1
|
Ahmadi F, Zargari M, Nasiry D, Khalatbary AR. Synergistic neuroprotective effects of hyperbaric oxygen and methylprednisolone following contusive spinal cord injury in rat. J Spinal Cord Med 2022; 45:930-939. [PMID: 33830902 PMCID: PMC9661982 DOI: 10.1080/10790268.2021.1896275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE Recent studies revealed the neuroprotective effects of hyperbaric oxygen (HBO) on spinal cord injury (SCI). Meanwhile, the use of methylprednisolone (MP) is one of the current protocols with limited effects in SCI patients. Accordingly, the aim of the present study was to investigate the effect of combined HBO and MP treatment on SCI. DESIGN The present study was conducted on five groups of rats each as follows: Sham group (underwent laminectomy alone at T9 level vertebra); SCI group (underwent moderate contusive SCI); MP group (underwent SCI and received MP); HBO group (underwent SCI and received HBO); HBO + MP group (underwent SCI and simultaneously received MP and HBO). Blood serum and Spinal cord tissue samples were taken 48 h after SCI for analysis of serum ferric reducing antioxidant power (FRAP) and tissue malodialdehyde (MDA) levels as well as immunohistochemistry of caspase-3 and tumor necrosis factor-alpha (TNF-α). Neurological function was evaluated by the Basso-Beattie-Bresnehan (BBB) locomotion scores until the end of experiments. Additionally, histopathology was assessed at the end of the study. SETTING Mazandaran University of Medical Sciences, Sari, Iran. RESULTS Combination therapy with HBO and MP in the HBO + MP group significantly decreased MDA as well as increased FRAP levels compared to other treatment groups. Meanwhile, attenuated TNF-α and Caspase-3 expression could be significantly detected in the HBO + MP group. At the end of treatment, the neurological outcome was significantly improved and the extent of injured spinal tissue was also significantly reduced in the HBO + MP compared to other treatment groups. CONCLUSION The results suggest that combined therapy with MP and HBO has synergistic effects on SCI treatment.
Collapse
Affiliation(s)
- Fahimeh Ahmadi
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of biochemistry and genetic/Molecular and cell biology research center, Faculty of Medicine, Mazandaran University of medical sciences, Sari, Iran
| | - Davood Nasiry
- Department of Biology and Anatomical Science, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Reza Khalatbary
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran,Correspondence to: Ali Reza Khalatbary, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
RŮŽIČKA J, DEJMEK J, BOLEK L, BENEŠ J, KUNCOVÁ J. Hyperbaric oxygen influences chronic wound healing – a cellular level review. Physiol Res 2021; 70:S261-S273. [DOI: 10.33549/physiolres.934822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic wound is a serious medical issue due to its high prevalence and complications; hyperbaric oxygen therapy (HBOT) is also considered in comprehensive treatment. Clinical trials, including large meta-analyses bring inconsistent results about HBOT efficacy. This review is summarizing the possible effect of HBOT on the healing of chronic wound models at the cellular level. HBOT undoubtedly escalates the production of reactive oxygen and nitrogen radicals (ROS and RNS), which underlie both the therapeutic and toxic effects of HBOT on certain tissues. HBOT paradoxically elevates the concentration of Hypoxia inducible factor (HIF) 1 by diverting the HIF-1 degradation to pathways that are independent of the oxygen concentration. Elevated HIF-1 stimulates the production of different growth factors, boosting the healing process. HBOT supports synthesis of Heat shock proteins (HSP), which are serving as chaperones of HIF-1. HBOT has antimicrobial effect, increases the effectiveness of some antibiotics, stimulates fibroblasts growth, collagen synthesis and suppresses the activity of proteolytic enzymes like matrix metalloproteinases. All effects of HBOT were investigated on cell cultures and animal models, the limitation of their translation is discussed at the end of this revie
Collapse
Affiliation(s)
- J RŮŽIČKA
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - J DEJMEK
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - L BOLEK
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - J BENEŠ
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - J KUNCOVÁ
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| |
Collapse
|
3
|
Lindenmann J, Smolle C, Kamolz LP, Smolle-Juettner FM, Graier WF. Survey of Molecular Mechanisms of Hyperbaric Oxygen in Tissue Repair. Int J Mol Sci 2021; 22:11754. [PMID: 34769182 PMCID: PMC8584249 DOI: 10.3390/ijms222111754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
For more than six decades, hyperbaric oxygen (HBO) has been used for a variety of indications involving tissue repair. These indications comprise a wide range of diseases ranging from intoxications to ischemia-reperfusion injury, crush syndrome, central nervous injury, radiation-induced tissue damage, burn injury and chronic wounds. In a systematic review, the molecular mechanisms triggered by HBO described within the last two decades were compiled. They cover a wide range of pathways, including transcription, cell-to-cell contacts, structure, adhesion and transmigration, vascular signaling and response to oxidative stress, apoptosis, autophagy and cell death, as well as inflammatory processes. By analyzing 71 predominantly experimental publications, we established an overview of the current concepts regarding the molecular mechanisms underlying the effects of HBO. We considered both the abovementioned pathways and their role in various applications and indications.
Collapse
Affiliation(s)
- Joerg Lindenmann
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29/3, 8036 Graz, Austria;
| | - Christian Smolle
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29/2, 8036 Graz, Austria; (C.S.); (L.-P.K.)
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29/2, 8036 Graz, Austria; (C.S.); (L.-P.K.)
| | - Freyja Maria Smolle-Juettner
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29/3, 8036 Graz, Austria;
| | - Wolfgang F. Graier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria;
| |
Collapse
|
4
|
Zhou Q, Meng X, Huang G, Yi H, Zheng J, Zhang K, Xu W. MEK1/2 Inhibition Synergistically Enhances the Preventive Effects of Normobaric Oxygen on Spinal Cord Injury in Decompression Sickness Rats. Front Physiol 2021; 12:674430. [PMID: 34140895 PMCID: PMC8204088 DOI: 10.3389/fphys.2021.674430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/19/2021] [Indexed: 12/05/2022] Open
Abstract
A previous study from our team found that hyperbaric oxygen (HBO) pretreatment attenuated decompression sickness (DCS) spinal cord injury by upregulating heat shock protein 32 (HSP32) via the ROS/p38 MAPK pathway. Meanwhile, a MEK1/2-negative regulatory pathway was also activated to inhibit HSP32 overexpression. The purpose of this study was to determine if normobaric oxygen (NBO) might effectively induce HSP32 while concurrently inhibiting MEK1/2 and to observe any protective effects on spinal cord injury in DCS rats. The expression of HSP32 in spinal cord tissue was measured at 6, 12, 18, and 24 h following NBO and MEK1/2 inhibitor U0126 pretreatment. The peak time of HSP32 was observed at 12 h after simulated air diving. Subsequently, signs of DCS, hindlimb motor function, and spinal cord and serum injury biomarkers were recorded. NBO-U0126 pretreatment significantly decreased the incidence of DCS, improved motor function, and attenuated oxidative stress, inflammatory response, and apoptosis in both the spinal cord and serum. These results suggest that pretreatment with NBO and U0126 combined can effectively alleviate DCS spinal cord injury in rats by upregulating HSP32. This may lead to a more convenient approach for DCS injury control, using non-pressurized NBO instead of HBO.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, China
| | - Xiangyang Meng
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, China
| | - Guoyang Huang
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, China
| | - Hongjie Yi
- Department of Hyperbaric Oxygen, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Juan Zheng
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, China
| | - Kun Zhang
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, China
| | - Weigang Xu
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
DeFrates KG, Franco D, Heber-Katz E, Messersmith PB. Unlocking mammalian regeneration through hypoxia inducible factor one alpha signaling. Biomaterials 2021; 269:120646. [PMID: 33493769 PMCID: PMC8279430 DOI: 10.1016/j.biomaterials.2020.120646] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Historically, the field of regenerative medicine has aimed to heal damaged tissue through the use of biomaterials scaffolds or delivery of foreign progenitor cells. Despite 30 years of research, however, translation and commercialization of these techniques has been limited. To enable mammalian regeneration, a more practical approach may instead be to develop therapies that evoke endogenous processes reminiscent of those seen in innate regenerators. Recently, investigations into tadpole tail regrowth, zebrafish limb restoration, and the super-healing Murphy Roths Large (MRL) mouse strain, have identified ancient oxygen-sensing pathways as a possible target to achieve this goal. Specifically, upregulation of the transcription factor, hypoxia-inducible factor one alpha (HIF-1α) has been shown to modulate cell metabolism and plasticity, as well as inflammation and tissue remodeling, possibly priming injuries for regeneration. Since HIF-1α signaling is conserved across species, environmental or pharmacological manipulation of oxygen-dependent pathways may elicit a regenerative response in non-healing mammals. In this review, we will explore the emerging role of HIF-1α in mammalian healing and regeneration, as well as attempts to modulate protein stability through hyperbaric oxygen treatment, intermittent hypoxia therapy, and pharmacological targeting. We believe that these therapies could breathe new life into the field of regenerative medicine.
Collapse
Affiliation(s)
- Kelsey G DeFrates
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Daniela Franco
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Ellen Heber-Katz
- Laboratory of Regenerative Medicine, Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| | - Phillip B Messersmith
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
6
|
Cozene B, Sadanandan N, Gonzales-Portillo B, Saft M, Cho J, Park YJ, Borlongan CV. An Extra Breath of Fresh Air: Hyperbaric Oxygenation as a Stroke Therapeutic. Biomolecules 2020; 10:E1279. [PMID: 32899709 PMCID: PMC7563917 DOI: 10.3390/biom10091279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Stroke serves as a life-threatening disease and continues to face many challenges in the development of safe and effective therapeutic options. The use of hyperbaric oxygen therapy (HBOT) demonstrates pre-clinical effectiveness for the treatment of acute ischemic stroke and reports reductions in oxidative stress, inflammation, and neural apoptosis. These pathophysiological benefits contribute to improved functional recovery. Current pre-clinical and clinical studies are testing the applications of HBOT for stroke neuroprotection, including its use as a preconditioning regimen. Mild oxidative stress may be able to prime the brain to tolerate full extensive oxidative stress that occurs during a stroke, and HBOT preconditioning has displayed efficacy in establishing such ischemic tolerance. In this review, evidence on the use of HBOT following an ischemic stroke is examined, and the potential for HBOT preconditioning as a neuroprotective strategy. Additionally, HBOT as a stem cell preconditioning is also discussed as a promising strategy, thus maximizing the use of HBOT for ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.C.); (N.S.); (B.G.-P.); (M.S.); (J.C.); (Y.J.P.)
| |
Collapse
|
7
|
Hyperbaric Oxygen Preconditioning Can Reduce Postabdominoplasty Complications: A Retrospective Cohort Study. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2417. [PMID: 31772875 PMCID: PMC6846320 DOI: 10.1097/gox.0000000000002417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/17/2019] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is available in the text. Hyperbaric oxygen therapy (HBOT) can improve wound healing and has been found to have positive preconditioning effects in animal models. Among esthetic surgical procedures, abdominoplasty poses the highest rate of postoperative complications. The aim of this study was to evaluate the effect of preoperative HBOT as a preconditioning treatment for expected postsurgical complications.
Collapse
|
8
|
Up-regulation of heat shock protein 27 inhibits apoptosis in lumbosacral nerve root avulsion-induced neurons. Sci Rep 2019; 9:11468. [PMID: 31391542 PMCID: PMC6685944 DOI: 10.1038/s41598-019-48003-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/26/2019] [Indexed: 11/29/2022] Open
Abstract
Lumbosacral nerve root avulsion leads to widespread death of neurons in the anterior horn area of the injured spinal cord, which results in dysfunction in the lower extremities. Heat shock protein 27 (Hsp27) has been found to play cytoprotective roles under adverse conditions. However, the role of Hsp27 in neurons after lumbosacral nerve root avulsion is unknown. The aim of the present study was to investigate the effects and mechanism of action of Hsp27 on neurons after lumbosacral nerve root avulsion. It was found that Hsp27 expression was elevated in the anterior horn area of the injured spinal cord and the up-regulation of Hsp27 protected neurons against apoptosis after lumbosacral nerve root avulsion. In addition, Hsp27 plays an anti-apoptotic role by suppressing oxidative stress reactions. These findings indicated that Hsp27 may play a key role in resistance to lumbosacral nerve root avulsion-induced neuron apoptosis and may prove to be a potential strategy for improving prognosis after lumbosacral nerve root avulsion.
Collapse
|
9
|
Liska GM, Lippert T, Russo E, Nieves N, Borlongan CV. A Dual Role for Hyperbaric Oxygen in Stroke Neuroprotection: Preconditioning of the Brain and Stem Cells. CONDITIONING MEDICINE 2018; 1:151-166. [PMID: 30079404 PMCID: PMC6075658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stroke continues to be an extremely prevalent disease and poses a great challenge in developing safe and effective therapeutic options. Hyperbaric oxygen therapy (HBOT) has demonstrated significant pre-clinical effectiveness for the treatment of acute ischemic stroke, and limited potential in treating chronic neurological deficits. Reported benefits include reductions in oxidative stress, inflammation, neural apoptosis, and improved physiological metrics such as edema and oxygen perfusion, all of which contribute to improved functional recovery. This pre-clinical evidence has failed to translate into an effective evidence-based therapy, however, due in large part to significant inconsistencies in treatment protocols and design of clinical studies. While the medical community works to standardize clinical protocols in an effort to advance HBOT for acute stroke, pre-clinical investigations continue to probe novel applications of HBOT in an effort to optimize stroke neuroprotection. One such promising strategy is HBOT preconditioning. Based upon the premise of mild oxidative stress priming the brain for tolerating the full-blown oxidative stress inherent in stroke, HBOT preconditioning has displayed extensive efficacy. Here, we first review the pre-clinical and clinical evidence supporting HBOT delivery following ischemic stroke and then discuss the scientific basis for HBOT preconditioning as a neuroprotective strategy. Finally, we propose the innovative concept of stem cell preconditioning, in tandem with brain preconditioning, as a promising regenerative pathway for maximizing the application of HBOT for ischemic stroke treatment.
Collapse
Affiliation(s)
| | | | | | | | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL
| |
Collapse
|
10
|
Qing L, Yi HJ, Wang YW, Zhou Q, Ariyadewa DK, Xu WG. Benefits of hyperbaric oxygen pretreatment for decompression sickness in Bama pigs. ACTA ACUST UNITED AC 2018; 221:jeb.171066. [PMID: 29212841 DOI: 10.1242/jeb.171066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/02/2017] [Indexed: 01/13/2023]
Abstract
Decompression sickness (DCS) occurs when ambient pressure is severely reduced during diving and aviation. Hyperbaric oxygen (HBO) pretreatment has been shown to exert beneficial effects on DCS in rats via heat-shock proteins (HSPs). We hypothesized that HBO pretreatment will also reduce DCS via HSPs in swine models. In the first part of our investigation, six swine were subjected to a session of HBO treatment. HSP32, 60, 70 and 90 were detected, before and at 6, 12, 18, 24 and 30 h following exposure in lymphocytes. In the second part of our investigation, another 10 swine were randomly assigned into two groups (five per group). All swine were subjected to two simulated air dives in a hyperbaric chamber with an interval of 7 days. Eighteen hours before each dive, the swine were pretreated with HBO or air: the first group received air pretreatment prior to the first dive and HBO pretreatment prior to the second; the second group were pretreated with HBO first and then air. Bubble loads, skin lesions, inflammation and endothelial markers were detected after each dive. In lymphocytes, all HSPs increased significantly (P<0.05), with the greatest expression appearing at 18 h for HSP32 and 70. HBO pretreatment significantly reduced all the determined changes compared with air pretreatment. The results demonstrate that a single exposure to HBO 18 h prior to diving effectively protects against DCS in the swine model, possibly via induction of HSPs.
Collapse
Affiliation(s)
- Long Qing
- Department of Diving and Hyperbaric Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, P. R. China
| | - Hong-Jie Yi
- Department of Diving and Hyperbaric Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, P. R. China
| | - Ye-Wei Wang
- Department of Diving and Hyperbaric Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, P. R. China
| | - Quan Zhou
- Department of Diving and Hyperbaric Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, P. R. China
| | - Dinesh K Ariyadewa
- Department of Diving and Hyperbaric Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, P. R. China.,Department of Medicine, 539 Sri Lanka Naval Headquarters, Colombo 01, Sri Lanka
| | - Wei-Gang Xu
- Department of Diving and Hyperbaric Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, P. R. China
| |
Collapse
|
11
|
Abstract
Spinal cord injury (SCI) is a complex disease process that involves both primary and secondary mechanisms of injury and can leave patients with devastating functional impairment as well as psychological debilitation. While no curative treatment is available for spinal cord injury, current therapeutic approaches focus on reducing the secondary injury that follows SCI. Hyperbaric oxygen (HBO) therapy has shown promising neuroprotective effects in several experimental studies, but the limited number of clinical reports have shown mixed findings. This review will provide an overview of the potential mechanisms by which HBO therapy may exert neuroprotection, provide a summary of the clinical application of HBO therapy in patients with SCI, and discuss avenues for future studies.
Collapse
Affiliation(s)
| | - Jason H Huang
- Texas A&M College of Medicine, Temple, Texas, USA.,Department of Neurosurgery, Baylor Scott & White Healthcare, Temple, Texas, USA
| |
Collapse
|
12
|
Szyller J, Kozakiewicz M, Siermontowski P. The Influence of Hyperoxia On Heat Shock Proteins Expression and Nitric Oxide Synthase Activity – the Review. POLISH HYPERBARIC RESEARCH 2017. [DOI: 10.1515/phr-2017-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Any stay in an environment with an increased oxygen content (a higher oxygen partial pressure, pO2) and an increased pressure (hyperbaric conditions) leads to an intensification of oxidative stress. Reactive oxygen species (ROS) damage the molecules of proteins, nucleic acids, cause lipid oxidation and are engaged in the development of numerous diseases, including diseases of the circulatory system, neurodegenerative diseases, etc. There are certain mechanisms of protection against unfavourable effects of oxidative stress. Enzymatic and non-enzymatic systems belong to them. The latter include, among others, heat shock proteins (HSP). Their precise role and mechanism of action have been a subject of intensive research conducted in recent years. Hyperoxia and hyperbaria also have an effect on the expression and activity of nitrogen oxide synthase (NOS). Its product - nitrogen oxide (NO) can react with reactive oxygen species and contribute to the development of nitrosative stress. NOS occurs as isoforms in various tissues and exhibit different reactions to the discussed factors. The authors have prepared a brief review of research determining the effect of hyperoxia and hyperbaria on HSP expression and NOS activity.
Collapse
Affiliation(s)
- Jakub Szyller
- DiaLab Medical Laboratories Życzliwa 15-17, 50-001 Wrocław , Poland
| | - Mariusz Kozakiewicz
- Department and Institute of Foodstuff Chemistry, the L. Rydygier Collegium Medicum, Bydgoszcz , Poland
| | - Piotr Siermontowski
- Military Institute of Medicine, Department of Marine and Hyperbaric Medicine, Gdynia , Poland
| |
Collapse
|
13
|
Gao ZX, Rao J, Li YH. Hyperbaric oxygen preconditioning improves postoperative cognitive dysfunction by reducing oxidant stress and inflammation. Neural Regen Res 2017; 12:329-336. [PMID: 28400818 PMCID: PMC5361520 DOI: 10.4103/1673-5374.200816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Postoperative cognitive dysfunction is a crucial public health issue that has been increasingly studied in efforts to reduce symptoms or prevent its occurrence. However, effective advances remain lacking. Hyperbaric oxygen preconditioning has proved to protect vital organs, such as the heart, liver, and brain. Recently, it has been introduced and widely studied in the prevention of postoperative cognitive dysfunction, with promising results. However, the neuroprotective mechanisms underlying this phenomenon remain controversial. This review summarizes and highlights the definition and application of hyperbaric oxygen preconditioning, the perniciousness and pathogenetic mechanism underlying postoperative cognitive dysfunction, and the effects that hyperbaric oxygen preconditioning has on postoperative cognitive dysfunction. Finally, we conclude that hyperbaric oxygen preconditioning is an effective and feasible method to prevent, alleviate, and improve postoperative cognitive dysfunction, and that its mechanism of action is very complex, involving the stimulation of endogenous antioxidant and anti-inflammation defense systems.
Collapse
Affiliation(s)
- Zhi-Xin Gao
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jin Rao
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yuan-Hai Li
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
14
|
Hao L, Guo X, Zou C, Zhou H, Tian H, Zhang Y, Song C, Liu L. Hyperbaric oxygen preconditioning ameliorates blood-brain barrier damage induced by hypoxia through modulation of tight junction proteins in an in vitro model. Croat Med J 2016; 57:51-7. [PMID: 26935614 PMCID: PMC4800327 DOI: 10.3325/cmj.2016.57.51] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aim To explore the effects of hyperbaric oxygen preconditioning (HBOP) on the permeability of blood-brain barrier (BBB) and expression of tight junction proteins under hypoxic conditions in vitro. Methods A BBB in vitro model was constructed using the hCMEC/D3 cell line and used when its trans-endothelial electrical resistance (TEER) reached 80-120 Ω · cm2 (tested by Millicell-Electrical Resistance System). The cells were randomly divided into the control group cultured under normal conditions, the group cultured under hypoxic conditions (2%O2) for 24 h (hypoxia group), and the group first subjected to HBOP for 2 h and then to hypoxia (HBOP group). Occludin and ZO-1 expression were analyzed by immunofluorescence assay. Results Normal hCMEC/D3 was spindle-shaped and tightly integrated. TEER was significantly reduced in the hypoxia (P = 0.001) and HBOP group (P = 0.014) compared to control group, with a greater decrease in the hypoxia group. Occludin membranous expression was significantly decreased in the hypoxia group (P = 0.001) compared to the control group, but there was no change in the HBOP group. ZO-1 membranous expression was significantly decreased (P = 0.002) and cytoplasmic expression was significantly increased (P = 0.001) in the hypoxia group compared to the control group, although overall expression levels did not change. In the HBOP group, there was no significant change in ZO-1 expression compared to the control group. Conclusion Hyperbaric oxygen preconditioning protected the integrity of BBB in an in vitro model through modulation of occludin and ZO-1 expression under hypoxic conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lei Liu
- Lei Liu, No. 29 Jianxin East Road, Jiangbei District, Chongqing, 400020, China,
| |
Collapse
|
15
|
Signaling pathways involved in HSP32 induction by hyperbaric oxygen in rat spinal neurons. Redox Biol 2016; 10:108-118. [PMID: 27721085 PMCID: PMC5054266 DOI: 10.1016/j.redox.2016.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/03/2016] [Accepted: 09/16/2016] [Indexed: 11/20/2022] Open
Abstract
Spinal cord injury (SCI) is a debilitating disease, effective prevention measures are in desperate need. Our previous work found that hyperbaric oxygen (HBO) preconditioning significantly protected rats from SCI after stimulated diving, and in vitro study further testified that HBO protected primary cultured rat spinal neurons from oxidative insult and oxygen glucose deprivation injury via heat shock protein (HSP) 32 induction. In this study, underlying molecular mechanisms were further investigated. The results showed that a single exposure to HBO significantly increased intracellular levels of reactive oxygen species (ROS) and nitric oxide (NO) and activated MEK1/2, ERK1/2, p38 MAPK, CREB, Bach1 and Nrf2. The induction of HSP32 by HBO was significantly reversed by pretreatment neurons with ROS scavenger N-Acetyl-L-cysteine, p38 MAPK inhibitor or Nrf2 gene knockdown, enhanced by MEK1/2 inhibitors or gene knockdown but not by ERK1/2 inhibitor. CREB knockdown did not change the expression of HSP32 induced by HBO. N-Acetyl-L-cysteine significantly inhibited the activation of MEK1/2, ERK1/2, p38 MAPK, and Nrf2. Activation of Nrf2 was significantly inhibited by p38 MAPK inhibitor and the nuclear export of Bach1 was significantly enhanced by MEK1/2 inhibitor. The results demonstrated that HBO induces HSP32 expression through a ROS/p38 MAPK/Nrf2 pathway and the MEK1/2/Bach1 pathway contributes to negative regulation in the process. More importantly, as we know, this is the first study to delineate that ERK1/2 is not the only physiological substrates of MEK1/2. HBO induces HSP32 through ROS/p38 MAPK/Nrf2 pathway in rat spinal neurons. ROS but not RNS participates in HBO induced HSP32 expression. MEK1/2/Bach1 contributes to negative regulation in HBO induced HSP32 expression. MEK1/2 acts through pathways other than ERK1/2.
Collapse
|
16
|
Xue F, Huang JW, Ding PY, Zang HG, Kou ZJ, Li T, Fan J, Peng ZW, Yan WJ. Nrf2/antioxidant defense pathway is involved in the neuroprotective effects of Sirt1 against focal cerebral ischemia in rats after hyperbaric oxygen preconditioning. Behav Brain Res 2016; 309:1-8. [PMID: 27131779 DOI: 10.1016/j.bbr.2016.04.045] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 02/02/2023]
Abstract
Sirtuin 1 (Sirt1) is a class III histone deacetylase involved in neuroprotection induced by hyperbaric oxygen preconditioning (HBO-PC) in animal models of ischemia. However, the underlying mechanisms remain to be illustrated. In the present study, rats exposed to middle cerebral artery occlusion (MCAO) were used to establish an ischemic stroke model. The infarct volume ratio, neurobehavioral score, and expressions of Sirt1, nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and superoxide dismutase 1 (SOD1) were evaluated at 7 days after reperfusion, and the level of malondialdehyde (MDA) was used to assess oxidative stress. HBO-PC increased the expression of Sirt1 and reduced infarct volume ratio and neurobehavioral deficit in MCAO rats. Meanwhile, HBO-PC also increased expression of Nrf2, HO-1, and SOD1 and decreased MDA content. Furthermore, either Sirt1 or Nrf2 knockdown by short interfering RNA (siRNA) inhibited the expression of Nrf2, HO-1, and SOD1 and eliminated the neuroprotective effects of HBO-PC. Taken together, the results suggest that the Nrf2/antioxidant defense pathway is involved in the long lasting neuroprotective effects of Sirt1 induced by HBO-PC against transient focal cerebral ischemia.
Collapse
Affiliation(s)
- Fen Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jin-Wen Huang
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Pei-Yan Ding
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Hong-Gang Zang
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Zhi-Jian Kou
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Ting Li
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Juan Fan
- College of Life Science, Shaanxi Normal University, China
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Wen-Jun Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China.
| |
Collapse
|
17
|
Hu Q, Manaenko A, Matei N, Guo Z, Xu T, Tang J, Zhang JH. Hyperbaric oxygen preconditioning: a reliable option for neuroprotection. Med Gas Res 2016; 6:20-32. [PMID: 27826420 PMCID: PMC5075679 DOI: 10.4103/2045-9912.179337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brain injury is the leading cause of death and disability worldwide and clinically there is no effective therapy for neuroprotection. Hyperbaric oxygen preconditioning (HBO-PC) has been experimentally demonstrated to be neuroprotective in several models and has shown efficiency in patients undergoing on-pump coronary artery bypass graft (CABG) surgery. Compared with other preconditioning stimuli, HBO is benign and has clinically translational potential. In this review, we will summarize the results in experimental brain injury and clinical studies, elaborate the mechanisms of HBO-PC, and discuss regimes and opinions for future interventions in acute brain injury.
Collapse
Affiliation(s)
- Qin Hu
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Anatol Manaenko
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nathanael Matei
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Zhenni Guo
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Ting Xu
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
18
|
Stecker MM, Stevenson M. Hyperbaric oxygen pre-treatment impairs anoxic tolerance but improves hyperglycemic tolerance in peripheral nerve. Clin Exp Pharmacol Physiol 2015; 42:910-920. [PMID: 26112083 DOI: 10.1111/1440-1681.12440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/19/2015] [Accepted: 06/04/2015] [Indexed: 11/28/2022]
Abstract
Prior research has suggested that treatment with hyperbaric oxygen (HBO) may change energy metabolism in the peripheral nerve, potentially resulting in improved tolerance to hyperglycemia and anoxia. In this paper, the in vitro rat sciatic nerve model was used to explore the effects of a single 90 min treatment with either 1 or 3 atmospheres of: oxygen, nitrogen or air on the ability of the peripheral nerve to tolerate intermittent anoxia or hyperglycemia. After this treatment, the nerve was placed in a perfusion system where the nerve action potential (NAP) was continuously recorded over the duration of a 16 h experiment. The amplitude, paired pulse response, velocity and duration of the NAP were used as markers of peripheral nerve function. The perfusate contained either 5 mmol/L or 55 mmol/L glucose and was either continuously oxygenated or intermittently replaced by an oxygen free solution of identical composition. HBO treatment primarily affected the amplitude and duration of the NAP. HBO improved the NAP in continuously oxygenated nerves exposed to the 55 mmol/L glucose perfusate but not the 5 mmol/L. However, it worsened the NAP in nerves exposed to intermittent anoxia and increased the rate at which the amplitude of the NAP declined during anoxia. Pressure had an effect on the NAP only for oxygen but not nitrogen or air. The effect of the HBO treatment persisted more than 1 h after the end of the treatment.
Collapse
|
19
|
Xiao YD, Liu YQ, Li JL, Ma XM, Wang YB, Liu YF, Zhang MZ, Zhao PX, Xie F, Deng ZX. Hyperbaric oxygen preconditioning inhibits skin flap apoptosis in a rat ischemia-reperfusion model. J Surg Res 2015. [PMID: 26216750 DOI: 10.1016/j.jss.2015.06.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hyperbaric oxygen (HBO) improves skin flap function and inhibits partial necrosis induced by ischemia-reperfusion (I/R) injury. Our study aimed to evaluate the mechanism underlying HBO regulation of the antiapoptosis factors associated with I/R injury of skin flaps. METHODS The rats were divided into sham surgery, I/R, and HBO groups. Rats from the HBO group received HBO preconditioning followed by I/R surgery. Blood perfusion of the skin flaps was measured with laser Doppler flowmeters. Tissue morphology and apoptosis were subsequently assessed based on hematoxylin-eosinhe and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. Protein expression of phosphorylated apoptosis signal-regulating kinase 1 (pASK-1), phosphorylated c-Jun N-terminal kinase (pJNK), B-cell lymphoma-2 (Bcl-2), and Bcl2-associated X protein (Bax) was examined by immunodetection, and Bcl-2 messenger RNA expression was detected by quantitative polymerase chain reaction. In addition, caspase-3 activity was also measured. RESULTS The result of microcirculation analysis showed that the survival and blood perfusion rates significantly increased in the skin flap after HBO exposure. Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining revealed that cell apoptosis was significantly attenuated in the HBO group. Furthermore, HBO preconditioning increased the expression of Bcl-2 and inhibited pASK-1, pJNK, and Bax expression as determined by both immunohistochemistry and Western blot. Caspase-3 activity and the Bax/Bcl-2 ratio declined in the HBO group. CONCLUSIONS HBO preconditioning effectively ameliorates I/R injury by regulating the apoptosis signal-regulating kinase 1 and/or c-Jun N-terminal kinase pathway and anti- and proapoptosis factors.
Collapse
Affiliation(s)
- Yi-Ding Xiao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yun-Qi Liu
- College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jia-La Li
- College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing, China
| | - Xue-Mei Ma
- College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing, China.
| | - You-Bin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China.
| | - Yi-Fang Liu
- College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing, China
| | - Ming-Zi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Peng-Xiang Zhao
- College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing, China
| | - Fei Xie
- College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing, China
| | - Zi-Xuan Deng
- College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
20
|
Fang J, Li H, Li G, Wang L. Effect of hyperbaric oxygen preconditioning on peri-hemorrhagic focal edema and aquaporin-4 expression. Exp Ther Med 2015; 10:699-704. [PMID: 26622378 DOI: 10.3892/etm.2015.2539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 04/24/2015] [Indexed: 01/07/2023] Open
Abstract
The aim of the present study was to investigate the effect of hyperbaric oxygen preconditioning (HBO-PC) on peri-hemorrhagic focal edema and aquaporin-4 (AQP-4) expression in an experimental intracerebral hemorrhage (ICH) rat model. Sixty-six Sprague Dawley® rats were divided into three groups: The sham-surgery group (SHG; n=6); the control group (A-ICH; n=30), in which the rats were injected with autologous blood; and the experimental HBO-PC group (P-HBO; n=30). The rats underwent brain edema and AQP-4 detection at 5 postoperative time-points (24, 48 and 72 h and 5 and 7 days). The water content in the brain tissues of the A-ICH animals was higher than that in the brain tissues of the SHG rats at each time-point (P<0.05), and the edema in the P-HBO was significantly more severe 24 and 48 h postoperatively than that at 7 days postoperatively (P<0.05). The difference between the P-HBO and A-ICH was significant at 48 and 72 h postoperatively (P<0.05). AQP-4 was expressed in the post-hemorrhagic rat brains of all groups; the SHG animals exhibited low expression, while the A-ICH animals exhibited an increased expression 24 h postoperatively. In the A-ICH, expression peaked at 48 h postoperatively and began to decrease gradually after 72 h. At the 7-day time-point, the expression level in the A-ICH was closer to but still higher than that of the SHG animals (P<0.05). The differences between the P-HBO and A-ICH animals at the postoperative 24-h, 48-h and 7-day time-points were statistically significant (P<0.05). In conclusion, HBO-PC may downregulate AQP-4 expression to reduce the intracerebral edema, thus strengthening tolerance to ICH and protecting the nerves.
Collapse
Affiliation(s)
- Jinyong Fang
- Department of Rehabilitation, The People's Hospital of Zhangdian, Zibo, Shandong 255025, P.R. China
| | - Hongling Li
- Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Guanglei Li
- Department of Neurological Intervention, The Second Hospital of Qinhuangdao, Qinhuangdao, Hebei 066600, P.R. China
| | - Lichun Wang
- Department of Rehabilitation, Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
21
|
Abstract
Hyperbaric oxygen therapy (HBOT) is defined as a treatment in which a patient intermittently breathes 100% oxygen while the treatment chamber is pressurized to a pressure greater than sea level (1.0 atmosphere absolute, ATA). In China, for nearly 50 years, HBOT has been used as a primary or adjuvant therapy to treat a variety of diseases. This article mainly reviewed the indications and contraindications of HBOT, as well as the status of clinical and experimental HBOT research in China. At the same time, there is a brief introduction of hyperbaric oxygen preconditioning (HBO-PC) in China.
Collapse
Affiliation(s)
- Ling Yan
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 China
| | - Ting Liang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 China
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 China
| |
Collapse
|
22
|
Guo L, Li B, Miao JJ, Yun Y, Li GK, Sang N. Seasonal Variation in Air Particulate Matter (PM10) Exposure-Induced Ischemia-Like Injuries in the Rat Brain. Chem Res Toxicol 2014; 28:431-9. [DOI: 10.1021/tx500392n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lin Guo
- College of Environment and
Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Ben Li
- College of Environment and
Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Juan-juan Miao
- College of Environment and
Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Yang Yun
- College of Environment and
Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Guang-ke Li
- College of Environment and
Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Nan Sang
- College of Environment and
Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|