using a previously constructed model of biobehavioral feedback, we found that in addition to healthy equilibrium another stable regulatory program supported chronic depression and anxiety. Exploring mechanisms that might underlie the contributions of subjective well-being to improved therapeutic outcomes in depression, we iteratively screened 288 candidate feedback patterns linking well-being to molecular signaling networks for those that maintained the original homeostatic regimes. Simulating stressful trigger events on each candidate network while maintaining high levels of subjective well-being isolated a specific feedback network where well-being was promoted by dopamine and acetylcholine, and itself promoted norepinephrine while inhibiting cortisol expression. This biobehavioral feedback mechanism was especially effective in reproducing well-being's clinically documented ability to promote resilience and protect against onset of depression and anxiety.
Collapse
Affiliation(s)
- J Tory Toole
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Mark A Rice
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, USA.,Center for Clinical Systems Biology, Rochester General Hospital Research Institute, Rochester, NY, USA
| | - Jordan Cargill
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Travis J A Craddock
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, USA.,Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Barry Nierenberg
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA.,Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Mary Ann Fletcher
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA.,Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Mariana Morris
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA.,Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Joel Zysman
- Center for Computational Science, University of Miami, Miami, FL, USA
| | - Gordon Broderick
- Center for Clinical Systems Biology, Rochester General Hospital Research Institute, Rochester, NY, USA. .,Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA.
| |
Collapse
|
42
|
Abstract
Study Design Controlled laboratory study. Background Spinal manipulation (SM) can trigger a cascade of responses involving multiple systems, including the sympathetic nervous system and the endocrine system, specifically, the hypothalamic-pituitary axis. However, no manual therapy study has investigated the neuroendocrine response to SM (ie, sympathetic nervous system-hypothalamic-pituitary axis) in the same trial. Objective To determine short-term changes in sympathetic nervous system activity, heart rate variability, and endocrine activity (cortisol, testosterone, and testosterone-cortisol [T/C] ratio) following a thoracic SM. Methods Twenty-four healthy men aged between 18 and 45 years were randomized into 2 groups: thoracic SM (n = 12) and sham (n = 12). Outcome measures were salivary cortisol (micrograms per deciliter), salivary testosterone (picograms per milliliter), T/C ratio, heart rate variability, and changes in oxyhemoglobin concentration of the right calf muscle (micromoles per liter). Measurements were done before and at 5 minutes, 30 minutes, and approximately 6 hours after intervention. Results A statistically significant group-by-time interaction was noted for T/C ratio (P<.05) and salivary cortisol (P<.01) concentrations. Significant between-group differences were noted for salivary cortisol concentration at 5 minutes (mean difference, 0.35; 95% confidence interval: 0.12, 0.6; interaction: P<.01) and for T/C ratio at 6 hours postintervention (mean difference, -0.09; 95% confidence interval: -0.16, -0.04; P = .02). However, SM did not differentially alter oxyhemoglobin, testosterone, or heart rate variability relative to responses in the sham group. Conclusion Thoracic SM resulted in an immediate decrease in salivary cortisol concentration and reduced T/C ratio 6 hours after intervention. A pattern of immediate sympathetic excitation was also observed in the SM group. J Orthop Sports Phys Ther 2017;47(9):617-627. Epub 13 Jul 2017. doi:10.2519/jospt.2017.7348.
Collapse
|
43
|
Soukup O, Winder M, Killi UK, Wsol V, Jun D, Kuca K, Tobin G. Acetylcholinesterase Inhibitors and Drugs Acting on Muscarinic Receptors- Potential Crosstalk of Cholinergic Mechanisms During Pharmacological Treatment. Curr Neuropharmacol 2017; 15:637-653. [PMID: 27281175 PMCID: PMC5543679 DOI: 10.2174/1570159x14666160607212615] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/28/2016] [Accepted: 05/31/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Pharmaceuticals with targets in the cholinergic transmission have been used for decades and are still fundamental treatments in many diseases and conditions today. Both the transmission and the effects of the somatomotoric and the parasympathetic nervous systems may be targeted by such treatments. Irrespective of the knowledge that the effects of neuronal signalling in the nervous systems may include a number of different receptor subtypes of both the nicotinic and the muscarinic receptors, this complexity is generally overlooked when assessing the mechanisms of action of pharmaceuticals. METHODS We have search of bibliographic databases for peer-reviewed research literature focused on the cholinergic system. Also, we have taken advantage of our expertise in this field to deduce the conclusions of this study. RESULTS Presently, the life cycle of acetylcholine, muscarinic receptors and their effects are reviewed in the major organ systems of the body. Neuronal and non-neuronal sources of acetylcholine are elucidated. Examples of pharmaceuticals, in particular cholinesterase inhibitors, affecting these systems are discussed. The review focuses on salivary glands, the respiratory tract and the lower urinary tract, since the complexity of the interplay of different muscarinic receptor subtypes is of significance for physiological, pharmacological and toxicological effects in these organs. CONCLUSION Most pharmaceuticals targeting muscarinic receptors are employed at such large doses that no selectivity can be expected. However, some differences in the adverse effect profile of muscarinic antagonists may still be explained by the variation of expression of muscarinic receptor subtypes in different organs. However, a complex pattern of interactions between muscarinic receptor subtypes occurs and needs to be considered when searching for selective pharmaceuticals. In the development of new entities for the treatment of for instance pesticide intoxication, the muscarinic receptor selectivity needs to be considered. Reactivators generally have a muscarinic M2 receptor acting profile. Such a blockade may engrave the situation since it may enlarge the effect of the muscarinic M3 receptor effect. This may explain why respiratory arrest is the major cause for deaths by esterase blocking.
Collapse
Affiliation(s)
- Ondrej Soukup
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Michael Winder
- Institute of Neuroscience and Physiology, Department of Pharmacology, the Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Uday Kumar Killi
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Vladimir Wsol
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Czech Republic
| | - Gunnar Tobin
- Institute of Neuroscience and Physiology, Department of Pharmacology, the Sahlgrenska Academy at the University of Gothenburg, Sweden
| |
Collapse
|
44
|
Singh S, Stafford P, Schlauch KA, Tillett RR, Gollery M, Johnston SA, Khaiboullina SF, De Meirleir KL, Rawat S, Mijatovic T, Subramanian K, Palotás A, Lombardi VC. Humoral Immunity Profiling of Subjects with Myalgic Encephalomyelitis Using a Random Peptide Microarray Differentiates Cases from Controls with High Specificity and Sensitivity. Mol Neurobiol 2016; 55:633-641. [PMID: 27981498 PMCID: PMC5472503 DOI: 10.1007/s12035-016-0334-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/29/2016] [Indexed: 11/17/2022]
Abstract
Myalgic encephalomyelitis (ME) is a complex, heterogeneous illness of unknown etiology. The search for biomarkers that can delineate cases from controls is one of the most active areas of ME research; however, little progress has been made in achieving this goal. In contrast to identifying biomarkers that are directly involved in the pathological process, an immunosignature identifies antibodies raised to proteins expressed during, and potentially involved in, the pathological process. Although these proteins might be unknown, it is possible to detect antibodies that react to these proteins using random peptide arrays. In the present study, we probe a custom 125,000 random 12-mer peptide microarray with sera from 21 ME cases and 21 controls from the USA and Europe and used these data to develop a diagnostic signature. We further used these peptide sequences to potentially uncover the naturally occurring candidate antigens to which these antibodies may specifically react with in vivo. Our analysis revealed a subset of 25 peptides that distinguished cases and controls with high specificity and sensitivity. Additionally, Basic Local Alignment Search Tool (BLAST) searches suggest that these peptides primarily represent human self-antigens and endogenous retroviral sequences and, to a minor extent, viral and bacterial pathogens.
Collapse
Affiliation(s)
- Sahajpreet Singh
- Nevada Center for Biomedical Research, 1664 N Virginia St. MS 0552, Reno, NV, 89557-0552, USA
| | - Phillip Stafford
- The Biodesign Institute Center for Innovations in Medicine at Arizona State University, Tempe, AZ, USA
| | - Karen A Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA.,Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV, USA
| | - Richard R Tillett
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV, USA
| | | | - Stephen Albert Johnston
- The Biodesign Institute Center for Innovations in Medicine at Arizona State University, Tempe, AZ, USA
| | - Svetlana F Khaiboullina
- Nevada Center for Biomedical Research, 1664 N Virginia St. MS 0552, Reno, NV, 89557-0552, USA.,Kazan Federal University, Kazan, Russian Federation
| | - Kenny L De Meirleir
- Nevada Center for Biomedical Research, 1664 N Virginia St. MS 0552, Reno, NV, 89557-0552, USA
| | - Shanti Rawat
- Nevada Center for Biomedical Research, 1664 N Virginia St. MS 0552, Reno, NV, 89557-0552, USA
| | | | | | - András Palotás
- Kazan Federal University, Kazan, Russian Federation. .,Asklepios-Med (private medical practice and research center), Kossuth Lajos sgt. 23, Szeged, 6722, Hungary.
| | - Vincent C Lombardi
- Nevada Center for Biomedical Research, 1664 N Virginia St. MS 0552, Reno, NV, 89557-0552, USA. .,Department of Pharmacology, University of Nevada, Reno, School of Medicine, Reno, NV, USA.
| |
Collapse
|
45
|
Le syndrome de fatigue chronique : une nouvelle maladie ? Rev Med Interne 2016; 37:811-819. [DOI: 10.1016/j.revmed.2016.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/02/2016] [Indexed: 01/26/2023]
|
46
|
Edwards JCW, McGrath S, Baldwin A, Livingstone M, Kewley A. The biological challenge of myalgic encephalomyelitis/chronic fatigue syndrome: a solvable problem. FATIGUE-BIOMEDICINE HEALTH AND BEHAVIOR 2016; 4:63-69. [PMID: 27226928 PMCID: PMC4867862 DOI: 10.1080/21641846.2016.1160598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Harvey JM, Broderick G, Bowie A, Barnes ZM, Katz BZ, O'Gorman MRG, Vernon SD, Fletcher MA, Klimas NG, Taylor R. Tracking post-infectious fatigue in clinic using routine Lab tests. BMC Pediatr 2016; 16:54. [PMID: 27118537 PMCID: PMC4847210 DOI: 10.1186/s12887-016-0596-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/21/2016] [Indexed: 12/25/2022] Open
Abstract
Background While biomarkers for chronic fatigue syndrome (CFS) are beginning to emerge they typically require a highly specialized clinical laboratory. We hypothesized that subsets of commonly measured laboratory markers used in combination could support the diagnosis of post-infectious CFS (PI-CFS) in adolescents following infectious mononucleosis (IM) and help determine who might develop persistence of symptoms. Methods Routine clinical laboratory markers were collected prospectively in 301 mono-spot positive adolescents, 4 % of whom developed CFS (n = 13). At 6, 12, and 24 months post-diagnosis with IM, 59 standard tests were performed including metabolic profiling, liver enzyme panel, hormone profiles, complete blood count (CBC), differential white blood count (WBC), salivary cortisol, and urinalysis. Classification models separating PI-CFS from controls were constructed at each time point using stepwise subset selection. Results Lower ACTH levels at 6 months post-IM diagnosis were highly predictive of CFS (AUC p = 0.02). ACTH levels in CFS overlapped with healthy controls at 12 months, but again showed a trend towards a deficiency at 24 months. Conversely, estradiol levels depart significantly from normal at 12 months only to recover at 24 months (AUC p = 0.02). Finally, relative neutrophil count showed a significant departure from normal at 24 months in CFS (AUC p = 0.01). Expression of these markers evolved differently over time between groups. Conclusions Preliminary results suggest that serial assessment of stress and sex hormones as well as the relative proportion of innate immune cells measured using standard clinical laboratory tests may support the diagnosis of PI-CFS in adolescents with IM. Electronic supplementary material The online version of this article (doi:10.1186/s12887-016-0596-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Gordon Broderick
- Department of Medicine, University of Miami, Miami, FL, USA. .,Institute for Neuro Immune Medicine, Nova Southeastern University, University Park Plaza, 3440 South University, Fort Lauderdale, 33328, FL, USA. .,University of Alberta, Edmonton, AB, Canada.
| | | | | | - Ben Z Katz
- Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | | | | | - Mary Ann Fletcher
- Institute for Neuro Immune Medicine, Nova Southeastern University, University Park Plaza, 3440 South University, Fort Lauderdale, 33328, FL, USA
| | - Nancy G Klimas
- Institute for Neuro Immune Medicine, Nova Southeastern University, University Park Plaza, 3440 South University, Fort Lauderdale, 33328, FL, USA
| | - Renee Taylor
- University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
48
|
Russell L, Broderick G, Taylor R, Fernandes H, Harvey J, Barnes Z, Smylie A, Collado F, Balbin EG, Katz BZ, Klimas NG, Fletcher MA. Illness progression in chronic fatigue syndrome: a shifting immune baseline. BMC Immunol 2016; 17:3. [PMID: 26965484 PMCID: PMC4785654 DOI: 10.1186/s12865-016-0142-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/29/2016] [Indexed: 01/04/2023] Open
Abstract
Background Validation of biomarkers for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) across data sets has proven disappointing. As immune signature may be affected by many factors, our objective was to explore the shift in discriminatory cytokines across ME/CFS subjects separated by duration of illness. Methods Cytokine expression collected at rest across multiple studies for female ME/CFS subjects (i) 18 years or younger, ill for 2 years or less (n = 18), (ii) 18–50 years of age, ill for 7 years (n = 22), and (iii) age 50 years or older (n = 28), ill for 11 years on average. Control subjects were matched for age and body mass index (BMI). Data describing the levels of 16 cytokines using a chemiluminescent assay was used to support the identification of separate linear classification models for each subgroup. In order to isolate the effects of duration of illness alone, cytokines that changed significantly with age in the healthy control subjects were excluded a priori. Results Optimal selection of cytokines in each group resulted in subsets of IL-1α, 6, 8, 15 and TNFα. Common to any 2 of 3 groups were IL-1α, 6 and 8. Setting these 3 markers as a triple screen and adjusting their contribution according to illness duration sub-groups produced ME/CFS classification accuracies of 75–88 %. The contribution of IL-1α, higher in recently ill adolescent ME/CFS subjects was progressively less important with duration. While high levels of IL-8 screened positive for ME/CFS in the recently afflicted, the opposite was true for subjects ill for more than 2 years. Similarly, while low levels of IL-6 suggested early ME/CFS, the reverse was true in subjects over 18 years of age ill for more than 2 years. Conclusions These preliminary results suggest that IL-1α, 6 and 8 adjusted for illness duration may serve as robust biomarkers, independent of age, in screening for ME/CFS. Electronic supplementary material The online version of this article (doi:10.1186/s12865-016-0142-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lindsey Russell
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gordon Broderick
- Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Miami Veterans Affairs Medical Center, Miami, FL, USA. .,Institute for Neuro-immune Medicine, Nova Southeastern University, Suite 3440 University Park Plaza, 3424 South University Drive, Fort Lauderdale, FL, 33328, USA.
| | - Renee Taylor
- Department of Occupational Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Jeanna Harvey
- Department of Medicine, University of Miami, Miami, FL, USA.,Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Zachary Barnes
- Department of Medicine, University of Miami, Miami, FL, USA.,Miami Veterans Affairs Medical Center, Miami, FL, USA.,Institute for Neuro-immune Medicine, Nova Southeastern University, Suite 3440 University Park Plaza, 3424 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - AnneLiese Smylie
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Fanny Collado
- Miami Veterans Affairs Medical Center, Miami, FL, USA
| | | | - Ben Z Katz
- Division of Infectious Diseases, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Nancy G Klimas
- Miami Veterans Affairs Medical Center, Miami, FL, USA.,Institute for Neuro-immune Medicine, Nova Southeastern University, Suite 3440 University Park Plaza, 3424 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Mary Ann Fletcher
- Miami Veterans Affairs Medical Center, Miami, FL, USA.,Institute for Neuro-immune Medicine, Nova Southeastern University, Suite 3440 University Park Plaza, 3424 South University Drive, Fort Lauderdale, FL, 33328, USA
| |
Collapse
|
49
|
Zakirova Z, Crynen G, Hassan S, Abdullah L, Horne L, Mathura V, Crawford F, Ait-Ghezala G. A Chronic Longitudinal Characterization of Neurobehavioral and Neuropathological Cognitive Impairment in a Mouse Model of Gulf War Agent Exposure. Front Integr Neurosci 2016; 9:71. [PMID: 26793076 PMCID: PMC4709860 DOI: 10.3389/fnint.2015.00071] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/21/2015] [Indexed: 12/24/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic multisymptom illness with a central nervous system component that includes memory impairment as well as neurological and musculoskeletal deficits. Previous studies have shown that in the First Persian Gulf War conflict (1990-1991) exposure to Gulf War (GW) agents, such as pyridostigmine bromide (PB) and permethrin (PER), were key contributors to the etiology of GWI. For this study, we used our previously established mouse model of GW agent exposure (10 days PB+PER) and undertook an extensive lifelong neurobehavioral characterization of the mice from 11 days to 22.5 months post exposure in order to address the persistence and chronicity of effects suffered by the current GWI patient population, 24 years post-exposure. Mice were evaluated using a battery of neurobehavioral testing paradigms, including Open Field Test (OFT), Elevated Plus Maze (EPM), Three Chamber Testing, Radial Arm Water Maze (RAWM), and Barnes Maze (BM) Test. We also carried out neuropathological analyses at 22.5 months post exposure to GW agents after the final behavioral testing. Our results demonstrate that PB+PER exposed mice exhibit neurobehavioral deficits beginning at the 13 months post exposure time point and continuing trends through the 22.5 month post exposure time point. Furthermore, neuropathological changes, including an increase in GFAP staining in the cerebral cortices of exposed mice, were noted 22.5 months post exposure. Thus, the persistent neuroinflammation evident in our model presents a platform with which to identify novel biological pathways, correlating with emergent outcomes that may be amenable to therapeutic targeting. Furthermore, in this work we confirmed our previous findings that GW agent exposure causes neuropathological changes, and have presented novel data which demonstrate increased disinhibition, and lack of social preference in PB+PER exposed mice at 13 months after exposure. We also extended upon our previous work to cover the lifespan of the laboratory mouse using a battery of neurobehavioral techniques.
Collapse
Affiliation(s)
- Zuchra Zakirova
- The Roskamp InstituteSarasota, FL, USA
- Life, Health and Chemical Sciences, The Open UniversityWalton Hall, Milton Keynes, UK
- James A. Haley Veteran's HospitalTampa, FL, USA
| | - Gogce Crynen
- The Roskamp InstituteSarasota, FL, USA
- Life, Health and Chemical Sciences, The Open UniversityWalton Hall, Milton Keynes, UK
| | | | - Laila Abdullah
- The Roskamp InstituteSarasota, FL, USA
- Life, Health and Chemical Sciences, The Open UniversityWalton Hall, Milton Keynes, UK
- James A. Haley Veteran's HospitalTampa, FL, USA
| | | | - Venkatarajan Mathura
- The Roskamp InstituteSarasota, FL, USA
- Life, Health and Chemical Sciences, The Open UniversityWalton Hall, Milton Keynes, UK
| | - Fiona Crawford
- The Roskamp InstituteSarasota, FL, USA
- Life, Health and Chemical Sciences, The Open UniversityWalton Hall, Milton Keynes, UK
- James A. Haley Veteran's HospitalTampa, FL, USA
| | - Ghania Ait-Ghezala
- The Roskamp InstituteSarasota, FL, USA
- Life, Health and Chemical Sciences, The Open UniversityWalton Hall, Milton Keynes, UK
- James A. Haley Veteran's HospitalTampa, FL, USA
| |
Collapse
|
50
|
Sleep restriction and delayed sleep associate with psychological health and biomarkers of stress and inflammation in women. Sleep Health 2015; 1:249-256. [PMID: 29073400 DOI: 10.1016/j.sleh.2015.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 11/21/2022]
Abstract
STUDY OBJECTIVES Despite strong associations between sleep duration and health, there is no clear understanding of how volitional chronic sleep restriction (CSR) alters the physiological processes that lead to poor health in women. We focused on biochemical and psychological factors that previous research suggests are essential to uncovering the role of sleep in health. DESIGN Cross-sectional study. SETTING University-based. PARTICIPANTS Sixty female participants (mean age, 19.3; SD, 2.1 years). MEASUREMENTS We analyzed the association between self-reported volitional CSR and time to go to sleep on a series of sleep and psychological health measures as well as biomarkers of immune functioning/inflammation (interleukin [IL]-1β), stress (cortisol), and sleep regulation (melatonin). RESULTS Across multiple measures, poor sleep was associated with decreased psychological health and a reduced perception of self-reported physical health. Volitional CSR was related to increased cortisol and increased IL-1β levels. We separately looked at individuals who experienced CSR with and without delayed sleep time and found that IL-1β levels were significantly elevated in CSR alone and in CSR combined with a late sleep time. Cortisol, however, was only elevated in those women who experienced CSR combined with a late sleep time. We did not observe any changes in melatonin across groups, and melatonin levels were not related to any sleep measures. CONCLUSIONS New to our study is the demonstration of how an increase in a proinflammatory process and an increase in hypothalamic-pituitary-adrenal axis activity both relate to volitional CSR, with and without a delayed sleep time. We further show how these mechanisms relate back to psychological and self-reported health in young adult women.
Collapse
|