1
|
Torres-Tamayo N, Rae TC, Hirasaki E, Betti L. Testing the reliability of the rearticulation of osteological primate pelves in comparative morphological studies. Anat Rec (Hoboken) 2024; 307:2816-2833. [PMID: 38112056 DOI: 10.1002/ar.25366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023]
Abstract
The evolution of human pelvic form is primarily studied using disarticulated osteological material of living and fossil primates that need rearticulation to approximate anatomical position. To test whether this technique introduces errors that impact biological signals, virtual rearticulations of the pelvis in anatomical position from computed tomography scans were compared with rearticulated models from the same individuals for one female and one male of Homo sapiens, Pan troglodytes, Macaca mulatta, Lepilemur mustelinus, Galago senegalensis, and Nycticebus pygmaeus. "Cadaveric" pelvic bones were first analyzed in anatomical position, then the three bones were segmented individually, intentionally scattered, and "rearticulated" to test for rearticulation error. Three-dimensional landmarks and linear measurements were used to characterize the overall pelvis shape. Cadaveric and rearticulated pelves were not identical, but inter-specific and intra-specific shape differences were higher than the landmarking error in the cadaveric individuals and the landmarking/rearticulation error in the rearticulated pelves, demonstrating that the biological signal is stronger than the noise introduced by landmarking and rearticulation. The rearticulation process, however, underestimates the medio-lateral pelvic measurements in species with a substantial pubic gap (e.g., G. senegalensis, N. pygmaeus) possibly because the greater contribution of soft tissue to the pelvic girdle introduces higher uncertainty during rearticulation. Nevertheless, this discrepancy affects only the caudal-most part of the pelvis. This study demonstrates that the rearticulation of pelvic bones does not substantially affect the biological signal in comparative 3D morphological studies but suggests that anatomically connected pelves of species with wide pubic gaps should be preferentially included in these studies.
Collapse
Affiliation(s)
| | - Todd C Rae
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Eishi Hirasaki
- Centre for Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Lia Betti
- Department of Anthropology, University College London, London, UK
| |
Collapse
|
2
|
Sadeghinezhad J, Ebrahimi M, Lehi MH. Volumetric study on sheep brain using stereology technique. Anat Histol Embryol 2024; 53:e13072. [PMID: 38859689 DOI: 10.1111/ahe.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Three-dimensional morphometric data better show the structural and functional characteristics of the brain. The objective of this study was to estimate the volume of the cerebral structures of the sheep using design-based stereology. The brains of five sheep were used, fixed in formalin 10% and embedded in agar 6%. An average of 10-12 slab was obtained from each brain. All slabs were stained using Mulligan's method and photographs were recorded. The volume of the brain and its structures were estimated using the Cavalieri's estimator and the point counting system. The total volume was 70604.8 ± 132.45 mm3. The volume fractions of the grey and white matters were calculated as 42.55 ± 0.21% and 24.23 ± 0.51% of the whole brain, respectively. The fractional volume of the caudate nucleus and claustrum were estimated at 2.39 ± 0.08% and at 1.008 ± 0.057% of total brain volume. The volumes of corpus callosum, internal capsule and external capsule were 1.24 ± 0.053%, 3.63 ± 0.22% and 0.698 ± 0.049% of total cerebral volume, respectively. These data could help improve the veterinary comparative neuroanatomy knowledge and development of experimental studies in the field.
Collapse
Affiliation(s)
- Javad Sadeghinezhad
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohamad Ebrahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Heydari Lehi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Man C, Gilissen E, Michaud M. Sexual dimorphism in the cranium and endocast of the eastern lowland gorillas (Gorilla beringei graueri). J Hum Evol 2023; 184:103439. [PMID: 37804559 DOI: 10.1016/j.jhevol.2023.103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 10/09/2023]
Abstract
Sexual dimorphism of the nervous system has been reported for a wide range of vertebrates. However, understanding of sexual dimorphism in primate cranial structures and soft tissues, and more particularly the brain, remains limited. In this study, we aimed to investigate the external and internal (i.e., endocast) cranial differences between male and female eastern lowland gorillas (Gorilla beringei graueri). We examined the differences in the size, shape, and disparity with the aim to compare how sexual dimorphism can impact these two structures distinctively, with a particular focus on the endocranium. To do so, we reconstructed gorilla external crania and endocasts from CT scans and used 3D geometric morphometric techniques combined with multivariate analyses to assess the cranial and endocranial differences between the sexes. Our results highlighted sexual dimorphism for the external cranium and endocast with regard to both size and shape. In particular, males display an elongated face accompanied by a pronounced sagittal crest and an elongated endocast along the rostroposterior axis, in contrast to females who are identified by a more rounded brain case and endocast. Males also show a significantly larger external cranium and endocast size than females. In addition, we described important differences for the posterior cranial fossae (i.e., the position of the cerebellum within the brain case) and olfactory bulb between the two sexes. Particularly, our results highlighted that, relatively to males, females have larger posterior cranial fossae, whereas males have been characterized by a larger and rostrally oriented olfactory bulb.
Collapse
Affiliation(s)
- Caitlin Man
- Laboratory of Ecology, Evolution and Biodiversity Conservation, Katholieke Universiteit Leuven, Charles Deberiotstraat 32 Bus 2439, 3000 Leuven, Belgium; Department of African Zoology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium.
| | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium; Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, CP620 - Route de Lennik 808, 1070 Brussels, Belgium
| | - Margot Michaud
- Department of African Zoology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium
| |
Collapse
|
4
|
Agaronyan A, Syed R, Kim R, Hsu CH, Love SA, Hooker JM, Reid AE, Wang PC, Ishibashi N, Kang Y, Tu TW. A Baboon Brain Atlas for Magnetic Resonance Imaging and Positron Emission Tomography Image Analysis. Front Neuroanat 2022; 15:778769. [PMID: 35095430 PMCID: PMC8795914 DOI: 10.3389/fnana.2021.778769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
The olive baboon (Papio anubis) is phylogenetically proximal to humans. Investigation into the baboon brain has shed light on the function and organization of the human brain, as well as on the mechanistic insights of neurological disorders such as Alzheimer's and Parkinson's. Non-invasive brain imaging, including positron emission tomography (PET) and magnetic resonance imaging (MRI), are the primary outcome measures frequently used in baboon studies. PET functional imaging has long been used to study cerebral metabolic processes, though it lacks clear and reliable anatomical information. In contrast, MRI provides a clear definition of soft tissue with high resolution and contrast to distinguish brain pathology and anatomy, but lacks specific markers of neuroreceptors and/or neurometabolites. There is a need to create a brain atlas that combines the anatomical and functional/neurochemical data independently available from MRI and PET. For this purpose, a three-dimensional atlas of the olive baboon brain was developed to enable multimodal imaging analysis. The atlas was created on a population-representative template encompassing 89 baboon brains. The atlas defines 24 brain regions, including the thalamus, cerebral cortex, putamen, corpus callosum, and insula. The atlas was evaluated with four MRI images and 20 PET images employing the radiotracers for [11C]benzamide, [11C]metergoline, [18F]FAHA, and [11C]rolipram, with and without structural aids like [18F]flurodeoxyglycose images. The atlas-based analysis pipeline includes automated segmentation, registration, quantification of region volume, the volume of distribution, and standardized uptake value. Results showed that, in comparison to PET analysis utilizing the "gold standard" manual quantification by neuroscientists, the performance of the atlas-based analysis was at >80 and >70% agreement for MRI and PET, respectively. The atlas can serve as a foundation for further refinement, and incorporation into a high-throughput workflow of baboon PET and MRI data. The new atlas is freely available on the Figshare online repository (https://doi.org/10.6084/m9.figshare.16663339), and the template images are available from neuroImaging tools & resources collaboratory (NITRC) (https://www.nitrc.org/projects/haiko89/).
Collapse
Affiliation(s)
- Artur Agaronyan
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, United States
| | - Raeyan Syed
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, United States
| | - Ryan Kim
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, United States
| | - Chao-Hsiung Hsu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, United States
| | - Scott A. Love
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Jacob M. Hooker
- Department of Radiology, Martinos Center, Boston, MA, United States
| | - Alicia E. Reid
- Department of Chemistry, Medgar Evers College, Brooklyn, NY, United States
| | - Paul C. Wang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, United States
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Nobuyuki Ishibashi
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Yeona Kang
- Department of Mathematics, Howard University, Washington, DC, United States
| | - Tsang-Wei Tu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, United States
- Department of Pediatrics, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
5
|
Visser M, Petr J, Müller DMJ, Eijgelaar RS, Hendriks EJ, Witte M, Barkhof F, van Herk M, Mutsaerts HJMM, Vrenken H, de Munck JC, De Witt Hamer PC. Accurate MR Image Registration to Anatomical Reference Space for Diffuse Glioma. Front Neurosci 2020; 14:585. [PMID: 32581699 PMCID: PMC7290158 DOI: 10.3389/fnins.2020.00585] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/12/2020] [Indexed: 12/26/2022] Open
Abstract
To summarize the distribution of glioma location within a patient population, registration of individual MR images to anatomical reference space is required. In this study, we quantified the accuracy of MR image registration to anatomical reference space with linear and non-linear transformations using estimated tumor targets of glioblastoma and lower-grade glioma, and anatomical landmarks at pre- and post-operative time-points using six commonly used registration packages (FSL, SPM5, DARTEL, ANTs, Elastix, and NiftyReg). Routine clinical pre- and post-operative, post-contrast T1-weighted images of 20 patients with glioblastoma and 20 with lower-grade glioma were collected. The 2009a Montreal Neurological Institute brain template was used as anatomical reference space. Tumors were manually segmented in the patient space and corresponding healthy tissue was delineated as a target volume in the anatomical reference space. Accuracy of the tumor alignment was quantified using the Dice score and the Hausdorff distance. To measure the accuracy of general brain alignment, anatomical landmarks were placed in patient and in anatomical reference space, and the landmark distance after registration was quantified. Lower-grade gliomas were registered more accurately than glioblastoma. Registration accuracy for pre- and post-operative MR images did not differ. SPM5 and DARTEL registered tumors most accurate, and FSL least accurate. Non-linear transformations resulted in more accurate general brain alignment than linear transformations, but tumor alignment was similar between linear and non-linear transformation. We conclude that linear transformation suffices to summarize glioma locations in anatomical reference space.
Collapse
Affiliation(s)
- Martin Visser
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Jan Petr
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Domenique M J Müller
- Cancer Center Amsterdam, Brain Tumor Center, Department of Neurosurgery, Amsterdam UMC, Amsterdam, Netherlands
| | - Roelant S Eijgelaar
- Cancer Center Amsterdam, Brain Tumor Center, Department of Neurosurgery, Amsterdam UMC, Amsterdam, Netherlands
| | - Eef J Hendriks
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Marnix Witte
- Department of Radiotherapy, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands.,UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,UCL Institute of Healthcare Engineering, University College London, London, United Kingdom
| | - Marcel van Herk
- Division of Cancer Sciences, Manchester Cancer Research Centre, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Hugo Vrenken
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Jan C de Munck
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Philip C De Witt Hamer
- Cancer Center Amsterdam, Brain Tumor Center, Department of Neurosurgery, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
6
|
Pereira-Pedro AS, Bruner E, Gunz P, Neubauer S. A morphometric comparison of the parietal lobe in modern humans and Neanderthals. J Hum Evol 2020; 142:102770. [DOI: 10.1016/j.jhevol.2020.102770] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
|
7
|
Bruner E. Human paleoneurology: Shaping cortical evolution in fossil hominids. J Comp Neurol 2019; 527:1753-1765. [PMID: 30520032 DOI: 10.1002/cne.24591] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022]
Abstract
Evolutionary neuroanatomy must integrate two different sources of information, namely from fossil and from living species. Fossils supply information concerning the process of evolution, whereas living species supply information on the product of evolution. Unfortunately, the fossil record is partial and fragmented, and often cannot support validations for specific evolutionary hypotheses. Living species can provide more comprehensive indications, but they do not represent ancestral groups or primitive forms. Macaques or chimpanzees are frequently used as proxy for human ancestral conditions, despite the fact they are divergent and specialized lineages, with their own biological features. Similarly, in paleoanthropology independent lineages (such as Neanderthals) should not be confused with ancestral modern human stages. In this comparative framework, paleoneurology deals with the analysis of the endocranial cavity in extinct species, in order to make inferences on brain evolution. A main target of this field is to distinguish the endocranial variations due to brain changes, from those due to cranial constraints. Digital anatomy and computed morphometrics have provided major advances in this field. However, brains and endocasts can be hard to analyze with geometrical models, because of uncertainties due to the localization of cortical landmarks and boundaries. The study of the evolution of the parietal cortex supplies an interesting case-study in which paleontological and neontological data can integrate and test evolutionary hypotheses based on multiple sources of evidence. The relationships with visuospatial functions and brain-body-tool integration stress further that the analysis of the cognitive system should go beyond the neural boundaries of the brain.
Collapse
Affiliation(s)
- Emiliano Bruner
- Programa de Paleobiología de Homínidos, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| |
Collapse
|
8
|
Wright AM. A Systematist's Guide to Estimating Bayesian Phylogenies From Morphological Data. INSECT SYSTEMATICS AND DIVERSITY 2019; 3:2. [PMID: 31355348 PMCID: PMC6643758 DOI: 10.1093/isd/ixz006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 05/07/2023]
Abstract
Phylogenetic trees are crucial to many aspects of taxonomic and comparative biology. Many researchers have adopted Bayesian methods to estimate their phylogenetic trees. In this family of methods, a model of morphological evolution is assumed to have generated the data observed by the researcher. These models make a variety of assumptions about the evolution of morphological characters, and these assumptions are translated into mathematics as parameters. The incorporation of prior distributions further allows researchers to quantify their prior beliefs about the value any one parameter can take. How to translate biological knowledge into mathematical language is difficult, and can be confusing to many biologists. This review aims to help systematics researchers understand the biological meaning of common models and assumptions. Using examples from the insect fossil record, I will demonstrate empirically what assumptions mean in concrete terms, and discuss how researchers can use and understand Bayesian methods for phylogenetic estimation.
Collapse
Affiliation(s)
- April M Wright
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA
| |
Collapse
|
9
|
Procrustes-based geometric morphometrics on MRI images: An example of inter-operator bias in 3D landmarks and its impact on big datasets. PLoS One 2018; 13:e0197675. [PMID: 29787586 PMCID: PMC5963746 DOI: 10.1371/journal.pone.0197675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/07/2018] [Indexed: 01/25/2023] Open
Abstract
Using 3D anatomical landmarks from adult human head MRIs, we assessed the magnitude of inter-operator differences in Procrustes-based geometric morphometric analyses. An in depth analysis of both absolute and relative error was performed in a subsample of individuals with replicated digitization by three different operators. The effect of inter-operator differences was also explored in a large sample of more than 900 individuals. Although absolute error was not unusual for MRI measurements, including bone landmarks, shape was particularly affected by differences among operators, with up to more than 30% of sample variation accounted for by this type of error. The magnitude of the bias was such that it dominated the main pattern of bone and total (all landmarks included) shape variation, largely surpassing the effect of sex differences between hundreds of men and women. In contrast, however, we found higher reproducibility in soft-tissue nasal landmarks, despite relatively larger errors in estimates of nasal size. Our study exemplifies the assessment of measurement error using geometric morphometrics on landmarks from MRIs and stresses the importance of relating it to total sample variance within the specific methodological framework being used. In summary, precise landmarks may not necessarily imply negligible errors, especially in shape data; indeed, size and shape may be differentially impacted by measurement error and different types of landmarks may have relatively larger or smaller errors. Importantly, and consistently with other recent studies using geometric morphometrics on digital images (which, however, were not specific to MRI data), this study showed that inter-operator biases can be a major source of error in the analysis of large samples, as those that are becoming increasingly common in the 'era of big data'.
Collapse
|
10
|
Yamaguchi Y, Miyazaki R, Kamatani M, Uwabe C, Makishima H, Nagai M, Katsube M, Yamamoto A, Imai H, Kose K, Togashi K, Yamada S. Three-dimensional models of the segmented human fetal brain generated by magnetic resonance imaging. Congenit Anom (Kyoto) 2018; 58:48-55. [PMID: 28493478 DOI: 10.1111/cga.12229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/25/2017] [Accepted: 04/30/2017] [Indexed: 01/22/2023]
Abstract
Recent advances in imaging technology have enabled us to obtain more detailed images of the human fetus in a nondestructive and noninvasive manner. Through detailed images, elaborate three-dimensional (3D) models of the developing brain can be reconstructed. The segmentation of the developing brain has been determined by serial sections. Therefore, in this study, we attempted to develop a 3D model of the fetal brain using magnetic resonance image (MRI). MR images from 19 specimens (11 embryonic specimens and eight fetal specimens from 5.2 to 225 mm in crown rump length) were used to reconstruct 3D models of regionalized developing brains. From this analysis, we succeeded in registering a maximum of nine landmarks on MR images and reconstructing 19 sequential models of the regionalized developing brain. To confirm the validity of the landmarks, we also compared our results with three serial sections from the Kyoto Collection; the same morphological characteristics were observed on both serial sections and MRI. The morphological minutiae could be found on MR images, and regionalized models of the developing brain could be reconstructed. These results will be useful for clinical diagnosis of living fetuses in utero.
Collapse
Affiliation(s)
- Yutaka Yamaguchi
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Reina Miyazaki
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mikako Kamatani
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chigako Uwabe
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Haruyuki Makishima
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Momoko Nagai
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoki Katsube
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Yamamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Katsumi Kose
- Institute of Applied Physics, University of Tsukuba, Ibaraki, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigehito Yamada
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Tsuzuki D, Homae F, Taga G, Watanabe H, Matsui M, Dan I. Macroanatomical Landmarks Featuring Junctions of Major Sulci and Fissures and Scalp Landmarks Based on the International 10-10 System for Analyzing Lateral Cortical Development of Infants. Front Neurosci 2017; 11:394. [PMID: 28744192 PMCID: PMC5504468 DOI: 10.3389/fnins.2017.00394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/23/2017] [Indexed: 11/13/2022] Open
Abstract
The topographic relationships between the macroanatomical structure of the lateral cortex, including sulci and fissures, and anatomical landmarks on the external surface of the head are known to be consistent. This allows the coregistration of EEG electrodes or functional near-infrared spectroscopy over the scalp with underlying cortical regions. However, limited information is available as to whether the topographic relationships are maintained in rapidly developing infants, whose brains and heads exhibit drastic growth. We used MRIs of infants ranging in age from 3 to 22 months old, and identified 20 macroanatomical landmarks, featuring the junctions of major sulci and fissures, as well as cranial landmarks and virtually determined positions of the international 10-20 and 10-10 systems. A Procrustes analysis revealed developmental trends in changes of shape in both the cortex and head. An analysis of Euclidian distances between selected pairs of cortical landmarks at standard stereotactic coordinates showed anterior shifts of the relative positions of the premotor and parietal cortices with age. Finally, cortical landmark positions and their spatial variability were compared with 10-10 landmark positions. The results indicate that variability in the distribution of each macroanatomical landmark was much smaller than the pitch of the 10-10 landmarks. This study demonstrates that the scalp-based 10-10 system serves as a good frame of reference in infants not only for assessing the development of the macroanatomy of the lateral cortical structure, but also for functional studies of cortical development using transcranial modalities such as EEG and fNIRS.
Collapse
Affiliation(s)
- Daisuke Tsuzuki
- Department of Language Sciences, Tokyo Metropolitan UniversityTokyo, Japan.,Graduate School of Education, The University of TokyoTokyo, Japan.,Applied Cognitive Neuroscience Laboratory, Chuo UniversityTokyo, Japan
| | - Fumitaka Homae
- Department of Language Sciences, Tokyo Metropolitan UniversityTokyo, Japan.,Research Center for Language, Brain and Genetics, Tokyo Metropolitan UniversityTokyo, Japan
| | - Gentaro Taga
- Graduate School of Education, The University of TokyoTokyo, Japan
| | - Hama Watanabe
- Graduate School of Education, The University of TokyoTokyo, Japan
| | - Mie Matsui
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan.,Department of Clinical Cognitive Neuroscience, Institute of Liberal Arts and Science, Kanazawa UniversityKanazawa, Japan
| | - Ippeita Dan
- Applied Cognitive Neuroscience Laboratory, Chuo UniversityTokyo, Japan
| |
Collapse
|
12
|
Paquette N, Shi J, Wang Y, Lao Y, Ceschin R, Nelson MD, Panigrahy A, Lepore N. Ventricular shape and relative position abnormalities in preterm neonates. NEUROIMAGE-CLINICAL 2017. [PMID: 28649491 PMCID: PMC5470570 DOI: 10.1016/j.nicl.2017.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent neuroimaging findings have highlighted the impact of premature birth on subcortical development and morphological changes in the deep grey nuclei and ventricular system. To help characterize subcortical microstructural changes in preterm neonates, we recently implemented a multivariate tensor-based method (mTBM). This method allows to precisely measure local surface deformation of brain structures in infants. Here, we investigated ventricular abnormalities and their spatial relationships with surrounding subcortical structures in preterm neonates. We performed regional group comparisons on the surface morphometry and relative position of the lateral ventricles between 19 full-term and 17 preterm born neonates at term-equivalent age. Furthermore, a relative pose analysis was used to detect individual differences in translation, rotation, and scale of a given brain structure with respect to an average. Our mTBM results revealed broad areas of alterations on the frontal horn and body of the left ventricle, and narrower areas of differences on the temporal horn of the right ventricle. A significant shift in the rotation of the left ventricle was also found in preterm neonates. Furthermore, we located significant correlations between morphology and pose parameters of the lateral ventricles and that of the putamen and thalamus. These results show that regional abnormalities on the surface and pose of the ventricles are also associated with alterations on the putamen and thalamus. The complementarity of the information provided by the surface and pose analysis may help to identify abnormal white and grey matter growth, hinting toward a pattern of neural and cellular dysmaturation.
Collapse
Affiliation(s)
- N Paquette
- Department of Radiology, University of Southern California and Children's Hospital of Los Angeles, CA, USA
| | - J Shi
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Y Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Y Lao
- Department of Radiology, University of Southern California and Children's Hospital of Los Angeles, CA, USA
| | - R Ceschin
- Department of Radiology, Children's Hospital of Pittsburgh UPMC, Pittsburgh, PA, USA
| | - M D Nelson
- Department of Radiology, University of Southern California and Children's Hospital of Los Angeles, CA, USA
| | - A Panigrahy
- Department of Radiology, Children's Hospital of Pittsburgh UPMC, Pittsburgh, PA, USA
| | - N Lepore
- Department of Radiology, University of Southern California and Children's Hospital of Los Angeles, CA, USA.
| |
Collapse
|
13
|
Shi J, Zhang W, Tang M, Caselli RJ, Wang Y. Conformal invariants for multiply connected surfaces: Application to landmark curve-based brain morphometry analysis. Med Image Anal 2016; 35:517-529. [PMID: 27639215 DOI: 10.1016/j.media.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 01/01/2023]
Abstract
Landmark curves were widely adopted in neuroimaging research for surface correspondence computation and quantified morphometry analysis. However, most of the landmark based morphometry studies only focused on landmark curve shape difference. Here we propose to compute a set of conformal invariant-based shape indices, which are associated with the landmark curve induced boundary lengths in the hyperbolic parameter domain. Such shape indices may be used to identify which surfaces are conformally equivalent and further quantitatively measure surface deformation. With the surface Ricci flow method, we can conformally map a multiply connected surface to the Poincaré disk. Our algorithm provides a stable method to compute the shape index values in the 2D (Poincaré Disk) parameter domain. The proposed shape indices are succinct, intrinsic and informative. Experimental results with synthetic data and 3D MRI data demonstrate that our method is invariant under isometric transformations and able to detect brain surface abnormalities. We also applied the new shape indices to analyze brain morphometry abnormalities associated with Alzheimer' s disease (AD). We studied the baseline MRI scans of a set of healthy control and AD patients from the Alzheimer' s Disease Neuroimaging Initiative (ADNI: 30 healthy control subjects vs. 30 AD patients). Although the lengths of the landmarks in Euclidean space, cortical surface area, and volume features did not differ between the two groups, our conformal invariant based shape indices revealed significant differences by Hotelling' s T2 test. The novel conformal invariant shape indices may offer a new sensitive biomarker and enrich our brain imaging analysis toolset for studying diagnosis and prognosis of AD.
Collapse
Affiliation(s)
- Jie Shi
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287, P.O. Box 878809, USA
| | - Wen Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287, P.O. Box 878809, USA
| | - Miao Tang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287, P.O. Box 878809, USA
| | | | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287, P.O. Box 878809, USA.
| |
Collapse
|
14
|
Barbeito-Andrés J, Bernal V, Gonzalez PN. Morphological asymmetries of mouse brain assessed by geometric morphometric analysis of MRI data. Magn Reson Imaging 2016; 34:980-9. [DOI: 10.1016/j.mri.2016.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/17/2016] [Indexed: 01/13/2023]
|
15
|
Sergejeva M, Papp EA, Bakker R, Gaudnek MA, Okamura-Oho Y, Boline J, Bjaalie JG, Hess A. Anatomical landmarks for registration of experimental image data to volumetric rodent brain atlasing templates. J Neurosci Methods 2014; 240:161-9. [PMID: 25445058 DOI: 10.1016/j.jneumeth.2014.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Assignment of anatomical reference is a key step in integration of the rapidly expanding collection of rodent brain data. Landmark-based registration facilitates spatial anchoring of diverse types of data not suitable for automated methods operating on voxel-based image information. NEW TOOL Here we propose a standardized set of anatomical landmarks for registration of whole brain imaging datasets from the mouse and rat brain, and in particular for integration of experimental image data in Waxholm Space (WHS). RESULTS Sixteen internal landmarks of the C57BL/6J mouse brain have been reliably identified: by different individuals, independent of their experience in anatomy; across different MRI contrasts (T1, T2, T2(*)) and other modalities (Nissl histology and block-face anatomy); in different specimens; in different slice acquisition angles; and in different image resolutions. We present a registration example between T1-weighted MRI and the mouse WHS template using these landmarks and reaching fairly high accuracy. Landmark positions identified in the mouse WHS template are shared through the Scalable Brain Atlas, accompanied by graphical and textual guidelines for locating each landmark. We identified 14 of the 16 landmarks in the WHS template for the Sprague Dawley rat. COMPARISON WITH EXISTING METHODS This landmark set can withstand substantial differences in acquisition angle, imaging modality, and is less vulnerable to subjectivity. CONCLUSIONS This facilitates registration of multimodal 3D brain data to standard coordinate spaces for mouse and rat brain taking a step toward the creation of a common rodent reference system; raising data sharing to a qualitatively higher level.
Collapse
Affiliation(s)
- Marina Sergejeva
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University, Fahrstr. 17, 91054 Erlangen, Germany.
| | - Eszter A Papp
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, 0317 Oslo, Norway
| | - Rembrandt Bakker
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, Netherlands; Institute of Neuroscience and Medicine (INM-6), Research Center Jülich, 52425 Jülich, Germany
| | - Manuel A Gaudnek
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University, Fahrstr. 17, 91054 Erlangen, Germany
| | - Yuko Okamura-Oho
- Brain Research Network (BreNt) and RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jyl Boline
- Informed Minds, 2100 NE 16th Ave, Wilton Manors, FL 33305, USA
| | - Jan G Bjaalie
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, 0317 Oslo, Norway
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University, Fahrstr. 17, 91054 Erlangen, Germany
| |
Collapse
|