1
|
Li J, Yang D, Lin L, Yu L, Chen L, Lu K, Lan J, Zeng Y, Xu Y. Important functions and molecular mechanisms of aquaporins family on respiratory diseases: potential translational values. J Cancer 2024; 15:6073-6085. [PMID: 39440058 PMCID: PMC11493008 DOI: 10.7150/jca.98829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/25/2024] [Indexed: 10/25/2024] Open
Abstract
Aquaporins (AQPs) are a subgroup of small transmembrane transporters that are distributed in various types of tissues, including the lung, kidney, heart and central nervous system. It is evident that respiratory diseases represent a significant global health concern, with a considerable number of deaths occurring worldwide. Recent researches have demonstrated that AQPs play a pivotal role in respiratory diseases, including chronic obstructive pulmonary disease (COPD), asthma, acute respiratory distress syndrome (ARDS), and particularly non-small cell lung cancer (NSCLC). In the context of NSCLC, the overexpression of AQP1, AQP3, AQP4, and AQP5 has been demonstrated to facilitate tumor angiogenesis, as well as the proliferation, migration, and invasiveness of tumor cells. This review concisely explores the role of AQP family on respiratory diseases, to assess their clinical and translational significance for understanding molecular pathogenesis. However, the potential translation of AQPs biomarkers into clinical applications is promising and the understanding of the precise mechanisms influencing respiratory diseases is still ongoing. Addressing the challenges and outlining the future perspectives in AQPs development is essential for clinical progress in a concise manner.
Collapse
Affiliation(s)
- Jinshan Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Dongyong Yang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Lanlan Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Liying Yu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Luyang Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Kaiqiang Lu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Jieli Lan
- Clinical Research Unit, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Yuan Xu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
- School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, 350000, China
| |
Collapse
|
2
|
Liang Q, Kong L, Zhu X, Du Y, Tian J. Noninvasive Imaging for Assessment of the Efficacy of Therapeutic Agents for Hepatocellular Carcinoma. Mol Imaging Biol 2020; 22:1455-1468. [PMID: 31834570 DOI: 10.1007/s11307-019-01431-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Morphological imaging techniques are typically used in the anti-cancer drug efficacy evaluation process. However, these techniques can evaluate the therapeutic efficacy only when the tumor shows anatomic changes-usually at later stages, when the therapeutic effects are poor. In contrast, molecular imaging allows noninvasive monitoring of tumor growth, assessment of drug metabolism, and evaluation of therapeutic efficacy at the molecular and cellular levels. Multimodality molecular imaging, which combines the advantages of various imaging modalities, provides even more comprehensive therapeutic efficacy assessment in preclinical and clinical studies. This review provides an overview of molecular imaging evaluation of therapeutic efficacy of the anti-tumor drugs in hepatocellular carcinoma (HCC) both in preclinical and clinical research, which holds great promise in guiding HCC treatment into the era of precision medicine.
Collapse
Affiliation(s)
- Qian Liang
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China
| | - Lingxin Kong
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China
| | - Xu Zhu
- Department of Interventional Therapy Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University School of Oncology, No. 52 Fucheng Road, Haidian District, 100142, Beijing, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100080, China.
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100080, China.
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China.
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China.
| |
Collapse
|
3
|
Zhu J, Yin T, Xu Y, Lu XJ. Therapeutics for advanced hepatocellular carcinoma: Recent advances, current dilemma, and future directions. J Cell Physiol 2019; 234:12122-12132. [PMID: 30644100 DOI: 10.1002/jcp.28048] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and is a serious threat to people's health worldwide. The prognosis of advanced HCC is dim if left untreated. In the clinic, the treatment options for advanced HCC include surgery, radiotherapy, transcatheter arterial chemoembolization, and so forth. In recent years, molecular targeted therapy and immunotherapy have also made great progress, bringing new hope to patients with advanced HCC. In this study, therapeutic advances, current dilemma, and future directions of advanced HCC are reviewed, which might serve as a summary for clinicians and may stimulate future research.
Collapse
Affiliation(s)
- Jing Zhu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, The Sparkfire Scientific Research Group of Nanjing Medical University, Nanjing, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yong Xu
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xiao-Jie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, The Sparkfire Scientific Research Group of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Yang D, Wang L, Chen D, Yan C, He X, Liang J, Chen X. Filtered maximum likelihood expectation maximization based global reconstruction for bioluminescence tomography. Med Biol Eng Comput 2018; 56:2067-2081. [PMID: 29770920 DOI: 10.1007/s11517-018-1842-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 05/04/2018] [Indexed: 12/17/2022]
Abstract
The reconstruction of bioluminescence tomography (BLT) is severely ill-posed due to the insufficient measurements and diffuses nature of the light propagation. Predefined permissible source region (PSR) combined with regularization terms is one common strategy to reduce such ill-posedness. However, the region of PSR is usually hard to determine and can be easily affected by subjective consciousness. Hence, we theoretically developed a filtered maximum likelihood expectation maximization (fMLEM) method for BLT. Our method can avoid predefining the PSR and provide a robust and accurate result for global reconstruction. In the method, the simplified spherical harmonics approximation (SPN) was applied to characterize diffuse light propagation in medium, and the statistical estimation-based MLEM algorithm combined with a filter function was used to solve the inverse problem. We systematically demonstrated the performance of our method by the regular geometry- and digital mouse-based simulations and a liver cancer-based in vivo experiment. Graphical abstract The filtered MLEM-based global reconstruction method for BLT.
Collapse
Affiliation(s)
- Defu Yang
- Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Lin Wang
- School of Information Sciences and Technology, Northwest University, Xi'an, 710126, China
| | - Dongmei Chen
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Chenggang Yan
- Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiaowei He
- School of Information Sciences and Technology, Northwest University, Xi'an, 710126, China
| | - Jimin Liang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710127, China
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710127, China.
| |
Collapse
|
5
|
Gahr S, Mayr C, Kiesslich T, Illig R, Neureiter D, Alinger B, Ganslmayer M, Wissniowski T, Fazio PD, Montalbano R, Ficker JH, Ocker M, Quint K. The pan-deacetylase inhibitor panobinostat affects angiogenesis in hepatocellular carcinoma models via modulation of CTGF expression. Int J Oncol 2015; 47:963-970. [PMID: 26202945 DOI: 10.3892/ijo.2015.3087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023] Open
Abstract
Post-translational modifications of chromatin components are significantly involved in the regulation of tumor suppressor gene and oncogene expression. Connective tissue growth factor (CTGF) is an epigenetically regulated growth factor with functions in angiogenesis and cell-matrix interactions and plays a pivotal role in hepatocellular carcinoma (HCC). The pharmacologic inhibition of histone and protein deacetylases represents a new approach to interfere with pathways of apoptosis and angiogenesis. We investigated the effect of the pan-deacetylase inhibitor panobinostat (LBH589) on human HCC cell lines HepG2 (p53wt) and Hep3B (p53null) and in a subcutaneous xenograft model and explored the influence on angiogenesis. Specimens were characterized by quantitative real-time PCR. Protein was separated for western blotting against CTGF, VEGF, VEGF receptor-1 (VEGFR-1/FLT-1), VEGF receptor-2 (VEGFR-2/KDR), MAPK and phospho-MAPK. In vivo, HepG2 cells were xenografted to NMRI mice and treated with daily i.p. injections of 10 mg/kg panobinostat. After 1, 7 and 28 days, real-time PCR was performed. Immunohistochemistry and western blotting were examined after 28 days. An increased significant expression of CTGF was only seen after 24 h treatment with 0.1 µM panobinostat in HepG2 cells and Hep3B cells, whereas after 72 h treatment CTGF expression clearly decreased. In the xenografts, treatment with panobinostat showed a minimal CTGF expression after 1 day and 4 weeks, respectively. In vitro as well as in vivo, VEGF was not affected by panobinostat treatment at any time. In conclusion, panobinostat influences extracellular signaling cascades via CTGF-dependent pathways.
Collapse
Affiliation(s)
- Susanne Gahr
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - Christian Mayr
- Laboratory for Tumour Biology and Experimental Therapies, Paracelsus Medical University, Salzburg, Austria
| | - Tobias Kiesslich
- Laboratory for Tumour Biology and Experimental Therapies, Paracelsus Medical University, Salzburg, Austria
| | - Romana Illig
- Institute of Pathology, Salzburger Landeskliniken, Paracelsus Private Medical University, Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Salzburger Landeskliniken, Paracelsus Private Medical University, Salzburg, Austria
| | - Beate Alinger
- Institute of Pathology, Salzburger Landeskliniken, Paracelsus Private Medical University, Salzburg, Austria
| | - Marion Ganslmayer
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - Till Wissniowski
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - Pietro Di Fazio
- Institute for Surgical Research, Phillips University Marburg, Marburg, Germany
| | - Roberta Montalbano
- Institute for Surgical Research, Phillips University Marburg, Marburg, Germany
| | - Joachim H Ficker
- Klinikum Nuernberg, Department of Respiratory Medicine, Allergology and Sleep Medicine, Nuremberg, Germany
| | - Matthias Ocker
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - Karl Quint
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
6
|
Chen X, Sun F, Yang D, Liang J. Coupled third-order simplified spherical harmonics and diffusion equation-based fluorescence tomographic imaging of liver cancer. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:090502. [PMID: 26385654 DOI: 10.1117/1.jbo.20.9.090502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/17/2015] [Indexed: 06/05/2023]
Abstract
For fluorescence tomographic imaging of small animals, the liver is usually regarded as a low-scattering tissue and is surrounded by adipose, kidneys, and heart, all of which have a high scattering property. This leads to a breakdown of the diffusion equation (DE)–based reconstruction method as well as a heavy computational burden for the simplified spherical harmonics equation (SP(N)). Coupling the SP(N) and DE provides a perfect balance between the imaging accuracy and computational burden. The coupled third-order SPN and DE (CSDE)-based reconstruction method is developed for fluorescence tomographic imaging. This is achieved by doubly using the CSDE for the excitation and emission processes of the fluorescence propagation. At the same time, the finite-element method and hybrid multilevel regularization strategy are incorporated in inverse reconstruction. The CSDE-based reconstruction method is first demonstrated with a digital mouse-based liver cancer simulation, which reveals superior performance compared with the SPN and DE-based methods. It is more accurate than the DE-based method and has lesser computational burden than the SPN-based method. The feasibility of the proposed approach in applications of in vivo studies is also illustrated with a liver cancer mouse-based in situ experiment, revealing its potential application in whole-body imaging of small animals.
Collapse
|
7
|
Zhou Y, Wang MY, Gao JB, Dong JQ, Xu H, Hou P. Evaluation of efficacy of anti-angiogenesis therapy for VX2 hepatic tumors in rabbits by spectral CT and CT perfusion imaging. Shijie Huaren Xiaohua Zazhi 2014; 22:4726-4733. [DOI: 10.11569/wcjd.v22.i31.4726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the efficacy of anti-angiogenesis therapy for VX2 hepatic tumors in rabbits by spectral computed tomography (CT) imaging and CT perfusion imaging.
METHODS: Sixty New Zealand white rabbits with implanted VX2 hepatic tumors were randomly divided into two groups (A and B), with each group containing 30 rabbits. On day 14 after tumor implantation, group B received intravenous endostatin at a dose of 3 mg/kg for 7 d. Both groups underwent spectral CT and CT perfusion scans on day 21 after tumor implantation. The animals were then sacrificed, and the expression of VEGF mRNA and FGF2 protein in the tumor rim (TR) and the normal region (NR) was detected by RT-PCR and Western blot, respectively.
RESULTS: For CT perfusion parameters, group A showed increased blood flow (BF), blood volume (BV), permeability surface (PS) and hepatic arterial fraction (HAF) and decreased mean transit time (MTT) in the TR compared with NR (P < 0.05). From days 14 to 21, BF and PS showed an increasing trend, while MTT decreased with tumor growth (P < 0.05). The standardization of iodine (NIC) during arterial phase of the TR and NR exhibited a statistically significant difference (P < 0.05). The NIC of the TR during the arterial phase was significantly higher on day 21 than on day 14. Compared with group A on day 21, BF, BV, PS and HAF decreased, and MTT increased in group B. Pearson correlation analysis showed that these parameters were positively correlated with VEGF mRNA and FGF2 protein expression.
CONCLUSION: Spectral imaging and CT perfusion imaging can provide hemodynamic information of liver lesions and quantitatively reflect the efficacy of anti-angiogenesis therapy.
Collapse
|
8
|
Duan CL, Hou GH, Liu YP, Liang T, Song J, Han JK, Zhang C. Tumor vascular homing endgolin-targeted radioimmunotherapy in hepatocellular carcinoma. Tumour Biol 2014; 35:12205-15. [PMID: 25164610 DOI: 10.1007/s13277-014-2529-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/20/2014] [Indexed: 12/29/2022] Open
Abstract
Endoglin is a proliferation-associated cell membrane antigen and overexpressed in the angiogenic vasculature of solid tumors. However, the applications of endoglin (ENG)-targeted radioimmunotheray in hepatocellular carcinoma have not been reported yet. Therefore, the aim of this study was the visualization of both the development of hepatocellular carcinoma (HCC) tumor burden and therapeutic effect with ENG-targeted (131)I-anti-ENG mAb (A8), via in vivo noninvasive fluorescence imaging (NIFLI) of SMMC7721-green fluorescent protein (GFP) cells. A8 showed a dose-dependent, time-dependent suppression on the proliferation of SMMC7721-GFP cells and human umbilical vein endothelial cells (HUVECs) in vitro. Tube formation assay showed that (131)I-A8 markedly inhibits HUVECs to form extensive and enclosed tube networks. The results showed that the radiochemical purity of (131)I-A8 was 92.8 % and (131)I-A8 maintained more stable in serum than in saline and had high affinity against SMMC7721-GFP cells. The pharmacokinetics of (131)I-A8 was in accordance with the two-compartment model, with a rapid distribution phase and a slow decline phase. NIFLI exhibited a good relation between the fluorescent signal and tumor volume in vivo. Furthermore, treatment with (131)I-A8 resulted in significant tumor-growth suppression on the basis of the reducing fluorescent signal and a remarkably decreased tumor weight in treated animals. These results were further verified by RT-PCR and immunohistochemistry staining. Our findings indicate that (131)I-A8 can be used as ENG-targeted therapy for hepatocellular carcinoma, and noninvasive fluorescence imaging provides valuable information on tumor burden and effectiveness of therapy.
Collapse
Affiliation(s)
- Chong-Ling Duan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhang Q, Jiang Q, Li N, Dai L, Liu Q, Song L, Wang J, Li Y, Tian J, Ding B, Du Y. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS NANO 2014; 8:6633-43. [PMID: 24963790 DOI: 10.1021/nn502058j] [Citation(s) in RCA: 456] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Many chemotherapeutics used for cancer treatments encounter issues during delivery to tumors in vivo and may have high levels of systemic toxicity due to their nonspecific distribution. Various materials have been explored to fabricate nanoparticles as drug carriers to improve delivery efficiency. However, most of these materials suffer from multiple drawbacks, such as limited biocompatibility and inability to engineer spatially addressable surfaces that can be utilized for multifunctional activity. Here, we demonstrate that DNA origami possessed enhanced tumor passive targeting and long-lasting properties at the tumor region. Particularly, the triangle-shaped DNA origami exhibits optimal tumor passive targeting accumulation. The delivery of the known anticancer drug doxorubicin into tumors by self-assembled DNA origami nanostructures was performed, and this approach showed prominent therapeutic efficacy in vivo. The DNA origami carriers were prepared through the self-assembly of M13mp18 phage DNA and hundreds of complementary DNA helper strands; the doxorubicin was subsequently noncovalently intercalated into these nanostructures. After conducting fluorescence imaging and safety evaluation, the doxorubicin-containing DNA origami exhibited remarkable antitumor efficacy without observable systemic toxicity in nude mice bearing orthotopic breast tumors labeled with green fluorescent protein. Our results demonstrated the potential of DNA origami nanostructures as innovative platforms for the efficient and safe drug delivery of cancer therapeutics in vivo.
Collapse
Affiliation(s)
- Qian Zhang
- School of Life Science and Technology, Xidian University , Xi'an 710071, China , and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|