1
|
Szabla R, Li M, Warner V, Song Y, Junop M. DdrC, a unique DNA repair factor from D. radiodurans, senses and stabilizes DNA breaks through a novel lesion-recognition mechanism. Nucleic Acids Res 2024; 52:9282-9302. [PMID: 39036966 PMCID: PMC11347143 DOI: 10.1093/nar/gkae635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which protect efficient DNA repair mechanisms that are unique to Deinococcus species. The protein DdrC has been identified as an important component of this repair machinery. DdrC is known to bind to DNA in vitro and has been shown to circularize and compact DNA fragments. The mechanism and biological relevance of this activity is poorly understood. Here, we show that the DdrC homodimer is a lesion-sensing protein that binds to two single-strand (ss) or double-strand (ds) breaks. The immobilization of DNA breaks in pairs consequently leads to the circularization of linear DNA and the compaction of nicked DNA. The degree of compaction is directly proportional with the number of available nicks. Previously, the structure of the DdrC homodimer was solved in an unusual asymmetric conformation. Here, we solve the structure of DdrC under different crystallographic environments and confirm that the asymmetry is an endogenous feature of DdrC. We propose a dynamic structural mechanism where the asymmetry is necessary to trap a pair of lesions. We support this model with mutant disruption and computational modeling experiments.
Collapse
Affiliation(s)
- Robert Szabla
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
| | - Mingyi Li
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
| | - Victoria Warner
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
| | - Yifeng Song
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
| | - Murray Junop
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
| |
Collapse
|
2
|
Misra HS, Rajpurohit YS. DNA damage response and cell cycle regulation in bacteria: a twist around the paradigm. Front Microbiol 2024; 15:1389074. [PMID: 38605710 PMCID: PMC11007091 DOI: 10.3389/fmicb.2024.1389074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
The co-protease activity in the RecA-ssDNA complex cleaves the autorepressor LexA, resulting in the derepression of a large number of genes under LexA control. This process is called the SOS response, and genes that are expressed in response to DNA damage are called SOS genes. The proteins encoded by the SOS genes are involved in both DNA repair and maintaining the functions of crucial cell division proteins (e.g., FtsZ) under check until the damaged DNA is presumably repaired. This mechanism of SOS response is the only known mechanism of DNA damage response and cell cycle regulation in bacteria. However, there are bacteria that do not obey this rule of DNA damage response and cell cycle regulation, yet they respond to DNA damage, repair it, and survive. That means such bacteria would have some alternate mechanism(s) of DNA damage response and cell cycle regulation beyond the canonical pathway of the SOS response. In this study, we present the perspectives that bacteria may have other mechanisms of DNA damage response and cell cycle regulation mediated by bacterial eukaryotic type Ser/Thr protein kinases as an alternate to the canonical SOS response and herewith elaborate on them with a well-studied example in the radioresistant bacterium Deinococcus radiodurans.
Collapse
Affiliation(s)
- Hari Sharan Misra
- School of Sciences, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| |
Collapse
|
3
|
Lu H, Chen Z, Xie T, Zhong S, Suo S, Song S, Wang L, Xu H, Tian B, Zhao Y, Zhou R, Hua Y. The Deinococcus protease PprI senses DNA damage by directly interacting with single-stranded DNA. Nat Commun 2024; 15:1892. [PMID: 38424107 PMCID: PMC10904395 DOI: 10.1038/s41467-024-46208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Bacteria have evolved various response systems to adapt to environmental stress. A protease-based derepression mechanism in response to DNA damage was characterized in Deinococcus, which is controlled by the specific cleavage of repressor DdrO by metallopeptidase PprI (also called IrrE). Despite the efforts to document the biochemical, physiological, and downstream regulation of PprI-DdrO, the upstream regulatory signal activating this system remains unclear. Here, we show that single-stranded DNA physically interacts with PprI protease, which enhances the PprI-DdrO interactions as well as the DdrO cleavage in a length-dependent manner both in vivo and in vitro. Structures of PprI, in its apo and complexed forms with single-stranded DNA, reveal two DNA-binding interfaces shaping the cleavage site. Moreover, we show that the dynamic monomer-dimer equilibrium of PprI is also important for its cleavage activity. Our data provide evidence that single-stranded DNA could serve as the signal for DNA damage sensing in the metalloprotease/repressor system in bacteria. These results also shed light on the survival and acquired drug resistance of certain bacteria under antimicrobial stress through a SOS-independent pathway.
Collapse
Affiliation(s)
- Huizhi Lu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zijing Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Teng Xie
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai, China
| | - Shitong Zhong
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shasha Suo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuang Song
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bing Tian
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ruhong Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Zang Y, Li X, Zhao Y, Wang H, Hao D, Zhang L, Yang Z, Yuan X, Zhang S. Molecular insights into the binding variance of the SARS-CoV-2 spike with human, cat and dog ACE2 proteins. Phys Chem Chem Phys 2021; 23:13752-13759. [PMID: 34132301 DOI: 10.1039/d1cp01611c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SARS-CoV-2 has recently caused an epidemic in humans and poses a huge threat to global public health. As a primary receptor of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) exists in different hosts that are in close contact with humans, especially cats and dogs. However, the underlying mechanism of how the spike receptor binding domain (RBD) of SARS-CoV-2 cooperates with human ACE2 (hACE2), cat ACE2 (cACE2) and dog ACE2 (dACE2) and the variation in binding remains largely unsolved. Therefore, we explored the binding behavior of the spike RBD with cACE2, dACE2 and hACE2 via all-atom molecular dynamics simulations. In accordance with the binding free energies and residue interactions, the spike RBD has respective binding specificities with cACE2, dACE2 and hACE2, and the binding affinities decrease in the order of hACE2, cACE2, dACE2, mainly due to changes in the amino acids Q24L, H34Y, and M82T in cACE2 or dACE2. Furthermore, alanine scanning analysis results validated some key residues of the spike RBD interact with ACE2 and provided clues to the variation of amino acid that could influence the transmissibility or immune responses of SARS-CoV-2. Decreasing dynamic correlations strengths of ACE2 with the RBD were found in all hACE2-RBD, cACE2-RBD and dACE2-RBD systems. The ACE2 protein shows variable motion modes across the zinc metallopeptidase domain, which induces different interactions between ACE2 and the RBD. Our studies reveal that the motion pattern of the zinc metallopeptidase domain is critical to the binding behavior of RBD with ACE2. These findings could aid our understanding of selective recognition involving various ACE2 with the SARS-CoV-2 spike and shed further light on the binding mechanisms.
Collapse
Affiliation(s)
- Yongjian Zang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
de la Tour CB, Mathieu M, Servant P, Coste G, Norais C, Confalonieri F. Characterization of the DdrD protein from the extremely radioresistant bacterium Deinococcus radiodurans. Extremophiles 2021; 25:343-355. [PMID: 34052926 PMCID: PMC8254717 DOI: 10.1007/s00792-021-01233-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/16/2021] [Indexed: 10/25/2022]
Abstract
Here, we report the in vitro and in vivo characterization of the DdrD protein from the extraordinary stress-resistant bacterium, D. radiodurans. DdrD is one of the most highly induced proteins following cellular irradiation or desiccation. We confirm that DdrD belongs to the Radiation Desiccation Response (RDR) regulon protein family whose expression is regulated by the IrrE/DdrO proteins after DNA damage. We show that DdrD is a DNA binding protein that binds to single-stranded DNA In vitro, but not to duplex DNA unless it has a 5' single-stranded extension. In vivo, we observed no significant effect of the absence of DdrD on the survival of D. radiodurans cells after exposure to γ-rays or UV irradiation in different genetic contexts. However, genome reassembly is affected in a ∆ddrD mutant when cells recover from irradiation in the absence of nutrients. Thus, DdrD likely contributes to genome reconstitution after irradiation, but only under starvation conditions. Lastly, we show that the absence of the DdrD protein partially restores the frequency of plasmid transformation of a ∆ddrB mutant, suggesting that DdrD could also be involved in biological processes other than the response to DNA damage.
Collapse
Affiliation(s)
- Claire Bouthier de la Tour
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif sur Yvette, France.
| | - Martine Mathieu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Pascale Servant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Geneviève Coste
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Cédric Norais
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA.,SAT Lyon, Promega France, 24 Chemin des Verrieres, 69260, Charbonnières les Bains, France
| | - Fabrice Confalonieri
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif sur Yvette, France
| |
Collapse
|
6
|
Ujaoney AK, Padwal MK, Basu B. An in vivo Interaction Network of DNA-Repair Proteins: A Snapshot at Double Strand Break Repair in Deinococcus radiodurans. J Proteome Res 2021; 20:3242-3255. [PMID: 33929844 DOI: 10.1021/acs.jproteome.1c00078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An extremophile Deinococcus radiodurans survives massive DNA damage by efficiently mending hundreds of double strand breaks through homology-dependent DNA repair pathways. Although DNA repair proteins that contribute to its impressive DNA repair capacity are fairly known, interactions among them or with proteins related to other relevant pathways remain unexplored. Here, we report in vivo cross-linking of the interactomes of key DNA repair proteins DdrA, DdrB, RecA, and Ssb (baits) in D. radiodurans cells recovering from gamma irradiation. The protein-protein interactions were systematically investigated through co-immunoprecipitation experiments coupled to mass spectrometry. From a total of 399 proteins co-eluted with the baits, we recovered interactions among diverse biological pathways such as DNA repair, transcription, translation, chromosome partitioning, cell division, antioxidation, protein folding/turnover, metabolism, cell wall architecture, membrane transporters, and uncharacterized proteins. Among these, about 80 proteins were relevant to the DNA damage resistance of the organism based on integration of data on inducible expression following DNA damage, radiation sensitive phenotype of deletion mutant, etc. Further, we cloned ORFs of 23 interactors in heterologous E. coli and expressed corresponding proteins with N-terminal His-tag, which were used for pull-down assays. A total of 95 interactions were assayed, in which we confirmed 25 previously unknown binary interactions between the proteins associated with radiation resistance, and 2 known interactions between DdrB and Ssb or DR_1245. Among these, five interactions were positive even under non-stress conditions. The confirmed interactions cover a wide range of biological processes such as DNA repair, negative regulation of cell division, chromosome partitioning, membrane anchorage, etc., and their functional relevance is discussed from the perspective of DNA repair. Overall, the study substantially advances our understanding on the cross-talk between different homology-dependent DNA repair pathways and other relevant biological processes that essentially contribute to the extraordinary DNA damage repair capability of D. radiodurans. The data sets generated and analyzed in this study have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD021822.
Collapse
Affiliation(s)
- Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
7
|
Rajpurohit YS, Sharma DK, Misra HS. PprA Protein Inhibits DNA Strand Exchange and ATP Hydrolysis of Deinococcus RecA and Regulates the Recombination in Gamma-Irradiated Cells. Front Cell Dev Biol 2021; 9:636178. [PMID: 33959605 PMCID: PMC8093518 DOI: 10.3389/fcell.2021.636178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 11/14/2022] Open
Abstract
DrRecA and PprA proteins function are crucial for the extraordinary resistance to γ-radiation and DNA strand break repair in Deinococcus radiodurans. DrRecA mediated homologous recombination help in DNA strand break repair and cell survival, while the PprA protein confers radio-resistance via its roles in DNA repair, genome maintenance, and cell division. Genetically recA and pprA genes interact and constitute an epistatic group however, the mechanism underlying their functional interaction is not clear. Here, we showed the physical and functional interaction of DrRecA and PprA protein both in solution and inside the cells. The absence of the pprA gene increases the recombination frequency in gamma-irradiated D. radiodurans cells and genomic instability in cells growing under normal conditions. PprA negatively regulates the DrRecA functions by inhibiting DrRecA mediated DNA strand exchange and ATPase function in vitro. Furthermore, it is shown that the inhibitory effect of PprA on DrRecA catalyzed DNA strand exchange was not due to sequestration of homologous dsDNA and was dependent on PprA oligomerization and DNA binding property. Together, results suggest that PprA is a new member of recombination mediator proteins (RMPs), and able to regulate the DrRecA function in γ-irradiated cells by protecting the D. radiodurans genome from hyper-recombination and associated negative effects.
Collapse
Affiliation(s)
- Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| |
Collapse
|
8
|
Lu H, Hua Y. PprI: The Key Protein in Response to DNA Damage in Deinococcus. Front Cell Dev Biol 2021; 8:609714. [PMID: 33537302 PMCID: PMC7848106 DOI: 10.3389/fcell.2020.609714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
Deoxyribonucleic acid (DNA) damage response (DDR) pathways are essential for maintaining the integrity of the genome when destabilized by various damaging events, such as ionizing radiation, ultraviolet light, chemical or oxidative stress, and DNA replication errors. The PprI–DdrO system is a newly identified pathway responsible for the DNA damage response in Deinococcus, in which PprI (also called IrrE) acts as a crucial component mediating the extreme resistance of these bacteria. This review describes studies about PprI sequence conservation, regulatory function, structural characteristics, biochemical activity, and hypothetical activation mechanisms as well as potential applications.
Collapse
Affiliation(s)
- Huizhi Lu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Maurya GK, Chaudhary R, Pandey N, Misra HS. Molecular insights into replication initiation in a multipartite genome harboring bacterium Deinococcus radiodurans. J Biol Chem 2021; 296:100451. [PMID: 33626388 PMCID: PMC7988490 DOI: 10.1016/j.jbc.2021.100451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/23/2022] Open
Abstract
Deinococcus radiodurans harbors a multipartite ploid genome system consisting of two chromosomes and two plasmids present in multiple copies. How these discrete genome elements are maintained and inherited is not well understood. PprA, a pleiotropic protein involved in radioresistance, has been characterized for its roles in DNA repair, genome segregation, and cell division in this bacterium. Here, we show that PprA regulates ploidy of chromosome I and II and inhibits the activity of drDnaA, the initiator protein in D. radiodurans. We found that pprA deletion resulted in an increased genomic content and ploidy of both the chromosomal elements. Expression of PprA in trans rescued the phenotypes of the pprA mutant. To understand the molecular mechanism underlying these phenotypes, we characterized drDnaA and drDnaB. As expected for an initiator protein, recombinant drDnaA showed sequence-specific interactions with the putative oriC sequence in chromosome I (oriCI). Both drDnaA and drDnaB showed ATPase activity, also typical of initiator proteins, but only drDnaB exhibited 5'→3' dsDNA helicase activity in vitro. drDnaA and drDnaB showed homotypic and heterotypic interactions with each other, which were perturbed by PprA. Interestingly, PprA has inhibited the ATPase activity of drDnaA but showed no effect on the activity of drDnaB. Regulation of chromosome copy number and inhibition of the initiator protein functions by PprA strongly suggest that it plays a role as a checkpoint regulator of the DNA replication initiation in D. radiodurans perhaps through its interaction with the replication initiation machinery.
Collapse
Affiliation(s)
- Ganesh K Maurya
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Neha Pandey
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, University of Mumbai, Mumbai, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
10
|
Kota S, Chaudhary R, Mishra S, Misra HS. Topoisomerase IB interacts with genome segregation proteins and is involved in multipartite genome maintenance in Deinococcus radiodurans. Microbiol Res 2020; 242:126609. [PMID: 33059113 DOI: 10.1016/j.micres.2020.126609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
Deinococcus radiodurans, an extremophile, resistant to many abiotic stresses including ionizing radiation, has 2 type I topoisomerases (drTopo IA and drTopo IB) and one type II topoisomerase (DNA gyrase). The role of drTopo IB in guanine quadruplex DNA (G4 DNA) metabolism was demonstrated earlier in vitro. Here, we report that D. radiodurans cells lacking drTopo IB (ΔtopoIB) show sensitivity to G4 DNA binding drug (NMM) under normal growth conditions. The activity of G4 motif containing promoters like mutL and recQ was reduced in the presence of NMM in mutant cells. In mutant, the percentage of anucleate cells was more while the copy number of genome elements were less as compared to wild type. Protein-protein interaction studies showed that drTopo IB interacts with genome segregation and DNA replication initiation (DnaA) proteins. The typical patterns of cellular localization of GFP-PprA were affected in the mutant cells. Microscopic examination of D. radiodurans cells expressing drTopo IB-RFP showed its localization on nucleoid forming a streak parallel to the old division septum and perpendicular to newly formed septum. These results together suggest the role of drTopo IB in genome maintenance in this bacterium.
Collapse
Affiliation(s)
- Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India.
| | - Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India
| | - Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
11
|
Lim S, Jung JH, Blanchard L, de Groot A. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol Rev 2019; 43:19-52. [PMID: 30339218 PMCID: PMC6300522 DOI: 10.1093/femsre/fuy037] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Deinococcus bacteria are famous for their extreme resistance to ionising radiation and other DNA damage- and oxidative stress-generating agents. More than a hundred genes have been reported to contribute to resistance to radiation, desiccation and/or oxidative stress in Deinococcus radiodurans. These encode proteins involved in DNA repair, oxidative stress defence, regulation and proteins of yet unknown function or with an extracytoplasmic location. Here, we analysed the conservation of radiation resistance-associated proteins in other radiation-resistant Deinococcus species. Strikingly, homologues of dozens of these proteins are absent in one or more Deinococcus species. For example, only a few Deinococcus-specific proteins and radiation resistance-associated regulatory proteins are present in each Deinococcus, notably the metallopeptidase/repressor pair IrrE/DdrO that controls the radiation/desiccation response regulon. Inversely, some Deinococcus species possess proteins that D. radiodurans lacks, including DNA repair proteins consisting of novel domain combinations, translesion polymerases, additional metalloregulators, redox-sensitive regulator SoxR and manganese-containing catalase. Moreover, the comparisons improved the characterisation of several proteins regarding important conserved residues, cellular location and possible protein–protein interactions. This comprehensive analysis indicates not only conservation but also large diversity in the molecular mechanisms involved in radiation resistance even within the Deinococcus genus.
Collapse
Affiliation(s)
- Sangyong Lim
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jong-Hyun Jung
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | | | - Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
12
|
Chaudhary R, Gupta A, Kota S, Misra HS. N-terminal domain of DivIVA contributes to its dimerization and interaction with genome segregation proteins in a radioresistant bacterium Deinococcus radiodurans. Int J Biol Macromol 2019; 128:12-21. [PMID: 30682467 DOI: 10.1016/j.ijbiomac.2019.01.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/13/2019] [Accepted: 01/19/2019] [Indexed: 01/27/2023]
Abstract
Unlike in rod-shaped bacteria, cell polarity is not well defined in cocci and possibly gets marked during molecular events around cytokinesis. DivIVA is a member of Min system that is involved in spatial regulation of septum formation in bacteria. Recently, we showed that DivIVA of Deinococcus radiodurans (drDivIVA) interacts with proteins involved in cell division and genome segregation (segrosome). To map drDivIVA domain (s) that interact with these proteins, the N-terminal (DivIVA-N), C-terminal (DivIVA-C) and a middle (DivIVA-M) region/section of drDivIVA were generated. Circular Dichroism (CD) studies suggested that all three variants of drDivIVA fold properly, but they appeared different under transmission electron microscopy (TEM). Full length drDivIVA showed bundles under TEM whereas variants did not. Both full length drDivIVA and N-terminal domain showed repeats of heptad motifs, a characteristic of alpha-helical coiled-coil proteins. DivIVA-N showed dimerization and interaction with segrosome while DivIVA-M interacted with MinC, a cell division regulatory protein. Further, the C-terminal region seems to be crucial for the structural and functional integrity of drDivIVA. These results suggested that drDivIVA dimerizes through its N-terminal domain while both segrosome and MinC interact through different regions of this protein.
Collapse
Affiliation(s)
- Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| | - Alka Gupta
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| | - H S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
13
|
Devigne A, Meyer L, de la Tour CB, Eugénie N, Sommer S, Servant P. The absence of the RecN protein suppresses the cellular defects of Deinococcus radiodurans irradiated cells devoid of the PprA protein by limiting recombinational repair of DNA lesions. DNA Repair (Amst) 2019; 73:144-154. [DOI: 10.1016/j.dnarep.2018.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 11/30/2022]
|
14
|
Peana M, Chasapis CT, Simula G, Medici S, Zoroddu MA. A Model for Manganese interaction with Deinococcus radiodurans proteome network involved in ROS response and defense. J Trace Elem Med Biol 2018; 50:465-473. [PMID: 29449107 DOI: 10.1016/j.jtemb.2018.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/17/2018] [Accepted: 02/01/2018] [Indexed: 01/28/2023]
Abstract
A complex network of regulatory proteins takes part in the mechanism underlying the radioresistance of Deinoccocus radiodurans bacterium (DR). The interaction of Mn(II) ions with DR-proteins and peptides seems to be responsible for proteins protection from oxidative damage induced by Reactive Oxygen Species during irradiation. In the present work we describe a combined approach of bioinformatic strategies based on structural data and annotation to predict the Mn(II)-binding proteins encoded by the genome of DR and, in parallel, the same predictions for other bacteria were performed; the comparison revealed that, in most of the cases, the content of Mn(II)-binding proteins is significantly higher in radioresistant than in radiosensitive bacteria. Moreover, we report the in silico protein-protein interaction network of the putative Mn(II)-proteins, remodeled in order to enhance the knowledge about the impact of Mn-binding proteins in DR ability to protect also DNA from various damaging agents such as ionizing radiation, UV radiation and oxidative stress.
Collapse
Affiliation(s)
- M Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy.
| | - C T Chasapis
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology, Hellas (FORTH), 26504, Patras, Greece.
| | - G Simula
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - S Medici
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - M A Zoroddu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
15
|
Maurya GK, Misra HS. Plasmids for making multiple knockouts in a radioresistant bacterium Deinococcus radiodurans. Plasmid 2018; 100:6-13. [PMID: 30261215 DOI: 10.1016/j.plasmid.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 11/26/2022]
Abstract
The gene knockouts are mostly created using homologous recombination-based replacement of target gene(s) with the expressing cassette of selection marker gene(s). Here, we constructed a series of plasmids bearing the expressing cassettes of genes encoding different antibiotics markers like nptII (KanR), aadA (SpecR), cat (CmR) and aac(3) (GenR). D. radiodurans is a radioresistant Gram positive bacterium that does not support the independent maintenance of colE1 origin-based plasmids. Using these constructs, the disruption mutants of both single and multiple genes involved in segregation of secondary genome elements have been generated in this bacterium. Unlike single mutants, the double and triple mutants showed growth retardation under normal growth conditions and the synergistic effects with Topoisomerase II inhibitor on the growth of this bacterium. Thus, these plasmids could be useful in creating multiple deletions/disruptions in bacteria that do not support independent maintenance of colE1 origin-based plasmid.
Collapse
Affiliation(s)
- Ganesh K Maurya
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
16
|
Misra HS, Maurya GK, Kota S, Charaka VK. Maintenance of multipartite genome system and its functional significance in bacteria. J Genet 2018; 97:1013-1038. [PMID: 30262715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacteria are unicellular organisms that do not show compartmentalization of the genetic material and other cellular organelles as seen in higher organisms. Earlier, bacterial genomes were defined as single circular chromosome and extrachromosomal plasmids. Recently, many bacteria were found harbouringmultipartite genome system and the numbers of copies of genome elements including chromosomes vary from one to several per cell. Interestingly, it is noticed that majority of multipartite genome-harbouring bacteria are either stress tolerant or pathogens. Further, it is observed that the secondary genomes in these bacteria encode proteins that are involved in bacterial genome maintenance and also contribute to higher stress tolerance, and pathogenicity in pathogenic bacteria. Surprisingly, in some bacteria the genes encoding the proteins of classical homologous recombination pathways are present only on the secondary chromosomes, and some do not have either of the classical homologous recombination pathways. This review highlights the presence of ploidy and multipartite genomes in bacterial system, the underlying mechanisms of genome maintenance and the possibilities of these features contributing to higher abiotic and biotic stress tolerance in these bacteria.
Collapse
Affiliation(s)
- Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | | | | | | |
Collapse
|
17
|
Misra HS, Maurya GK, Kota S, Charaka VK. Maintenance of multipartite genome system and its functional significance in bacteria. J Genet 2018. [DOI: 10.1007/s12041-018-0969-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Siddiqui MQ, Rajpurohit YS, Thapa PS, Maurya GK, Banerjee K, Khan MA, Panda P, Hasan SK, Gadewal N, Misra HS, Varma AK. Studies of protein-protein interactions in Fanconi anemia pathway to unravel the DNA interstrand crosslink repair mechanism. Int J Biol Macromol 2017; 104:1338-1344. [PMID: 28684355 DOI: 10.1016/j.ijbiomac.2017.05.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 11/19/2022]
Abstract
Fanconi anemia (FA), a cancer predisposition syndrome exhibits hallmark feature of radial chromosome formation, and hypersensitivity to DNA crosslinking agents. A set of FA pathway proteins mainly FANCI, FANCD2 and BRCA2 are expressed to repair the covalent crosslink between the dsDNA. However, FA, BRCA pathways play an important role in DNA ICL repair as well as in homologous recombination repair, but the presumptive role of FA-BRCA proteins has not clearly explored particularly in context to function associated protein-protein interactions (PPIs). Here, in-vivo, in-vitro and in-silico studies have been performed for functionally relevant domains of FANCI, FANCD2 and BRCA2. To our conclusion, FANCI ARM repeat interacts with FANCD2 CUE domain and BRCA2 C-terminal region. Interestingly, FANCD2 CUE domain also interacts strongly with BRCA2 C-terminal region. Interactions between BRCA2 CTR and functionally relevant mutations Ser222Ala (cell cycle checkpoint mutant) and Leu231Arg (DNA ICL repair mutant) present in FANCD2 CUE domain have been analysed. To our finding, these mutations abrogate the binding between FANCD2 CUE domain and BRCA2 CTR. Furthermore, (1) different domain of FANCI, FANCD2 and BRCA2 are playing important role in PPIs, (2) mutations cause the impairment in the PPIs which in turn may disrupt the DNA ICL repair mechanism.
Collapse
Affiliation(s)
- Mohd Quadir Siddiqui
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410 210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| | | | - Pankaj S Thapa
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410 210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| | - Ganesh Kumar Maurya
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| | - Kuheli Banerjee
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410 210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| | - Mudassar Ali Khan
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410 210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| | - Pragnya Panda
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410 210, India
| | - Syed K Hasan
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410 210, India
| | - Nikhil Gadewal
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410 210, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| | - Ashok K Varma
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410 210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
19
|
Bouthier de la Tour C, Mathieu M, Meyer L, Dupaigne P, Passot F, Servant P, Sommer S, Le Cam E, Confalonieri F. In vivo and in vitro characterization of DdrC, a DNA damage response protein in Deinococcus radiodurans bacterium. PLoS One 2017; 12:e0177751. [PMID: 28542368 PMCID: PMC5436757 DOI: 10.1371/journal.pone.0177751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/02/2017] [Indexed: 11/19/2022] Open
Abstract
The bacterium Deinococcus radiodurans possesses a set of Deinococcus-specific genes highly induced after DNA damage. Among them, ddrC (dr0003) was recently re-annotated, found to be in the inverse orientation and called A2G07_00380. Here, we report the first in vivo and in vitro characterization of the corrected DdrC protein to better understand its function in irradiated cells. In vivo, the ΔddrC null mutant is sensitive to high doses of UV radiation and the ddrC deletion significantly increases UV-sensitivity of ΔuvrA or ΔuvsE mutant strains. We show that the expression of the DdrC protein is induced after γ-irradiation and is under the control of the regulators, DdrO and IrrE. DdrC is rapidly recruited into the nucleoid of the irradiated cells. In vitro, we show that DdrC is able to bind single- and double-stranded DNA with a preference for the single-stranded DNA but without sequence or shape specificity and protects DNA from various nuclease attacks. DdrC also condenses DNA and promotes circularization of linear DNA. Finally, we show that the purified protein exhibits a DNA strand annealing activity. Altogether, our results suggest that DdrC is a new DNA binding protein with pleiotropic activities. It might maintain the damaged DNA fragments end to end, thus limiting their dispersion and extensive degradation after exposure to ionizing radiation. DdrC might also be an accessory protein that participates in a single strand annealing pathway whose importance in DNA repair becomes apparent when DNA is heavily damaged.
Collapse
Affiliation(s)
- Claire Bouthier de la Tour
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
- * E-mail:
| | - Martine Mathieu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Laura Meyer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Pauline Dupaigne
- Signalisations, Noyaux et Innovations en Cancérologie, UMR 8126, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, 114 rue E. Vaillant, Villejuif, France
| | - Fanny Passot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Pascale Servant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Suzanne Sommer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Eric Le Cam
- Signalisations, Noyaux et Innovations en Cancérologie, UMR 8126, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, 114 rue E. Vaillant, Villejuif, France
| | - Fabrice Confalonieri
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| |
Collapse
|
20
|
Blanchard L, Guérin P, Roche D, Cruveiller S, Pignol D, Vallenet D, Armengaud J, de Groot A. Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria. Microbiologyopen 2017; 6. [PMID: 28397370 PMCID: PMC5552922 DOI: 10.1002/mbo3.477] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 12/26/2022] Open
Abstract
The extreme radiation resistance of Deinococcus bacteria requires the radiation‐stimulated cleavage of protein DdrO by a specific metalloprotease called IrrE. DdrO is the repressor of a predicted radiation/desiccation response (RDR) regulon, composed of radiation‐induced genes having a conserved DNA motif (RDRM) in their promoter regions. Here, we showed that addition of zinc ions to purified apo‐IrrE, and short exposure of Deinococcus cells to zinc ions, resulted in cleavage of DdrO in vitro and in vivo, respectively. Binding of IrrE to RDRM‐containing DNA or interaction of IrrE with DNA‐bound DdrO was not observed. The data are in line with IrrE being a zinc peptidase, and indicate that increased zinc availability, caused by oxidative stress, triggers the in vivo cleavage of DdrO unbound to DNA. Transcriptomics and proteomics of Deinococcus deserti confirmed the IrrE‐dependent regulation of predicted RDR regulon genes and also revealed additional members of this regulon. Comparative analysis showed that the RDR regulon is largely well conserved in Deinococcus species, but also showed diversity in the regulon composition. Notably, several RDR genes with an important role in radiation resistance in Deinococcus radiodurans, for example pprA, are not conserved in some other radiation‐resistant Deinococcus species.
Collapse
Affiliation(s)
- Laurence Blanchard
- Lab Bioenerget Cellulaire, CEA, DRF, BIAM, Saint-Paul-lez-Durance, France.,CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France.,Aix-Marseille Université, Saint-Paul-lez-Durance, France
| | - Philippe Guérin
- Laboratory "Innovative technologies for Detection and Diagnostic", CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Bagnols-sur-Cèze, France
| | - David Roche
- CEA, DRF, Institut de Génomique, LABGeM, Evry, France.,UMR-CNRS 8030 Génomique Métabolique, CEA Institut de Génomique - Genoscope, Evry, France
| | - Stéphane Cruveiller
- CEA, DRF, Institut de Génomique, LABGeM, Evry, France.,UMR-CNRS 8030 Génomique Métabolique, CEA Institut de Génomique - Genoscope, Evry, France
| | - David Pignol
- Lab Bioenerget Cellulaire, CEA, DRF, BIAM, Saint-Paul-lez-Durance, France.,CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France.,Aix-Marseille Université, Saint-Paul-lez-Durance, France
| | - David Vallenet
- CEA, DRF, Institut de Génomique, LABGeM, Evry, France.,UMR-CNRS 8030 Génomique Métabolique, CEA Institut de Génomique - Genoscope, Evry, France
| | - Jean Armengaud
- Laboratory "Innovative technologies for Detection and Diagnostic", CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Bagnols-sur-Cèze, France
| | - Arjan de Groot
- Lab Bioenerget Cellulaire, CEA, DRF, BIAM, Saint-Paul-lez-Durance, France.,CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France.,Aix-Marseille Université, Saint-Paul-lez-Durance, France
| |
Collapse
|
21
|
Park SH, Singh H, Appukuttan D, Jeong S, Choi YJ, Jung JH, Narumi I, Lim S. PprM, a Cold Shock Domain-Containing Protein from Deinococcus radiodurans, Confers Oxidative Stress Tolerance to Escherichia coli. Front Microbiol 2017; 7:2124. [PMID: 28119668 PMCID: PMC5222802 DOI: 10.3389/fmicb.2016.02124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/15/2016] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is a representative microorganism that is frequently used for industrial biotechnology; thus its cellular robustness should be enhanced for the widespread application of E. coli in biotechnology. Stress response genes from the extremely radioresistant bacterium Deinococcus radiodurans have been used to enhance the stress tolerance of E. coli. In the present study, we introduced the cold shock domain-containing protein PprM from D. radiodurans into E. coli and observed that the tolerance to hydrogen peroxide (H2O2) was significantly increased in recombinant strains (Ec-PprM). The overexpression of PprM in E. coli elevated the expression of some OxyR-dependent genes, which play important roles in oxidative stress tolerance. Particularly, mntH (manganese transporter) was activated by 9-fold in Ec-PprM, even in the absence of H2O2 stress, which induced a more than 2-fold increase in the Mn/Fe ratio compared with wild type. The reduced production of highly reactive hydroxyl radicals (·OH) and low protein carbonylation levels (a marker of oxidative damage) in Ec-PprM indicate that the increase in the Mn/Fe ratio contributes to the protection of cells from H2O2 stress. PprM also conferred H2O2 tolerance to E. coli in the absence of OxyR. We confirmed that the H2O2 tolerance of oxyR mutants reflected the activation of the ycgZ-ymgABC operon, whose expression is activated by H2O2 in an OxyR-independent manner. Thus, the results of the present study showed that PprM could be exploited to improve the robustness of E. coli.
Collapse
Affiliation(s)
- Sun-Ha Park
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Harinder Singh
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Deepti Appukuttan
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Sunwook Jeong
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Yong Jun Choi
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Jong-Hyun Jung
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Issay Narumi
- Radiation Microbiology Laboratory, Department of Life Sciences, Faculty of Life Sciences, Toyo University Gunma, Japan
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| |
Collapse
|
22
|
Agapov AA, Kulbachinskiy AV. Mechanisms of Stress Resistance and Gene Regulation in the Radioresistant Bacterium Deinococcus radiodurans. BIOCHEMISTRY (MOSCOW) 2016; 80:1201-16. [PMID: 26567564 DOI: 10.1134/s0006297915100016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bacterium Deinococcus radiodurans reveals extraordinary resistance to ionizing radiation, oxidative stress, desiccation, and other damaging conditions. In this review, we consider the main molecular mechanisms underlying such resistance, including the action of specific DNA repair and antioxidation systems, and transcription regulation during the anti-stress response.
Collapse
Affiliation(s)
- A A Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | | |
Collapse
|
23
|
Maurya GK, Modi K, Misra HS. Divisome and segrosome components of Deinococcus radiodurans interact through cell division regulatory proteins. Microbiology (Reading) 2016; 162:1321-1334. [DOI: 10.1099/mic.0.000330] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ganesh K. Maurya
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE-Deemed University), Mumbai- 400094, India
| | - Kruti Modi
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Hari S. Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE-Deemed University), Mumbai- 400094, India
| |
Collapse
|
24
|
DNA Gyrase of Deinococcus radiodurans is characterized as Type II bacterial topoisomerase and its activity is differentially regulated by PprA in vitro. Extremophiles 2016; 20:195-205. [DOI: 10.1007/s00792-016-0814-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/20/2016] [Indexed: 11/26/2022]
|
25
|
PprA Protein Is Involved in Chromosome Segregation via Its Physical and Functional Interaction with DNA Gyrase in Irradiated Deinococcus radiodurans Bacteria. mSphere 2016; 1:mSphere00036-15. [PMID: 27303692 PMCID: PMC4863600 DOI: 10.1128/msphere.00036-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022] Open
Abstract
D. radiodurans is one of the most radiation-resistant organisms known. This bacterium is able to cope with high levels of DNA lesions generated by exposure to extreme doses of ionizing radiation and to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Here, we identified partners of PprA, a radiation-induced Deinococcus-specific protein, previously shown to be required for radioresistance. Our study leads to three main findings: (i) PprA interacts with DNA gyrase after irradiation, (ii) treatment of cells with novobiocin results in defects in chromosome segregation that are aggravated by the absence of PprA, and (iii) PprA stimulates the decatenation activity of DNA gyrase. Our results extend the knowledge of how D. radiodurans cells survive exposure to extreme doses of gamma irradiation and point out the link between DNA repair, chromosome segregation, and DNA gyrase activities in the radioresistant D. radiodurans bacterium. PprA, a radiation-induced Deinococcus-specific protein, was previously shown to be required for cell survival and accurate chromosome segregation after exposure to ionizing radiation. Here, we used an in vivo approach to determine, by shotgun proteomics, putative PprA partners coimmunoprecipitating with PprA when cells were exposed to gamma rays. Among them, we found the two subunits of DNA gyrase and, thus, chose to focus our work on characterizing the activities of the deinococcal DNA gyrase in the presence or absence of PprA. Loss of PprA rendered cells hypersensitive to novobiocin, an inhibitor of the B subunit of DNA gyrase. We showed that treatment of bacteria with novobiocin resulted in induction of the radiation desiccation response (RDR) regulon and in defects in chromosome segregation that were aggravated by the absence of PprA. In vitro, the deinococcal DNA gyrase, like other bacterial DNA gyrases, possesses DNA negative supercoiling and decatenation activities. These two activities are inhibited in vitro by novobiocin and nalidixic acid, whereas PprA specifically stimulates the decatenation activity of DNA gyrase. Together, these results suggest that PprA plays a major role in chromosome decatenation via its interaction with the deinococcal DNA gyrase when D. radiodurans cells are recovering from exposure to ionizing radiation. IMPORTANCED. radiodurans is one of the most radiation-resistant organisms known. This bacterium is able to cope with high levels of DNA lesions generated by exposure to extreme doses of ionizing radiation and to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Here, we identified partners of PprA, a radiation-induced Deinococcus-specific protein, previously shown to be required for radioresistance. Our study leads to three main findings: (i) PprA interacts with DNA gyrase after irradiation, (ii) treatment of cells with novobiocin results in defects in chromosome segregation that are aggravated by the absence of PprA, and (iii) PprA stimulates the decatenation activity of DNA gyrase. Our results extend the knowledge of how D. radiodurans cells survive exposure to extreme doses of gamma irradiation and point out the link between DNA repair, chromosome segregation, and DNA gyrase activities in the radioresistant D. radiodurans bacterium.
Collapse
|
26
|
Topoisomerase IB of Deinococcus radiodurans resolves guanine quadruplex DNA structures in vitro. J Biosci 2015; 40:833-43. [DOI: 10.1007/s12038-015-9571-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Ishino Y, Narumi I. DNA repair in hyperthermophilic and hyperradioresistant microorganisms. Curr Opin Microbiol 2015; 25:103-12. [PMID: 26056771 DOI: 10.1016/j.mib.2015.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/22/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
The genome of a living cell is continuously under attack by exogenous and endogenous genotoxins. Especially, life at high temperature inflicts additional stress on genomic DNA, and very high rates of potentially mutagenic DNA lesions, including deamination, depurination, and oxidation, are expected. However, the spontaneous mutation rates in hyperthermophiles are similar to that in Escherichia coli, and it is interesting to determine how the hyperthermophiles preserve their genomes under such grueling environmental conditions. In addition, organisms with extremely radioresistant phenotypes are targets for investigating special DNA repair mechanisms in extreme environments. Multiple DNA repair mechanisms have evolved in all organisms to ensure genomic stability, by preventing impediments that result in genome destabilizing lesions.
Collapse
Affiliation(s)
- Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka, Fukuoka 812-8581, Japan.
| | - Issay Narumi
- Radiation Microbiology Laboratory, Department of Life Sciences, Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| |
Collapse
|
28
|
Dulermo R, Onodera T, Coste G, Passot F, Dutertre M, Porteron M, Confalonieri F, Sommer S, Pasternak C. Identification of new genes contributing to the extreme radioresistance of Deinococcus radiodurans using a Tn5-based transposon mutant library. PLoS One 2015; 10:e0124358. [PMID: 25884619 PMCID: PMC4401554 DOI: 10.1371/journal.pone.0124358] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/02/2015] [Indexed: 01/19/2023] Open
Abstract
Here, we have developed an extremely efficient in vivo Tn5-based mutagenesis procedure to construct a Deinococcus radiodurans insertion mutant library subsequently screened for sensitivity to genotoxic agents such as γ and UV radiations or mitomycin C. The genes inactivated in radiosensitive mutants belong to various functional categories, including DNA repair functions, stress responses, signal transduction, membrane transport, several metabolic pathways, and genes of unknown function. Interestingly, preliminary characterization of previously undescribed radiosensitive mutants suggests the contribution of cyclic di-AMP signaling in the recovery of D. radiodurans cells from genotoxic stresses, probably by modulating several pathways involved in the overall cell response. Our analyses also point out a new transcriptional regulator belonging to the GntR family, encoded by DR0265, and a predicted RNase belonging to the newly described Y family, both contributing to the extreme radioresistance of D. radiodurans. Altogether, this work has revealed new cell responses involved either directly or indirectly in repair of various cell damage and confirmed that D. radiodurans extreme radiation resistance is determined by a multiplicity of pathways acting as a complex network.
Collapse
Affiliation(s)
- Rémi Dulermo
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Takefumi Onodera
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Geneviève Coste
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Fanny Passot
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Murielle Dutertre
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Martine Porteron
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Fabrice Confalonieri
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Suzanne Sommer
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Cécile Pasternak
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
- * E-mail:
| |
Collapse
|
29
|
Wang Y, Xu Q, Lu H, Lin L, Wang L, Xu H, Cui X, Zhang H, Li T, Hua Y. Protease activity of PprI facilitates DNA damage response: Mn2+-dependence and substrate sequence-specificity of the proteolytic reaction. PLoS One 2015; 10:e0122071. [PMID: 25811789 PMCID: PMC4374696 DOI: 10.1371/journal.pone.0122071] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/10/2015] [Indexed: 01/21/2023] Open
Abstract
The extremophilic bacterium Deinococcus radiodurans exhibits an extraordinary resistance to ionizing radiation. Previous studies established that a protein named PprI, which exists only in the Deinococcus-Thermus family, acts as a general switch to orchestrate the expression of a number of DNA damage response (DDR) proteins involved in cellular radio-resistance. Here we show that the regulatory mechanism of PprI depends on its Mn(2+)-dependent protease activity toward DdrO, a transcription factor that suppresses DDR genes’ expression. Recognition sequence-specificity around the PprI cleavage site is essential for DNA damage repair in vivo. PprI and DdrO mediate a novel DNA damage response pathway differing from the classic LexA-mediated SOS response system found in radiation-sensitive bacterium Escherichia coli. This PprI-mediated pathway in D. radiodurans is indispensable for its extreme radio-resistance and therefore its elucidation significantly advances our understanding of the DNA damage repair mechanism in this amazing organism.
Collapse
Affiliation(s)
- Yunguang Wang
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Qiang Xu
- Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, China
| | - Huiming Lu
- National Institute on Aging, Biomedical Research Center, National Institutes of Health, Baltimore, United States of America
| | - Lin Lin
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Hong Xu
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Xianyan Cui
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhang
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Tingting Li
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
30
|
Appukuttan D, Seo HS, Jeong S, Im S, Joe M, Song D, Choi J, Lim S. Expression and mutational analysis of DinB-like protein DR0053 in Deinococcus radiodurans. PLoS One 2015; 10:e0118275. [PMID: 25706748 PMCID: PMC4338110 DOI: 10.1371/journal.pone.0118275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022] Open
Abstract
In order to understand the mechanism governing radiation resistance in Deinococcus radiodurans, current efforts are aimed at identifying potential candidates from a large repertoire of unique Deinococcal genes and protein families. DR0053 belongs to the DinB/YfiT protein family, which is an over-represented protein family in D. radiodurans. We observed that dr0053 transcript levels were highly induced in response to gamma radiation (γ-radiation) and mitomycin C (MMC) exposure depending on PprI, RecA and the DrtR/S two-component signal transduction system. Protein profiles demonstrated that DR0053 is a highly induced protein in cultures exposed to 10 kGy γ-radiation. We were able to determine the transcriptional start site of dr0053, which was induced upon irradiation, and to assign the 133-bp promoter region of dr0053 as essential for radiation responsiveness through primer extension and promoter deletion analyses. A dr0053 mutant strain displayed sensitivity to γ-radiation and MMC exposure, but not hydrogen peroxide, suggesting that DR0053 helps cells recover from DNA damage. Bioinformatic analyses revealed that DR0053 is similar to the Bacillus subtilis protein YjoA, which is a substrate of bacterial protein-tyrosine kinases. Taken together, the DNA damage-inducible (din) gene dr0053 may be regulated at the transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Deepti Appukuttan
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Sunwook Jeong
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Sunghun Im
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Minho Joe
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Dusup Song
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Jungjoon Choi
- Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| |
Collapse
|
31
|
Modi K, Misra HS. Dr-FtsA, an actin homologue in Deinococcus radiodurans differentially affects Dr-FtsZ and Ec-FtsZ functions in vitro. PLoS One 2014; 9:e115918. [PMID: 25551229 PMCID: PMC4281207 DOI: 10.1371/journal.pone.0115918] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/29/2014] [Indexed: 11/24/2022] Open
Abstract
The Deinococcus radiodurans genome encodes homologues of divisome proteins including FtsZ and FtsA. FtsZ of this bacterium (Dr-FtsZ) has been recently characterized. In this paper, we study FtsA of D. radiodurans (Dr-FtsA) and its involvement in regulation of FtsZ function. Recombinant Dr-FtsA showed neither ATPase nor GTPase activity and its polymerization was ATP dependent. Interestingly, we observed that Dr-FtsA, when compared with E. coli FtsA (Ec-FtsA), has lower affinity for both Dr-FtsZ and Ec-FtsZ. Also, Dr-FtsA showed differential effects on GTPase activity and sedimentation characteristics of Dr-FtsZ and Ec-FtsZ. For instance, Dr-FtsA stimulated GTPase activity of Dr-FtsZ while GTPase activity of Ec-FtsZ was reduced in the presence of Dr-FtsA. Stimulation of GTPase activity of Dr-FtsZ by Dr-FtsA resulted in depolymerization of Dr-FtsZ. Dr-FtsA effects on GTPase activity and polymerization/depolymerisation characteristics of Dr-FtsZ did not change significantly in the presence of ATP. Recombinant E. coli expressing Dr-FtsA showed cell division inhibition in spite of in trans expression of Dr-FtsZ in these cells. These results suggested that Dr-FtsA, although it lacks ATPase activity, is still functional and differentially affects Dr-FtsZ and Ec-FtsZ function in vitro.
Collapse
Affiliation(s)
- Kruti Modi
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Hari S. Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
- * E-mail:
| |
Collapse
|
32
|
Adachi M, Hirayama H, Shimizu R, Satoh K, Narumi I, Kuroki R. Interaction of double-stranded DNA with polymerized PprA protein from Deinococcus radiodurans. Protein Sci 2014; 23:1349-58. [PMID: 25044036 DOI: 10.1002/pro.2519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 11/06/2022]
Abstract
Pleiotropic protein promoting DNA repair A (PprA) is a key protein that facilitates the extreme radioresistance of Deinococcus radiodurans. To clarify the role of PprA in the radioresistance mechanism, the interaction between recombinant PprA expressed in Escherichia coli with several double-stranded DNAs (i.e., super coiled, linear, or nicked circular dsDNA) was investigated. In a gel-shift assay, the band shift of supercoiled pUC19 DNA caused by the binding of PprA showed a bimodal distribution, which was promoted by the addition of 1 mM Mg, Ca, or Sr ions. The dissociation constant of the PprA-supercoiled pUC19 DNA complex, calculated from the relative portions of shifted bands, was 0.6 μM with Hill coefficient of 3.3 in the presence of 1 mM Mg acetate. This indicates that at least 281 PprA molecules are required to saturate a supercoiled pUC19 DNA, which is consistent with the number (280) of bound PprA molecules estimated by the UV absorption of the PprA-pUC19 complex purified by gel filtration. This saturation also suggests linear polymerization of PprA along the dsDNA. On the other hand, the bands of linear dsDNA and nicked circular dsDNA that eventually formed PprA complexes did not saturate, but created larger molecular complexes when the PprA concentration was >1.3 μM. This result implies that DNA-bound PprA aids association of the termini of damaged DNAs, which is regulated by the concentration of PprA. These findings are important for the understanding of the mechanism underlying effective DNA repair involving PprA.
Collapse
Affiliation(s)
- Motoyasu Adachi
- Molecular Biology Research Division, Quantum Beam Science Center, Japan Atomic Energy Agency, Ibaraki, 319-1195, Japan
| | | | | | | | | | | |
Collapse
|