1
|
Leukocyte and IgM Responses to Immunization with the CIDR1α-PfEMP1 Recombinant Protein in the Wistar Rat. Trop Med Infect Dis 2022; 7:tropicalmed7090222. [PMID: 36136633 PMCID: PMC9504645 DOI: 10.3390/tropicalmed7090222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
The malaria vaccine is an important strategy for the global malaria elimination program, but the complexity of the Plasmodium antigen is a major hurdle in malaria vaccine development. The cysteine-rich interdomain region 1α (CIDR1α) of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is crucial in malaria pathogenesis, making it a vaccine candidate. This study investigated the leukocyte and IgM response generated after administering a CIDR1α-PfEMP1 recombinant protein injection in Wistar rats. The rats were divided into a control group, who received a physiological saline solution (PSS), and a treatment group, who were subcutaneously injected with 150 µg of purified CIDR1α-PfEMP1 protein three times at the 3-week interval. Blood samples were collected every week after each injection. The number of leukocytes were counted using a Neubauer chamber, and the IgM concentration was determined using an enzyme-linked immunosorbent assay (ELISA). Data were analyzed using an independent, paired-T test, a Mann−Whitney test, and a Wilcoxon test, based on the distribution of the data. The total number of leukocytes notably increased on day 29 (p < 0.05). The percentage of neutrophils decreased, especially on day 8 (p < 0.05), whereas the percentages of monocytes and lymphocytes increased, primarily on day 14 (p < 0.05). The IgM concentration increased on day 14 (p < 0.05). In conclusion, the CIDR1α-PfEMP1 recombinant protein may induce leukocyte and IgM responses, making it a potential malaria vaccine candidate.
Collapse
|
2
|
Lagunas-Rangel FA. Sequence Analysis and Comparison of TCTP Proteins from Human Protozoan Parasites. Acta Parasitol 2022; 67:1024-1031. [PMID: 35138574 PMCID: PMC9165267 DOI: 10.1007/s11686-022-00521-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
Purpose Translational controlled tumor protein (TCTP) is a functionally important protein in most eukaryotes because it participates in a wide variety of processes, the most representative being proliferation, differentiation, histamine release, cell death, protein synthesis and response to stress conditions. In the present work, we analyze the sequence, structure and phylogeny of TCTP orthologs in a group of human parasitic protozoan species. Methods The complete sequences of TCTP orthologs in protozoan parasites were identified with the NCBI BLAST tool in the database of the EuPathDB Bioinformatics Resource Center. The sequences were aligned and important regions of the protein were identified, and later phylogenetic trees and 3D models were built with different bioinformatic tools. Results Our results show evolutionarily and structurally conserved sites that could be exploited to create new therapeutic strategies given the increase in the number of strains resistant to current drugs. Conclusion TCTP orthologs in protozoan parasites have been little studied but have been shown to be important in parasite growth, proliferation, reproduction, and response to changes in the environment. For all this, TCTP can be considered as a possible therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1007/s11686-022-00521-9.
Collapse
|
3
|
Gremski LH, Matsubara FH, Polli NLC, Antunes BC, Schluga PHDC, da Justa HC, Minozzo JC, Wille ACM, Senff-Ribeiro A, Veiga SS. Prospective Use of Brown Spider Venom Toxins as Therapeutic and Biotechnological Inputs. Front Mol Biosci 2021; 8:706704. [PMID: 34222343 PMCID: PMC8247472 DOI: 10.3389/fmolb.2021.706704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
Brown spider (genus Loxosceles) venoms are mainly composed of protein toxins used for predation and defense. Bites of these spiders most commonly produce a local dermonecrotic lesion with gravitational spread, edema and hemorrhage, which together are defined as cutaneous loxoscelism. Systemic loxoscelism, such as hematological abnormalities and renal injury, are less frequent but more lethal. Some Loxosceles venom toxins have already been isolated and extensively studied, such as phospholipases D (PLDs), which have been recombinantly expressed and were proven to reproduce toxic activities associated to the whole venom. PLDs have a notable potential to be engineered and converted in non-toxic antigens to produce a new generation of antivenoms or vaccines. PLDs also can serve as tools to discover inhibitors to be used as therapeutic agents. Other Loxosceles toxins have been identified and functionally characterized, such as hyaluronidases, allergen factor, serpin, TCTP and knottins (ICK peptides). All these toxins were produced as recombinant molecules and are biologically active molecules that can be used as tools for the potential development of chemical candidates to tackle many medical and biological threats, acting, for instance, as antitumoral, insecticides, analgesic, antigens for allergy tests and biochemical reagents for cell studies. In addition, these recombinant toxins may be useful to develop a rational therapy for loxoscelism. This review summarizes the main candidates for the development of drugs and biotechnological inputs that have been described in Brown spider venoms.
Collapse
Affiliation(s)
| | | | | | - Bruno Cesar Antunes
- Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil.,Production and Research Center of Immunobiological Products, State Department of Health, Piraquara, Brazil
| | | | | | - João Carlos Minozzo
- Production and Research Center of Immunobiological Products, State Department of Health, Piraquara, Brazil
| | - Ana Carolina Martins Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | | |
Collapse
|
4
|
Bommer UA. The Translational Controlled Tumour Protein TCTP: Biological Functions and Regulation. Results Probl Cell Differ 2017; 64:69-126. [PMID: 29149404 DOI: 10.1007/978-3-319-67591-6_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Translational Controlled Tumour Protein TCTP (gene symbol TPT1, also called P21, P23, Q23, fortilin or histamine-releasing factor, HRF) is a highly conserved protein present in essentially all eukaryotic organisms and involved in many fundamental cell biological and disease processes. It was first discovered about 35 years ago, and it took an extended period of time for its multiple functions to be revealed, and even today we do not yet fully understand all the details. Having witnessed most of this history, in this chapter, I give a brief overview and review the current knowledge on the structure, biological functions, disease involvements and cellular regulation of this protein.TCTP is able to interact with a large number of other proteins and is therefore involved in many core cell biological processes, predominantly in the response to cellular stresses, such as oxidative stress, heat shock, genotoxic stress, imbalance of ion metabolism as well as other conditions. Mechanistically, TCTP acts as an anti-apoptotic protein, and it is involved in DNA-damage repair and in cellular autophagy. Thus, broadly speaking, TCTP can be considered a cytoprotective protein. In addition, TCTP facilitates cell division through stabilising the mitotic spindle and cell growth through modulating growth signalling pathways and through its interaction with the proteosynthetic machinery of the cell. Due to its activities, both as an anti-apoptotic protein and in promoting cell growth and division, TCTP is also essential in the early development of both animals and plants.Apart from its involvement in various biological processes at the cellular level, TCTP can also act as an extracellular protein and as such has been involved in modulating whole-body defence processes, namely in the mammalian immune system. Extracellular TCTP, typically in its dimerised form, is able to induce the release of cytokines and other signalling molecules from various types of immune cells. There are also several examples, where TCTP was shown to be involved in antiviral/antibacterial defence in lower animals. In plants, the protein appears to have a protective effect against phytotoxic stresses, such as flooding, draught, too high or low temperature, salt stress or exposure to heavy metals. The finding for the latter stress condition is corroborated by earlier reports that TCTP levels are considerably up-regulated upon exposure of earthworms to high levels of heavy metals.Given the involvement of TCTP in many biological processes aimed at maintaining cellular or whole-body homeostasis, it is not surprising that dysregulation of TCTP levels may promote a range of disease processes, foremost cancer. Indeed a large body of evidence now supports a role of TCTP in at least the most predominant types of human cancers. Typically, this can be ascribed to both the anti-apoptotic activity of the protein and to its function in promoting cell growth and division. However, TCTP also appears to be involved in the later stages of cancer progression, such as invasion and metastasis. Hence, high TCTP levels in tumour tissues are often associated with a poor patient outcome. Due to its multiple roles in cancer progression, TCTP has been proposed as a potential target for the development of new anti-cancer strategies in recent pilot studies. Apart from its role in cancer, TCTP dysregulation has been reported to contribute to certain processes in the development of diabetes, as well as in diseases associated with the cardiovascular system.Since cellular TCTP levels are highly regulated, e.g. in response to cell stress or to growth signalling, and because deregulation of this protein contributes to many disease processes, a detailed understanding of regulatory processes that impinge on TCTP levels is required. The last section of this chapter summarises our current knowledge on the mechanisms that may be involved in the regulation of TCTP levels. Essentially, expression of the TPT1 gene is regulated at both the transcriptional and the translational level, the latter being particularly advantageous when a rapid adjustment of cellular TCTP levels is required, for example in cell stress responses. Other regulatory mechanisms, such as protein stability regulation, may also contribute to the regulation of overall TCTP levels.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- School of Medicine, Graduate Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
5
|
Abstract
The translationally controlled tumor protein (TCTP) is a small, multifunctional protein found in most, if not all, eukaryotic lineages, involved in a myriad of key regulatory processes. Among these, the control of proliferation and inhibition of cell death, as well as differentiation, are the most important, and it is probable that other responses are derived from the ability of TCTP to influence them in both unicellular and multicellular organisms. In the latter, an additional function for TCTP stems from its capacity to be secreted via a nonclassical pathway and function in a non-cell autonomous (paracrine) manner, thus affecting the responses of neighboring or distant cells to developmental or environmental stimuli (as in the case of serum TCTP/histamine-releasing factor in mammals and phloem TCTP in Arabidopsis). The additional ability to traverse membranes without a requirement for transmembrane receptors adds to its functional flexibility. The long-distance transport of TCTP mRNA and protein in plants via the vascular system supports the notion that an important aspect of TCTP function is its ability to influence the response of neighboring and distant cells to endogenous and exogenous signals in a supracellular manner. The predicted tridimensional structure of TCTPs indicates a high degree of conservation, more than its amino acid sequence similarity could suggest. However, subtle differences in structure could lead to different activities, as evidenced by TCTPs secreted by Plasmodium spp. Similar structural variations in animal and plant TCTPs, likely the result of convergent evolution, could lead to deviations from the canonical function of this group of proteins, which could have an impact from a biomedical and agricultural perspectives.
Collapse
Affiliation(s)
| | - Roberto Ruiz-Medrano
- Department of Biotechnology and Bioengineering, Center for Research and Advanced Studies of the National Polytechnic Institute, Avenida IPN 2508, Colonia San Pedro Zacatenco, México City, 07360, México.
| |
Collapse
|
6
|
Soni R, Sharma D, Bhatt TK. Plasmodium falciparum Secretome in Erythrocyte and Beyond. Front Microbiol 2016; 7:194. [PMID: 26925057 PMCID: PMC4759260 DOI: 10.3389/fmicb.2016.00194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/05/2016] [Indexed: 01/19/2023] Open
Abstract
Plasmodium falciparum is the causative agent of deadly malaria disease. It is an intracellular eukaryote and completes its multi-stage life cycle spanning the two hosts viz, mosquito and human. In order to habituate within host environment, parasite conform several strategies to evade host immune responses such as surface antigen polymorphism or modulation of host immune system and it is mediated by secretion of proteins from parasite to the host erythrocyte and beyond, collectively known as, malaria secretome. In this review, we will discuss about the deployment of parasitic secretory protein in mechanism implicated for immune evasion, protein trafficking, providing virulence, changing permeability and cyto-adherence of infected erythrocyte. We will be covering the possibilities of developing malaria secretome as a drug/vaccine target. This gathered information will be worthwhile in depicting a well-organized picture for host-pathogen interplay during the malaria infection and may also provide some clues for the development of novel anti-malarial therapies.
Collapse
Affiliation(s)
- Rani Soni
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan Rajasthan, India
| | - Drista Sharma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan Rajasthan, India
| | - Tarun K Bhatt
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan Rajasthan, India
| |
Collapse
|
7
|
Toscano-Morales R, Xoconostle-Cázares B, Martínez-Navarro AC, Ruiz-Medrano R. AtTCTP2 mRNA and protein movement correlates with formation of adventitious roots in tobacco. PLANT SIGNALING & BEHAVIOR 2016; 11:e1071003. [PMID: 26237533 PMCID: PMC4883931 DOI: 10.1080/15592324.2015.1071003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/01/2015] [Accepted: 07/04/2015] [Indexed: 05/11/2023]
Abstract
The Translationally Controlled Tumor Proteins, or TCTP, is a superfamily of exclusively eukaryotic proteins essential in the regulation of proliferation and general growth. However, it is clear that these are multifunctional proteins given (1) the pleiotropic effects of its mutations, and (2), the multiple processes in which this protein is involved. TCTP function in general is conserved, since Arabidopsis AtTCTP1 can rescue a Drosophila mutant, and vice versa. It has become clear, however, that these proteins may have "taxon-specific" functions. In the case of plants, mRNA and/or proteins have been found in the phloem translocation stream of different species, suggesting a role in long-distance signaling. We have found that a second Arabidopsis TCTP gene, AtTCTP2, codes for a protein that moves long-distance through a graft union in tobacco. Interestingly, the mRNA is also transported long-distance. Both mRNA and protein move long-distance; interestingly, the movement, while more efficient from source to sink tissues, also occurs in the opposite direction. The protein reaches the nuclei of parenchyma cells and adventitious roots. Furthermore, it is clear that the long-distance delivery of AtTCTP2 protein and mRNA is required for the induction of adventitious roots. A model is presented that accounts for these observations.
Collapse
Affiliation(s)
| | | | | | - Roberto Ruiz-Medrano
- Department of Biotechnology and Bioengineering; CINVESTAV; Zacatenco, Mexico DF, Mexico
| |
Collapse
|
8
|
Kolb P, Wallich R, Nassal M. Whole-Chain Tick Saliva Proteins Presented on Hepatitis B Virus Capsid-Like Particles Induce High-Titered Antibodies with Neutralizing Potential. PLoS One 2015; 10:e0136180. [PMID: 26352137 PMCID: PMC4564143 DOI: 10.1371/journal.pone.0136180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/30/2015] [Indexed: 01/14/2023] Open
Abstract
Ticks are vectors for various, including pathogenic, microbes. Tick saliva contains multiple anti-host defense factors that enable ticks their bloodmeals yet also facilitate microbe transmission. Lyme disease-causing borreliae profit specifically from the broadly conserved tick histamine release factor (tHRF), and from cysteine-rich glycoproteins represented by Salp15 from Ixodes scapularis and Iric-1 from Ixodes ricinus ticks which they recruit to their outer surface protein C (OspC). Hence these tick proteins are attractive targets for anti-tick vaccines that simultaneously impair borrelia transmission. Main obstacles are the tick proteins´ immunosuppressive activities, and for Salp15 orthologs, the lack of efficient recombinant expression systems. Here, we exploited the immune-enhancing properties of hepatitis B virus core protein (HBc) derived capsid-like particles (CLPs) to generate, in E. coli, nanoparticulate vaccines presenting tHRF and, as surrogates for the barely soluble wild-type proteins, cysteine-free Salp15 and Iric-1 variants. The latter CLPs were exclusively accessible in the less sterically constrained SplitCore system. Mice immunized with tHRF CLPs mounted a strong anti-tHRF antibody response. CLPs presenting cysteine-free Salp15 and Iric-1 induced antibodies to wild-type, including glycosylated, Salp15 and Iric-1. The broadly distributed epitopes included the OspC interaction sites. In vitro, the anti-Salp15 antibodies interfered with OspC binding and enhanced human complement-mediated killing of Salp15 decorated borreliae. A mixture of all three CLPs induced high titered antibodies against all three targets, suggesting the feasibility of combination vaccines. These data warrant in vivo validation of the new candidate vaccines´ protective potential against tick infestation and Borrelia transmission.
Collapse
Affiliation(s)
- Philipp Kolb
- University Hospital Freiburg, Internal Medicine 2 / Molecular Biology, Hugstetter Str. 55, D-79106, Freiburg, Germany
- University of Freiburg, Biological Faculty, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Reinhard Wallich
- University Hospital Heidelberg, Institute of Immunology, Im Neuenheimer Feld 305, D-69120, Heidelberg, Germany
| | - Michael Nassal
- University Hospital Freiburg, Internal Medicine 2 / Molecular Biology, Hugstetter Str. 55, D-79106, Freiburg, Germany
- * E-mail:
| |
Collapse
|
9
|
Toscano-Morales R, Xoconostle-Cázares B, Cabrera-Ponce JL, Hinojosa-Moya J, Ruiz-Salas JL, Galván-Gordillo SV, Guevara-González RG, Ruiz-Medrano R. AtTCTP2, an Arabidopsis thaliana homolog of Translationally Controlled Tumor Protein, enhances in vitro plant regeneration. FRONTIERS IN PLANT SCIENCE 2015; 6:468. [PMID: 26191065 PMCID: PMC4489097 DOI: 10.3389/fpls.2015.00468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 06/12/2015] [Indexed: 05/20/2023]
Abstract
The Translationally Controlled Tumor Protein (TCTP) is a central regulator of cell proliferation and differentiation in animals, and probably also in plants. Arabidopsis harbors two TCTP genes, AtTCTP1 (At3g16640), which is an important mitotic regulator, and AtTCTP2 (At3g05540), which is considered a pseudogene. Nevertheless, we have obtained evidence suggesting that this gene is functional. Indeed, a T-DNA insertion mutant, SALK_045146, displays a lethal phenotype during early rosette stage. Also, both the AtTCTP2 promoter and structural gene are functional, and heterozygous plants show delayed development. AtTCTP1 cannot compensate for the loss of AtTCTP2, since the accumulation levels of the AtTCTP1 transcript are even higher in heterozygous plants than in wild-type plants. Leaf explants transformed with Agrobacterium rhizogenes harboring AtTCTP2, but not AtTCTP1, led to whole plant regeneration with a high frequency. Insertion of a sequence present in AtTCTP1 but absent in AtTCTP2 demonstrates that it suppresses the capacity for plant regeneration; also, this phenomenon is enhanced by the presence of TCTP (AtTCTP1 or 2) in the nuclei of root cells. This confirms that AtTCTP2 is not a pseudogene and suggests the involvement of certain TCTP isoforms in vegetative reproduction in some plant species.
Collapse
Affiliation(s)
- Roberto Toscano-Morales
- Laboratory of Plant Molecular Biology, Department of Biotechnology and Bioengineering, CINVESTAVMexico City, Mexico
| | - Beatriz Xoconostle-Cázares
- Laboratory of Plant Molecular Biology, Department of Biotechnology and Bioengineering, CINVESTAVMexico City, Mexico
| | | | - Jesús Hinojosa-Moya
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Ciudad UniversitariaPuebla, Mexico
| | - Jorge L. Ruiz-Salas
- Laboratory of Plant Molecular Biology, Department of Biotechnology and Bioengineering, CINVESTAVMexico City, Mexico
| | - Santiago V. Galván-Gordillo
- Laboratory of Plant Molecular Biology, Department of Biotechnology and Bioengineering, CINVESTAVMexico City, Mexico
| | - Ramón G. Guevara-González
- CA Ingenieria de Biosistemas, Centro Universitario Cerro de las Campanas, Universidad Autónoma de QuerétaroSantiago de Querétaro, Mexico
| | - Roberto Ruiz-Medrano
- Laboratory of Plant Molecular Biology, Department of Biotechnology and Bioengineering, CINVESTAVMexico City, Mexico
| |
Collapse
|
10
|
Taylor KJ, Van TTH, MacDonald SM, Meshnick SR, Fernley RT, Macreadie IG, Smooker PM. Immunization of mice with Plasmodium TCTP delays establishment of Plasmodium infection. Parasite Immunol 2015; 37:23-31. [PMID: 25376500 DOI: 10.1111/pim.12158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/31/2014] [Indexed: 12/19/2022]
Abstract
Translationally controlled tumour protein (TCTP) may play an important role in the establishment or maintenance of parasitemia in a malarial infection. In this study, the potential of TCTP as a malaria vaccine was investigated in two trials. In the initial vaccine trial, Plasmodium falciparum TCTP (PfTCTP) was expressed in Saccharomyces cerevisiae and used to immunize BALB/c mice. Following challenge with Plasmodium yoelii YM, parasitemia was significantly reduced during the early stages of infection. In the second vaccine trial, the TCTP from P. yoelii and P. berghei was expressed in Escherichia coli and used in several mouse malaria models. A significant reduction in parasitemia in the early stages of infection was observed in BALB/c mice challenged with P. yoelii YM. A significantly reduced parasitemia at each day leading up to a delayed and reduced peak parasitemia was also observed in BALB/c mice challenged with the nonlethal Plasmodium chabaudi (P.c.) chabaudi AS. These results suggest that TCTP has an important role for parasite establishment and may be important for pathogenesis.
Collapse
Affiliation(s)
- K J Taylor
- School of Applied Sciences, RMIT University, Bundoora, VIc., Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Gutiérrez-Galeano DF, Toscano-Morales R, Calderón-Pérez B, Xoconostle-Cázares B, Ruiz-Medrano R. Structural divergence of plant TCTPs. FRONTIERS IN PLANT SCIENCE 2014; 5:361. [PMID: 25120549 PMCID: PMC4114181 DOI: 10.3389/fpls.2014.00361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/07/2014] [Indexed: 05/02/2023]
Abstract
The Translationally Controlled Tumor Protein (TCTP) is a highly conserved protein at the level of sequence, considered to play an essential role in the regulation of growth and development in eukaryotes. However, this function has been inferred from studies in a few model systems, such as mice and mammalian cell lines, Drosophila and Arabidopsis. Thus, the knowledge regarding this protein is far from complete. In the present study bioinformatic analysis showed the presence of one or more TCTP genes per genome in plants with highly conserved signatures and subtle variations at the level of primary structure but with more noticeable differences at the level of predicted three-dimensional structures. These structures show differences in the "pocket" region close to the center of the protein and in its flexible loop domain. In fact, all predictive TCTP structures can be divided into two groups: (1) AtTCTP1-like and (2) CmTCTP-like, based on the predicted structures of an Arabidopsis TCTP and a Cucurbita maxima TCTP; according to this classification we propose that their probable function in plants may be inferred in principle. Thus, different TCTP genes in a single organism may have different functions; additionally, in those species harboring a single TCTP gene this could carry multiple functions. On the other hand, in silico analysis of AtTCTP1-like and CmTCTP-like promoters suggest that these share common motifs but with different abundance, which may underscore differences in their gene expression patterns. Finally, the absence of TCTP genes in most chlorophytes with the exception of Coccomyxa subellipsoidea, indicates that other proteins perform the roles played by TCTP or the pathways regulated by TCTP occur through alternative routes. These findings provide insight into the evolution of this gene family in plants.
Collapse
Affiliation(s)
| | | | | | | | - Roberto Ruiz-Medrano
- *Correspondence: Roberto Ruiz-Medrano, Department of Biotechnology and Bioengineering, CINVESTAV-IPN, Ave., IPN 2508, Zacatenco, 07360 Mexico DF, Mexico e-mail:
| |
Collapse
|