1
|
Gschwind R, Ugarcina Perovic S, Weiss M, Petitjean M, Lao J, Coelho LP, Ruppé E. ResFinderFG v2.0: a database of antibiotic resistance genes obtained by functional metagenomics. Nucleic Acids Res 2023:7173762. [PMID: 37207327 DOI: 10.1093/nar/gkad384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Metagenomics can be used to monitor the spread of antibiotic resistance genes (ARGs). ARGs found in databases such as ResFinder and CARD primarily originate from culturable and pathogenic bacteria, while ARGs from non-culturable and non-pathogenic bacteria remain understudied. Functional metagenomics is based on phenotypic gene selection and can identify ARGs from non-culturable bacteria with a potentially low identity shared with known ARGs. In 2016, the ResFinderFG v1.0 database was created to collect ARGs from functional metagenomics studies. Here, we present the second version of the database, ResFinderFG v2.0, which is available on the Center of Genomic Epidemiology web server (https://cge.food.dtu.dk/services/ResFinderFG/). It comprises 3913 ARGs identified by functional metagenomics from 50 carefully curated datasets. We assessed its potential to detect ARGs in comparison to other popular databases in gut, soil and water (marine + freshwater) Global Microbial Gene Catalogues (https://gmgc.embl.de). ResFinderFG v2.0 allowed for the detection of ARGs that were not detected using other databases. These included ARGs conferring resistance to beta-lactams, cycline, phenicol, glycopeptide/cycloserine and trimethoprim/sulfonamide. Thus, ResFinderFG v2.0 can be used to identify ARGs differing from those found in conventional databases and therefore improve the description of resistomes.
Collapse
Affiliation(s)
- Rémi Gschwind
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018Paris, France
| | - Svetlana Ugarcina Perovic
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
| | - Maja Weiss
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby 2800, Denmark
| | - Marie Petitjean
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018Paris, France
| | - Julie Lao
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018Paris, France
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
| | - Etienne Ruppé
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018Paris, France
| |
Collapse
|
2
|
Brooks L, Narvekar U, McDonald A, Mullany P. Prevalence of antibiotic resistance genes in the oral cavity and mobile genetic elements that disseminate antimicrobial resistance: A systematic review. Mol Oral Microbiol 2022; 37:133-153. [DOI: 10.1111/omi.12375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Laura Brooks
- UCL Eastman Dental Institute University College London 47–49 Huntley St London WC1E 6DG UK
| | - Unnati Narvekar
- UCL Eastman Dental Institute University College London 47–49 Huntley St London WC1E 6DG UK
| | - Ailbhe McDonald
- UCL Eastman Dental Institute University College London 47–49 Huntley St London WC1E 6DG UK
| | - Peter Mullany
- UCL Eastman Dental Institute University College London 47–49 Huntley St London WC1E 6DG UK
| |
Collapse
|
3
|
Na HE, Heo S, Kim YS, Kim T, Lee G, Lee JH, Jeong DW. The safety and technological properties of Bacillus velezensis DMB06 used as a starter candidate were evaluated by genome analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Zheng F, An XL, Zhou GW, Zhu D, Neilson R, Chen B, Yang XR. Mite gut microbiome and resistome exhibited species-specific and dose-dependent effect in response to oxytetracycline exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150802. [PMID: 34626628 DOI: 10.1016/j.scitotenv.2021.150802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The importance of the gut microbiome to host health is well recognized, but the effects of environmental pressures on the gut microbiome of soil fauna are poorly understood. Here, Illumina sequencing and high-throughput qPCR were applied to characterize the gut microbiomes and resistomes of two mites, Nenteria moseri and Chiropturopoda sp. AL5866, exposed to different concentrations of oxytetracycline (0, 0.01, 0.1 and 1 μg mg-1). Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the dominant phyla in the gut microbiomes of both studied mite species, but the relative abundance of them was different between mites. After exposure to oxytetracycline, there was no variation in the gut microbiome and resistome of C. sp. AL5866, whereas the gut microbiome and resistome of N. moseri were altered significantly. The relative abundance of Proteobacteria significantly decreased, and those of Bacteroidetes and Firmicutes significantly increased at the high-concentration antibiotic treatments. Excepting the 0.01 μg mg-1 treatment, gut microbial diversity increased with ascending concentrations. A significant resistome enrichment of relative abundance in N. moseri gut microbiome at low-dose antibiotic treatment was noted. These results indicated that the gut microbiome in N. moseri was potentially more sensitive to antibiotics than C. sp. AL5866, which was supported by the greater relative abundance of key tetracycline-resistant genes in the gut microbiome of C. sp. AL5866 compared to N. moseri. Mite gut microbiomes were correlated with their associated resistomes, demonstrating the consistent changes between microbiome and resistome. Thus, this study showed that oxytetracycline amendment resulted in a dose-dependent and species-specific effect on the gut microbiomes and resistomes of two mite species. It will contribute to understanding the relationship between the soil mite gut microbiome and resistome under antibiotic exposure, and extend our knowledge regarding the emergence and transfer of resistomes in soil food webs.
Collapse
Affiliation(s)
- Fei Zheng
- School of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Guo-Wei Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Dong Zhu
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, DD2 5DA, Scotland, UK
| | - Bing Chen
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
5
|
Zhang C, Sun L, Wang D, Li Y, Zhang L, Wang L, Peng J. Advances in antimicrobial resistance testing. Adv Clin Chem 2022; 111:1-68. [DOI: 10.1016/bs.acc.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Severgnini M, Camboni T, Ceccarani C, Morselli S, Cantiani A, Zagonari S, Patuelli G, Pedna MF, Sambri V, Foschi C, Consolandi C, Marangoni A. Distribution of ermB, ermF, tet(W), and tet(M) Resistance Genes in the Vaginal Ecosystem of Women during Pregnancy and Puerperium. Pathogens 2021; 10:pathogens10121546. [PMID: 34959501 PMCID: PMC8705968 DOI: 10.3390/pathogens10121546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
The inhabitants of the vaginal ecosystem can harbor genetic determinants conferring antimicrobial resistance. However, detailed data about the distribution of resistance genes in the vaginal microbiome of pregnant women are still lacking. Therefore, we assessed the presence of macrolide (i.e., erm genes) and tetracycline (i.e., tet genes) resistance markers in the vaginal environment of Caucasian women at different gestational ages. Furthermore, the detection of resistance genes was related to the composition of the vaginal microbiota. A total of 228 vaginal samples, collected at different trimesters of pregnancy or during the puerperium, were tested for the presence of ermB, ermF, tet(W), and tet(M) by in-house end-point PCR assays. The composition of the vaginal microbiota was assessed through a microscopic evaluation (i.e., Nugent score) and by means of sequencing V3–V4 hypervariable regions of the bacterial 16 rRNA gene. Overall, the most detected resistance gene was tet(M) (76.7%), followed by ermB (55.2%). In 17% of women, mainly with a ‘normal’ vaginal microbiota, no resistance genes were found. Except for tet(W), a significant correlation between the positivity of resistance genes and a dysbiotic vaginal status (i.e., bacterial vaginosis (BV)) was noticed. Indeed, samples positive for at least one resistance determinant were characterized by a decrease in Lactobacillus spp. and an increase of BV-related genera (Prevotella, Gardnerella, Atopobium, Sneathia). A high predominance of vaginal Lactobacillus spp. (>85%) was associated with a lower risk of tet(W) gene detection, whereas the presence of Megasphaera (>1%) increased the risk of positivity for all analyzed genes. Different types of vaginal microbiota are associated with peculiar resistance profiles, being a lactobacilli-dominated ecosystem poor in or free of resistance genes. These data could open new perspectives for promoting maternal and neonatal health.
Collapse
Affiliation(s)
- Marco Severgnini
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (M.S.); (T.C.); (C.C.); (C.C.)
| | - Tania Camboni
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (M.S.); (T.C.); (C.C.); (C.C.)
| | - Camilla Ceccarani
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (M.S.); (T.C.); (C.C.); (C.C.)
| | - Sara Morselli
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40128 Bologna, Italy; (S.M.); (A.C.); (V.S.); (A.M.)
| | - Alessia Cantiani
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40128 Bologna, Italy; (S.M.); (A.C.); (V.S.); (A.M.)
| | - Sara Zagonari
- Family Advisory Health Centres, 48121 Ravenna, Italy; (S.Z.); (G.P.)
| | - Giulia Patuelli
- Family Advisory Health Centres, 48121 Ravenna, Italy; (S.Z.); (G.P.)
| | | | - Vittorio Sambri
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40128 Bologna, Italy; (S.M.); (A.C.); (V.S.); (A.M.)
- Unit of Microbiology, Greater Romagna Hub Laboratory, 47023 Cesena, Italy;
| | - Claudio Foschi
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40128 Bologna, Italy; (S.M.); (A.C.); (V.S.); (A.M.)
- Correspondence: ; Tel.: +39-0512144513
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (M.S.); (T.C.); (C.C.); (C.C.)
| | - Antonella Marangoni
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40128 Bologna, Italy; (S.M.); (A.C.); (V.S.); (A.M.)
| |
Collapse
|
7
|
Ahn Y, Jung JY, Kweon O, Veach BT, Khare S, Gokulan K, Piñeiro SA, Cerniglia CE. Impact of Chronic Tetracycline Exposure on Human Intestinal Microbiota in a Continuous Flow Bioreactor Model. Antibiotics (Basel) 2021; 10:antibiotics10080886. [PMID: 34438936 PMCID: PMC8388752 DOI: 10.3390/antibiotics10080886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023] Open
Abstract
Studying potential dietary exposure to antimicrobial drug residues via meat and dairy products is essential to ensure human health and consumer safety. When studying how antimicrobial residues in food impact the development of antimicrobial drug resistance and disrupt normal bacteria community structure in the intestine, there are diverse methodological challenges to overcome. In this study, traditional cultures and molecular analysis techniques were used to determine the effects of tetracycline at chronic subinhibitory exposure levels on human intestinal microbiota using an in vitro continuous flow bioreactor. Six bioreactor culture vessels containing human fecal suspensions were maintained at 37 °C for 7 days. After a steady state was achieved, the suspensions were dosed with 0, 0.015, 0.15, 1.5, 15, or 150 µg/mL tetracycline, respectively. Exposure to 150 µg/mL tetracycline resulted in a decrease of total anaerobic bacteria from 1.9 × 107 ± 0.3 × 107 down to 2 × 106 ± 0.8 × 106 CFU/mL. Dose-dependent effects of tetracycline were noted for perturbations of tetB and tetD gene expression and changes in acetate and propionate concentrations. Although no-observed-adverse-effect concentrations differed, depending on the traditional cultures and the molecular analysis techniques used, this in vitro continuous flow bioreactor study contributes to the knowledge base regarding the impact of chronic exposure of tetracycline on human intestinal microbiota.
Collapse
Affiliation(s)
- Youngbeom Ahn
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (J.Y.J.); (O.K.); (S.K.); (K.G.); (C.E.C.)
- Correspondence: ; Tel.: +1-870-540-7084
| | - Ji Young Jung
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (J.Y.J.); (O.K.); (S.K.); (K.G.); (C.E.C.)
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (J.Y.J.); (O.K.); (S.K.); (K.G.); (C.E.C.)
| | - Brian T. Veach
- Office of Regulatory Affairs, Arkansas Laboratory, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (J.Y.J.); (O.K.); (S.K.); (K.G.); (C.E.C.)
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (J.Y.J.); (O.K.); (S.K.); (K.G.); (C.E.C.)
| | - Silvia A. Piñeiro
- Division of Human Food Safety, Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD 72079, USA;
| | - Carl E. Cerniglia
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (J.Y.J.); (O.K.); (S.K.); (K.G.); (C.E.C.)
| |
Collapse
|
8
|
Heo S, Kim JH, Kwak MS, Sung MH, Jeong DW. Functional Annotation Genome Unravels Potential Probiotic Bacillus velezensis Strain KMU01 from Traditional Korean Fermented Kimchi. Foods 2021; 10:foods10030563. [PMID: 33803098 PMCID: PMC7998376 DOI: 10.3390/foods10030563] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/01/2022] Open
Abstract
Bacillus velezensis strain KMU01 showing γ-glutamyltransferase activity as a probiotic candidate was isolated from kimchi. However, the genetic information on strain KMU01 was not clear. Therefore, the current investigation was undertaken to prove the probiotic traits of B. velezensis strain KMU01 through genomic analysis. Genomic analysis revealed that strain KMU01 did not encode enterotoxin genes and acquired antibiotic resistance genes. Strain KMU01 genome possessed survivability traits under extreme conditions such as in the presence of gastric acid, as well as several probiotic traits such as intestinal epithelium adhesion and the production of thiamine and essential amino acids. Potential genes for human health enhancement such as those for γ-glutamyltransferase, nattokinase, and bacteriocin production were also identified in the genome. As a starter candidate for food fermentation, the genome of KMU01 encoded for protease, amylase, and lipase genes. The complete genomic sequence of KMU01 will contribute to our understanding of the genetic basis of probiotic properties and allow for the assessment of the effectiveness of this strain as a starter or probiotic for use in the food industry.
Collapse
Affiliation(s)
- Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Korea;
| | - Jong-Hoon Kim
- The Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea; (J.-H.K.); (M.-S.K.)
| | - Mi-Sun Kwak
- The Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea; (J.-H.K.); (M.-S.K.)
| | - Moon-Hee Sung
- The Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea; (J.-H.K.); (M.-S.K.)
- KookminBio Corporation, Seoul 02826, Korea
- Correspondence: or (M.-H.S.); (D.-W.J.); Tel.: +82-2-910-4808 (M.-H.S.); +82-2-940-4463 (D.-W.J.)
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Korea;
- Correspondence: or (M.-H.S.); (D.-W.J.); Tel.: +82-2-910-4808 (M.-H.S.); +82-2-940-4463 (D.-W.J.)
| |
Collapse
|
9
|
Tansirichaiya S, Reynolds LJ, Roberts AP. Functional Metagenomic Screening for Antimicrobial Resistance in the Oral Microbiome. Methods Mol Biol 2021; 2327:31-50. [PMID: 34410638 DOI: 10.1007/978-1-0716-1518-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A large proportion of bacteria, from a multitude of environments, are not yet able to be grown in the laboratory, and therefore microbiological and molecular biological investigations of these bacteria are challenging. A way to circumvent this challenge is to analyze the metagenome, the entire collection of DNA molecules that can be isolated from a particular environment or sample. This collection of DNA molecules can be sequenced and assembled to determine what is present and infer functional potential, or used as a PCR template to detect known target DNA and potentially unknown regions of DNA nearby those targets; however assigning functions to new or conserved hypothetical, functionally cryptic, genes is difficult. Functional metagenomics allows researchers to determine which genes are responsible for selectable phenotypes, such as resistance to antimicrobials and metabolic capabilities, without the prerequisite needs to grow the bacteria containing those genes or to already know which genes are of interest. It is estimated that a third of the resident species of the human oral cavity is not yet cultivable and, together with the ease of sample acquisition, makes this metagenome particularly suited to functional metagenomic studies. Here we describe the methodology related to the collection of saliva samples, extraction of metagenomic DNA, construction of metagenomic libraries, as well as the description of functional assays that have previously led to the identification of new genes conferring antimicrobial resistance.
Collapse
Affiliation(s)
- Supathep Tansirichaiya
- Department of Clinical Dentistry, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway.
| | - Liam J Reynolds
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
10
|
Barlow VL, Lai SJ, Chen CY, Tsai CH, Wu SH, Tsai YH. Effect of membrane fusion protein AdeT1 on the antimicrobial resistance of Escherichia coli. Sci Rep 2020; 10:20464. [PMID: 33235243 PMCID: PMC7687900 DOI: 10.1038/s41598-020-77339-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/10/2020] [Indexed: 01/03/2023] Open
Abstract
Acinetobacter baumannii is a prevalent pathogen that can rapidly acquire resistance to antibiotics. Indeed, multidrug-resistant A. baumannii is a major cause of hospital-acquired infections and has been recognised by the World Health Organization as one of the most threatening bacteria to our society. Resistance-nodulation-division (RND) type multidrug efflux pumps have been demonstrated to convey antibiotic resistance to a wide range of pathogens and are the primary resistance mechanism employed by A. baumannii. A component of an RND pump in A. baumannii, AdeT1, was previously demonstrated to enhance the antimicrobial resistance of Escherichia coli. Here, we report the results of experiments which demonstrate that wild-type AdeT1 does not confer antimicrobial resistance in E. coli, highlighting the importance of verifying protein production when determining minimum inhibitory concentrations (MICs) especially by broth dilution. Nevertheless, using an agar-based MIC assay, we found that propionylation of Lys280 on AdeT1 renders E. coli cells more resistant to erythromycin.
Collapse
Affiliation(s)
| | - Shu-Jung Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-Yu Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Han Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, UK.
| |
Collapse
|
11
|
Ho J, Yeoh YK, Barua N, Chen Z, Lui G, Wong SH, Yang X, Chan MCW, Chan PKS, Hawkey PM, Ip M. Systematic review of human gut resistome studies revealed variable definitions and approaches. Gut Microbes 2020; 12:1700755. [PMID: 31942825 PMCID: PMC7524153 DOI: 10.1080/19490976.2019.1700755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this review, we highlight the variations of gut resistome studies, which may preclude comparisons and translational interpretations. Of 22 included studies, a range of 12 to 2000 antibiotic resistance (AR) genes were profiled. Overall, studies defined a healthy gut resistome as subjects who had not taken antibiotics in the last three to 12 months prior to sampling. In studies with de novo assembly, AR genes were identified based on variable nucleotide or amino acid sequence similarities. Different marker genes were used for defining resistance to a given antibiotic class. Validation of phenotypic resistance in the laboratory is frequently lacking. Cryptic resistance, collateral sensitivity and the interaction with repressors or promotors were not investigated. International consensus is needed for selecting marker genes to define resistance to a given antibiotic class in addition to uniformity in phenotypic validation and bioinformatics pipelines.
Collapse
Affiliation(s)
- Jeffery Ho
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China,Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Kit Yeoh
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China,Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nilakshi Barua
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China,Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Grace Lui
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China,Department of Medicine & Therapeutics, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Sunny H Wong
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China,Department of Medicine & Therapeutics, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martin CW Chan
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul KS Chan
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China,Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Peter M Hawkey
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China,Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China,CONTACT Margaret Ip Department of Microbiology, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| |
Collapse
|
12
|
Distribution of Antibiotic Resistance Genes in the Saliva of Healthy Omnivores, Ovo-Lacto-Vegetarians, and Vegans. Genes (Basel) 2020; 11:genes11091088. [PMID: 32961926 PMCID: PMC7564780 DOI: 10.3390/genes11091088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Food consumption allows the entrance of bacteria and their antibiotic resistance (AR) genes into the human oral cavity. To date, very few studies have examined the influence of diet on the composition of the salivary microbiota, and even fewer investigations have specifically aimed to assess the impact of different long-term diets on the salivary resistome. In this study, the saliva of 144 healthy omnivores, ovo-lacto-vegetarians, and vegans were screened by nested PCR for the occurrence of 12 genes conferring resistance to tetracyclines, macrolide-lincosamide-streptogramin B, vancomycin, and β-lactams. The tet(W), tet(M), and erm(B) genes occurred with the highest frequencies. Overall, no effect of diet on AR gene distribution was seen. Some differences emerged at the recruiting site level, such as the higher frequency of erm(C) in the saliva of the ovo-lacto-vegetarians and omnivores from Bologna and Turin, respectively, and the higher occurrence of tet(K) in the saliva of the omnivores from Bologna. A correlation of the intake of milk and cheese with the abundance of tet(K) and erm(C) genes was seen. Finally, when the occurrence of the 12 AR genes was evaluated along with geographical location, age, and sex as sources of variability, high similarity among the 144 volunteers was seen.
Collapse
|
13
|
Fu T, Islam MS, Ali M, Wu J, Dong W. Two antimicrobial genes from Aegilops tauschii Cosson identified by the Bacillus subtilis expression system. Sci Rep 2020; 10:13346. [PMID: 32770019 PMCID: PMC7414872 DOI: 10.1038/s41598-020-70314-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial genes play an important role as a primary defense mechanism in all multicellular organisms. We chose Bacillus subtilis as a target pathogen indicator and transferred the Aegilops tauschii Cosson cDNA library into B. subtilis cells. Expression of the candidate antimicrobial gene can inhibit B. subtilis cell growth. Using this strategy, we screened six genes that have an internal effect on the indicator bacteria. Then, the secreted proteins were extracted and tested; two genes, AtR100 and AtR472, were found to have strong external antimicrobial activities with broad-spectrum resistance against Xanthomonas oryzae pv. oryzicola, Clavibacter fangii, and Botrytis cinerea. Additionally, thermal stability tests indicated that the antimicrobial activities of both proteins were thermostable. Furthermore, these two proteins exhibited no significant hemolytic activities. To test the feasibility of application at the industrial level, liquid fermentation and spray drying of these two proteins were conducted. Powder dilutions were shown to have significant inhibitory effects on B. cinerea. Fluorescence microscopy and flow cytometry results showed that the purified protein impaired and targeted the cell membranes. This study revealed that these two antimicrobial peptides could potentially be used for replacing antibiotics, which would provide the chance to reduce the emergence of drug resistance.
Collapse
Affiliation(s)
- Tingting Fu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Md Samiul Islam
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Mohsin Ali
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jia Wu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
14
|
Shanmugakani RK, Srinivasan B, Glesby MJ, Westblade LF, Cárdenas WB, Raj T, Erickson D, Mehta S. Current state of the art in rapid diagnostics for antimicrobial resistance. LAB ON A CHIP 2020; 20:2607-2625. [PMID: 32644060 PMCID: PMC7428068 DOI: 10.1039/d0lc00034e] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Antimicrobial resistance (AMR) is a fundamental global concern analogous to climate change threatening both public health and global development progress. Infections caused by antimicrobial-resistant pathogens pose serious threats to healthcare and human capital. If the increasing rate of AMR is left uncontrolled, it is estimated that it will lead to 10 million deaths annually by 2050. This global epidemic of AMR necessitates radical interdisciplinary solutions to better detect antimicrobial susceptibility and manage infections. Rapid diagnostics that can identify antimicrobial-resistant pathogens to assist clinicians and health workers in initiating appropriate treatment are critical for antimicrobial stewardship. In this review, we summarize different technologies applied for the development of rapid diagnostics for AMR and antimicrobial susceptibility testing (AST). We briefly describe the single-cell technologies that were developed to hasten the AST of infectious pathogens. Then, the different types of genotypic and phenotypic techniques and the commercially available rapid diagnostics for AMR are discussed in detail. We conclude by addressing the potential of current rapid diagnostic systems being developed as point-of-care (POC) diagnostic tools and the challenges to adapt them at the POC level. Overall, this review provides an insight into the current status of rapid and POC diagnostic systems for AMR.
Collapse
Affiliation(s)
- Rathina Kumar Shanmugakani
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Balaji Srinivasan
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Marshall J. Glesby
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Lars F. Westblade
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Washington B. Cárdenas
- Laboratorio para Investigaciones Biomédicas, Escuela Superior Politécnica del Litoral, Guayaquil, Guayas, Ecuador
| | - Tony Raj
- St. John’s Research Institute, Bangalore, Karnataka, India
| | - David Erickson
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Saurabh Mehta
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
15
|
AbuOun M, O'Connor HM, Stubberfield EJ, Nunez-Garcia J, Sayers E, Crook DW, Smith RP, Anjum MF. Characterizing Antimicrobial Resistant Escherichia coli and Associated Risk Factors in a Cross-Sectional Study of Pig Farms in Great Britain. Front Microbiol 2020; 11:861. [PMID: 32523560 PMCID: PMC7261845 DOI: 10.3389/fmicb.2020.00861] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Combatting antimicrobial resistant (AMR) using a One-Health approach is essential as various bacteria, including Escherichia coli, a common bacteria, are becoming increasingly resistant and livestock may be a reservoir. The AMR gene content of 492 E. coli, isolated from 56 pig farms across Great Britain in 2014–2015, and purified on antibiotic selective and non-selective plates, was determined using whole genome sequencing (WGS). The E. coli were phylogenetically diverse harboring a variety of AMR profiles with widespread resistance to “old” antibiotics; isolates harbored up to seven plasmid Inc-types. None showed concurrent resistance to third-generation cephalosporins, fluoroquinolones and clinically relevant aminoglycosides, although ∼3% harbored AMR genes to both the former two. Transferable resistance to carbapenem and colistin were absent, and six of 117 E. coli STs belonged to major types associated with human disease. Prevalence of genotypically MDR E. coli, gathered from non-selective media was 35% and that of extended-spectrum-beta-lactamase E. coli was low (∼2% from non-selective). Approximately 72.6% of E. coli from ciprofloxacin plates and only 8.5% from the other plates harbored fluoroquinolone resistance due to topoisomerase mutations; the majority were MDR. In fact, multivariable analysis confirmed E. coli purified from CIP enrichment plates were more likely to be MDR, and suggested MDR isolates were also more probable from farms with high antibiotic usage, specialist finisher farms, and farms emptying their manure pits only after each batch. Additionally, farms from the South East were more likely to have MDR E. coli, whereas farms in Yorkshire and the Humber were less likely. Future investigations will determine whether suggested improvements such as better biosecurity or lower antimicrobial use decreases MDR E. coli on pig farms. Although this study focuses on pig farms, we believe the methodology and findings can be applied more widely to help livestock farmers in the United Kingdom and elsewhere to tackle AMR.
Collapse
Affiliation(s)
- Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom.,National Institute for Health Research, Health Protection Research Unit, University of Oxford in Partnership with Public Health England (PHE), Oxford, United Kingdom
| | - Heather M O'Connor
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Emma J Stubberfield
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Javier Nunez-Garcia
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Ellie Sayers
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Derick W Crook
- National Institute for Health Research, Health Protection Research Unit, University of Oxford in Partnership with Public Health England (PHE), Oxford, United Kingdom.,Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Richard P Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom.,National Institute for Health Research, Health Protection Research Unit, University of Oxford in Partnership with Public Health England (PHE), Oxford, United Kingdom
| |
Collapse
|
16
|
Taitt CR, Leski TA, Colston SM, Bernal M, Canal E, Regeimbal J, Rios P, Vora GJ. A comparison of methods for DNA preparation prior to microarray analysis. Anal Biochem 2019; 585:113405. [PMID: 31445900 DOI: 10.1016/j.ab.2019.113405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 01/30/2023]
Abstract
Microarrays are a valuable tool for analysis of both bacterial and eukaryotic nucleic acids. As many of these applications use non-specific amplification to increase sample concentration prior to analysis, the methods used to fragment and label large amplicons are important to achieve the desired analytical selectivity and specificity. Here, we used eight sequenced ESKAPE pathogens to determine the effect of two methods of whole genome amplicon fragmentation and three methods of subsequent labeling on microarray performance; nick translation was also assessed. End labeling of both initial DNase I-treated and sonication-fragmented amplicons failed to provide detectable material for a significant number of sequence-confirmed genes. However, processing of amplicons by nick translation, or by sequential fragmentation and labeling by Universal Labeling System or Klenow fragment/random primer provided good sensitivity and selectivity, with marginally better results obtained by Klenow fragment labeling. Nick-translation provided 91-100% sensitivity and 100% specificity in the tested strains, requiring half as many manipulations and less than 4h to process samples for hybridization; full sample processing from whole genome amplification to final data analysis could be performed in less than 10h. The method of template denaturation before amplification did affect detection sensitivity/selectivity of nick-labeled amplicons, however.
Collapse
Affiliation(s)
- Chris R Taitt
- Center for BioMolecular Science & Engineering, US Naval Research Laboratory, Washington, DC, USA.
| | - Tomasz A Leski
- Center for BioMolecular Science & Engineering, US Naval Research Laboratory, Washington, DC, USA
| | - Sophie M Colston
- National Research Council Research Associateship Program, Washington, DC, 20001, USA
| | | | | | | | | | - Gary J Vora
- Center for BioMolecular Science & Engineering, US Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
17
|
ElRakaiby MT, Gamal-Eldin S, Amin MA, Aziz RK. Hospital Microbiome Variations As Analyzed by High-Throughput Sequencing. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:426-438. [PMID: 31393213 DOI: 10.1089/omi.2019.0111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hospital-acquired infections remain a serious threat to human life and are becoming a top public health issue. As the latest advances in sequencing technologies have allowed the unbiased identification of bacterial communities, we aimed to implement emerging omics technologies to characterize a hospital's microbiome at the center of Cairo, Egypt. To this end, we screened surfaces and inanimate objects in the hospital, focusing on bed sheets and door knobs, with additional screening for resistant microbes and resistance genes. While bacterial load and community composition were not dramatically different between door knobs of hospital units with different hygiene levels, the bacterial communities on door knob samples were richer and more diverse than those detected on bed sheets. Bacteria detected on door knobs were a mix of those associated with dust/particulate matter/debris (e.g., Bacillus, Geobacillus, Aeribacillus) and skin-associated bacteria (e.g., Staphylococcus, Corynebacterium). The latter were among the core genera shared by all analyzed samples. Conversely, bacteria that were more abundant in bed sheets were not associated with a particular source (e.g., Pseudomonas and Nitrobacter). Resistance screening indicated an expansion of a mobile beta-lactamase-encoding gene (blaTEM), reflecting its current global spread. This study is a first step toward more comprehensive screening of hospital surfaces and correlating their microbiome with hospital outbreaks or chronic infections. We conclude that, as hospitals are unique built environments, these findings can inform future infection control strategies in hospitals and health care-related built environments, and attest to the importance of the emerging hospital microbiome research field.
Collapse
Affiliation(s)
- Marwa T ElRakaiby
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| | | | - Magdy A Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Milanović V, Osimani A, Cardinali F, Litta-Mulondo A, Vignaroli C, Citterio B, Mangiaterra G, Aquilanti L, Garofalo C, Biavasco F, Cocolin L, Ferrocino I, Di Cagno R, Turroni S, Lazzi C, Pellegrini N, Clementi F. Erythromycin-resistant lactic acid bacteria in the healthy gut of vegans, ovo-lacto vegetarians and omnivores. PLoS One 2019; 14:e0220549. [PMID: 31374082 PMCID: PMC6677300 DOI: 10.1371/journal.pone.0220549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/18/2019] [Indexed: 01/01/2023] Open
Abstract
Diet can affect the diversity and composition of gut microbiota. Usage of antibiotics in food production and in human or veterinary medicine has resulted in the emergence of commensal antibiotic resistant bacteria in the human gut. The incidence of erythromycin-resistant lactic acid bacteria (LAB) in the feces of healthy vegans, ovo-lacto vegetarians and omnivores was analyzed. Overall, 155 LAB were isolated and characterized for their phenotypic and genotypic resistance to erythromycin. The isolates belonged to 11 different species within the Enterococcus and Streptococcus genera. Enterococcus faecium was the dominant species in isolates from all the dietary categories. Only 97 out of 155 isolates were resistant to erythromycin after Minimum Inhibitory Concentration (MIC) determination; among them, 19 isolates (7 from vegans, 4 from ovo-lacto vegetarians and 8 from omnivores) carried the erm(B) gene. The copresence of erm(B) and erm(A) genes was only observed in Enterococcus avium from omnivores. Moreover, the transferability of erythromycin resistance genes using multidrug-resistant (MDR) cultures selected from the three groups was assessed, and four out of six isolates were able to transfer the erm(B) gene. Overall, isolates obtained from the omnivore samples showed resistance to a greater number of antibiotics and carried more tested antibiotic resistance genes compared to the isolates from ovo-lacto vegetarians and vegans. In conclusion, our results show that diet does not significantly affect the occurrence of erythromycin-resistant bacteria and that commensal strains may act as a reservoir of antibiotic resistance (AR) genes and as a source of antibiotic resistance spreading.
Collapse
Affiliation(s)
- Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Alice Litta-Mulondo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Carla Vignaroli
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Barbara Citterio
- Department of Biomolecular Sciences, Biotechnology Section, University of Urbino ‘Carlo Bo’, Urbino, Italy
| | - Gianmarco Mangiaterra
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
- * E-mail:
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Biavasco
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Science (DISAFA), University of Turin, Grugliasco, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Science (DISAFA), University of Turin, Grugliasco, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Camilla Lazzi
- Department of Food Science, University of Parma, Parma, Italy
| | | | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
19
|
Walker AS, Budgell E, Laskawiec-Szkonter M, Sivyer K, Wordsworth S, Quaddy J, Santillo M, Krusche A, Roope LSJ, Bright N, Mowbray F, Jones N, Hand K, Rahman N, Dobson M, Hedley E, Crook D, Sharland M, Roseveare C, Hobbs FDR, Butler C, Vaughan L, Hopkins S, Yardley L, Peto TEA, Llewelyn MJ, on behalf of the ARK trial team. Antibiotic Review Kit for Hospitals (ARK-Hospital): study protocol for a stepped-wedge cluster-randomised controlled trial. Trials 2019; 20:421. [PMID: 31296255 PMCID: PMC6625068 DOI: 10.1186/s13063-019-3497-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND To ensure patients continue to get early access to antibiotics at admission, while also safely reducing antibiotic use in hospitals, one needs to target the continued need for antibiotics as more diagnostic information becomes available. UK Department of Health guidance promotes an initiative called 'Start Smart then Focus': early effective antibiotics followed by active 'review and revision' 24-72 h later. However in 2017, < 10% of antibiotic prescriptions were discontinued at review, despite studies suggesting that 20-30% of prescriptions could be stopped safely. METHODS/DESIGN Antibiotic Review Kit for Hospitals (ARK-Hospital) is a complex 'review and revise' behavioural intervention targeting healthcare professionals involved in antibiotic prescribing or administration in inpatients admitted to acute/general medicine (the largest consumers of non-prophylactic antibiotics in hospitals). The primary study objective is to evaluate whether ARK-Hospital can safely reduce the total antibiotic burden in acute/general medical inpatients by at least 15%. The primary hypotheses are therefore that the introduction of the behavioural intervention will be non-inferior in terms of 30-day mortality post-admission (relative margin 5%) for an acute/general medical inpatient, and superior in terms of defined daily doses of antibiotics per acute/general medical admission (co-primary outcomes). The unit of observation is a hospital organisation, a single hospital or group of hospitals organised with one executive board and governance framework (National Health Service trusts in England; health boards in Northern Ireland, Wales and Scotland). The study comprises a feasibility study in one organisation (phase I), an internal pilot trial in three organisations (phase II) and a cluster (organisation)-randomised stepped-wedge trial (phase III) targeting a minimum of 36 organisations in total. Randomisation will occur over 18 months from November 2017 with a further 12 months follow-up to assess sustainability. The behavioural intervention will be delivered to healthcare professionals involved in antibiotic prescribing or administration in adult inpatients admitted to acute/general medicine. Outcomes will be assessed in adult inpatients admitted to acute/general medicine, collected through routine electronic health records in all patients. DISCUSSION ARK-Hospital aims to provide a feasible, sustainable and generalisable mechanism for increasing antibiotic stopping in patients who no longer need to receive them at 'review and revise'. TRIAL REGISTRATION ISRCTN Current Controlled Trials, ISRCTN12674243 . Registered on 10 April 2017.
Collapse
Affiliation(s)
- Ann Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eric Budgell
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Magda Laskawiec-Szkonter
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Katy Sivyer
- Centre for Clinical and Community Applications of Health Psychology, University of Southampton, Southampton, UK
| | - Sarah Wordsworth
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jack Quaddy
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Marta Santillo
- Centre for Clinical and Community Applications of Health Psychology, University of Southampton, Southampton, UK
| | - Adele Krusche
- Centre for Clinical and Community Applications of Health Psychology, University of Southampton, Southampton, UK
| | - Laurence S. J. Roope
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Nicole Bright
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fiona Mowbray
- Centre for Clinical and Community Applications of Health Psychology, University of Southampton, Southampton, UK
| | - Nicola Jones
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kieran Hand
- University of Southampton, Southampton, UK
- University Hospital Southampton NHS Trust, Southampton, UK
| | - Najib Rahman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Melissa Dobson
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Emma Hedley
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Derrick Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | | | - F. D. Richard Hobbs
- Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Chris Butler
- Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | | | - Susan Hopkins
- Royal Free London NHS Foundation Trust, London, UK
- National Infection Service, Public Health England, London, UK
| | - Lucy Yardley
- Centre for Clinical and Community Applications of Health Psychology, University of Southampton, Southampton, UK
- School of Psychological Science, University of Bristol, Clifton, UK
| | - Timothy E. A. Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - on behalf of the ARK trial team
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
- Centre for Clinical and Community Applications of Health Psychology, University of Southampton, Southampton, UK
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- University of Southampton, Southampton, UK
- University Hospital Southampton NHS Trust, Southampton, UK
- St George’s, University of London, London, UK
- Southern Health NHS Foundation Trust, Southampton, UK
- Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- The Nuffield Trust, London, UK
- Royal Free London NHS Foundation Trust, London, UK
- School of Psychological Science, University of Bristol, Clifton, UK
- National Infection Service, Public Health England, London, UK
- Brighton and Sussex Medical School, Brighton, UK
| |
Collapse
|
20
|
Velasova M, Smith RP, Lemma F, Horton RA, Duggett NA, Evans J, Tongue SC, Anjum MF, Randall LP. Detection of extended-spectrum β-lactam, AmpC and carbapenem resistance in Enterobacteriaceae in beef cattle in Great Britain in 2015. J Appl Microbiol 2019; 126:1081-1095. [PMID: 30693606 DOI: 10.1111/jam.14211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023]
Abstract
AIMS This study investigated the occurrence and genetic diversity of Enterobacteriaceae with extended-spectrum β-lactamase (ESBL)-, AmpC- and carbapenemase-mediated resistance in British beef cattle, and related risk factors. METHODS AND RESULTS Faecal samples (n = 776) were obtained from farms in England and Wales (n = 20) and Scotland (n = 20) in 2015. Isolates from selective agars were identified by MALDI ToF mass spectrometry. Selected isolates were characterized by multiplex PCR (blaCTX -M, blaOXA , blaSHV and blaTEM genes), whole-genome sequencing (WGS), minimum inhibitory concentrations and pulsed-field gel electrophoresis. None of the faecal samples yielded carbapenem-resistant Escherichia coli. Ten (25%) of the farms tested positive for ESBL-producing CTX-M Enterobacteriaceae, 15 (37·5%) of the farms were positive for AmpC phenotype E. coli and none were positive for carbapenem-resistant E. coli. WGS showed a total of 30 different resistance genes associated with E. coli, Citrobacter and Serratia from ESBL agars, and colocation of resistance genes with blaCTX -M1 . Buying bulls and bringing in fattening cattle from another farm were identified as significant risk factors for positive samples harbouring CTX-M Enterobacteriaceae or AmpC phenotype E. coli respectively. CONCLUSIONS Beef cattle on a proportion of farms in GB carry ESBL-producing Enterobacteriaceae. Factors, such as operating as a closed herd, may have an important role in reducing introduction and transmission of resistant Enterobacteriaceae. The results indicate management factors may play an important role in impacting ESBL prevalence. In particular, further study would be valuable to understand the impact of maintaining a closed herd on reducing the introduction of resistant Enterobacteriaceae. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study showing the presence of ESBL-producing Enterobacteriaceae in British beef cattle.
Collapse
Affiliation(s)
- M Velasova
- Animal and Plant Health Agency (Weybridge), Addlestone, UK
| | - R P Smith
- Animal and Plant Health Agency (Weybridge), Addlestone, UK
| | - F Lemma
- Animal and Plant Health Agency (Weybridge), Addlestone, UK
| | - R A Horton
- Animal and Plant Health Agency (Weybridge), Addlestone, UK
| | - N A Duggett
- Animal and Plant Health Agency (Weybridge), Addlestone, UK
| | - J Evans
- SRUC (Inverness Campus), Edinburgh, UK
| | | | - M F Anjum
- Animal and Plant Health Agency (Weybridge), Addlestone, UK
| | - L P Randall
- Animal and Plant Health Agency (Weybridge), Addlestone, UK
| |
Collapse
|
21
|
Figueiredo R, Card RM, Nunez-Garcia J, Mendonça N, da Silva GJ, Anjum MF. Multidrug-Resistant Salmonella enterica Isolated from Food Animal and Foodstuff May Also Be Less Susceptible to Heavy Metals. Foodborne Pathog Dis 2018; 16:166-172. [PMID: 30480469 DOI: 10.1089/fpd.2017.2418] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is a foodborne pathogen showing increasing multidrug resistance (MDR). We characterized the antimicrobial resistance (AMR) genotype using microarrays in a panel of 105 nontyphoidal S. enterica isolated from food animals and foodstuff. Nineteen isolates were chosen on the basis of their MDR and virulence for determination of heavy metal susceptibilities and screened by polymerase chain reaction for heavy metal resistance genes. Whole-genome sequencing (WGS) was performed on three isolates carrying clinically important AMR genes and the cdtB toxin gene to detect other heavy metal resistance mechanisms, and conjugation assays were performed to evaluate transfer of AMR/toxin genes with heavy metal resistance genes. AMR genotyping results showed isolates harbored between 1 and 12 mobile AMR genes, with 58% being classified as MDR. The tested subset of isolates showed reduced susceptibility to zinc (78%), copper (68%), silver (63%), arsenic (47%), and tellurite (26%); phenotypes that could be attributed to zitB (n = 32%), pcoA/pcoD (n = 32%), tcrB (n = 16%), arsB (n = 16%), silA/silE (n = 42%), and terF (n = 26%) genes. WGS confirmed the presence of other heavy metal resistance genes such as copA, cusA, and czcD. Isolates often harbored multiple heavy metal resistance genes. Two strains (Sal25 and Sal368) were able to conjugate with Escherichia coli J53 at a relatively high frequency (∼10-4 colony-forming units per recipient). Transformants selected in the presence of copper harbored either an IncHI2 (J53/Sal25 transconjugant) or IncF (J53/Sal368 transconjugant) plasmid with decreased susceptibilities to tellurite, zinc, copper, cobalt, arsenic, lead, mercury, and silver. blaCTX-M-1 and mcr-1 genes were also transferred to one transconjugant, and tet(M) and blaTEM-1 genes to the other. This work shows the presence of a diversity of AMR genes in this zoonotic pathogen, and suggests that heavy metals may contribute to selection of clinically important ones through the food chain, such as the plasmid-mediated colistin resistance gene mcr-1.
Collapse
Affiliation(s)
- Rui Figueiredo
- 1 Department of Microbiology, Faculty of Pharmacy, University of Coimbra , Coimbra, Portugal .,2 Center for Neuroscience and Cell Biology, Laboratory of Microbiology, University of Coimbra , Coimbra, Portugal .,3 Department of Bacteriology, Animal and Plant Health and Agency , Surrey, United Kingdom
| | - Roderick M Card
- 3 Department of Bacteriology, Animal and Plant Health and Agency , Surrey, United Kingdom
| | - Javier Nunez-Garcia
- 3 Department of Bacteriology, Animal and Plant Health and Agency , Surrey, United Kingdom
| | - Nuno Mendonça
- 1 Department of Microbiology, Faculty of Pharmacy, University of Coimbra , Coimbra, Portugal .,2 Center for Neuroscience and Cell Biology, Laboratory of Microbiology, University of Coimbra , Coimbra, Portugal
| | - Gabriela Jorge da Silva
- 1 Department of Microbiology, Faculty of Pharmacy, University of Coimbra , Coimbra, Portugal .,2 Center for Neuroscience and Cell Biology, Laboratory of Microbiology, University of Coimbra , Coimbra, Portugal
| | - Muna F Anjum
- 3 Department of Bacteriology, Animal and Plant Health and Agency , Surrey, United Kingdom
| |
Collapse
|
22
|
O'Toole RF, Gautam SS. The host microbiome and impact of tuberculosis chemotherapy. Tuberculosis (Edinb) 2018; 113:26-29. [PMID: 30514510 DOI: 10.1016/j.tube.2018.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/15/2023]
Abstract
The treatment of Mycobacterium tuberculosis infection is often viewed in isolation from other human microbial symbionts. Understandably, the clinical priority is eliminating active or latent tuberculosis (TB) in patients. With the increasing resolution of molecular biology technologies, it is becoming apparent that antibiotic treatment can perturb the homeostasis of the host microbiome. For example, dysbiosis of the gut microbiota has been associated with an increased risk of the development of asthma, obesity and diabetes. Therefore, fundamental questions include: Does TB chemotherapy cause disruption of the human microbiome and adverse effects in patients; and are there signature taxa of dysbiosis following TB treatment. In this review, we examine recent research on the detection of changes in the microbiome during antibiotic administration and discuss specific findings that relate to the impact of anti-tubercular chemotherapy.
Collapse
Affiliation(s)
- Ronan F O'Toole
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia; Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Ireland.
| | - Sanjay S Gautam
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
23
|
Anjum MF, Zankari E, Hasman H. Molecular Methods for Detection of Antimicrobial Resistance. Microbiol Spectr 2017; 5:10.1128/microbiolspec.arba-0011-2017. [PMID: 29219107 PMCID: PMC11687549 DOI: 10.1128/microbiolspec.arba-0011-2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Indexed: 01/07/2023] Open
Abstract
The increase in bacteria harboring antimicrobial resistance (AMR) is a global problem because there is a paucity of antibiotics available to treat multidrug-resistant bacterial infections in humans and animals. Detection of AMR present in bacteria that may pose a threat to veterinary and public health is routinely performed using standardized phenotypic methods. Molecular methods are often used in addition to phenotypic methods but are set to replace them in many laboratories due to the greater speed and accuracy they provide in detecting the underlying genetic mechanism(s) for AMR. In this article we describe some of the common molecular methods currently used for detection of AMR genes. These include PCR, DNA microarray, whole-genome sequencing and metagenomics, and matrix-assisted laser desorption ionization-time of flight mass spectrometry. The strengths and weaknesses of these methods are discussed, especially in the context of implementing them for routine surveillance activities on a global scale for mitigating the risk posed by AMR worldwide. Based on current popularity and ease of use, PCR and single-isolate whole-genome sequencing seem irreplaceable.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/pharmacology
- Bacteria/drug effects
- Bacteria/genetics
- Bacteria/isolation & purification
- Bacteriological Techniques/methods
- DNA, Bacterial/analysis
- DNA, Bacterial/isolation & purification
- Drug Resistance, Bacterial/drug effects
- Drug Resistance, Bacterial/genetics
- Drug Resistance, Multiple, Bacterial/drug effects
- Drug Resistance, Multiple, Bacterial/genetics
- Genetic Techniques
- Humans
- Metagenomics/methods
- Oligonucleotide Array Sequence Analysis/methods
- Polymerase Chain Reaction/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Whole Genome Sequencing/methods
Collapse
Affiliation(s)
- Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Surrey, United Kingdom
| | - Ea Zankari
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Henrik Hasman
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
- Reference Laboratory for Antimicrobial Resistance and Staphylococci, Staten Serum Institut, Copenhagen, Denmark
| |
Collapse
|
24
|
OHASHI Y, FUJISAWA T. Detection of antibiotic resistance genes in the feces of young adult Japanese. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2017; 36:151-154. [PMID: 29038771 PMCID: PMC5633530 DOI: 10.12938/bmfh.17-004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/14/2017] [Indexed: 11/16/2022]
Abstract
Antibiotic resistance genes in the feces of healthy young adult Japanese were analyzed with polymerase chain reaction using specific primers. Antibiotic resistance genes against macrolides (ermB, ermF, ermX, and mefA/E), tetracyclines (tetW, tetQ, tetO, and tetX), β-lactam antibiotics (blaTEM ), and streptomycin (aadE) were detected in more than 50% of subjects. These antibiotic resistance genes are likely widespread in the large intestinal bacteria of young adult Japanese.
Collapse
Affiliation(s)
- Yuji OHASHI
- Laboratory of Food Hygiene, Department of Food Science and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Tomohiko FUJISAWA
- Laboratory of Food Hygiene, Department of Food Science and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|
25
|
Jeong DW, Heo S, Ryu S, Blom J, Lee JH. Genomic insights into the virulence and salt tolerance of Staphylococcus equorum. Sci Rep 2017; 7:5383. [PMID: 28710456 PMCID: PMC5511256 DOI: 10.1038/s41598-017-05918-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/06/2017] [Indexed: 11/09/2022] Open
Abstract
To shed light on the genetic background behind the virulence and salt tolerance of Staphylococcus equorum, we performed comparative genome analysis of six S. equorum strains. Data on four previously published genome sequences were obtained from the NCBI database, while those on strain KM1031 displaying resistance to multiple antibiotics and strain C2014 causing haemolysis were determined in this study. Examination of the pan-genome of five of the six S. equorum strains showed that the conserved core genome retained the genes for general physiological processes and survival of the species. In this comparative genomic analysis, the factors that distinguish the strains from each other, including acquired genomic factors in mobile elements, were identified. Additionally, the high salt tolerance of strains enabling growth at a NaCl concentration of 25% (w/v) was attributed to the genes encoding potassium voltage-gated channels. Among the six strains, KS1039 does not possess any of the functional virulence determinants expressed in the other strains.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women's University, Seoul, 02748, Republic of Korea
| | - Sojeong Heo
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jochen Blom
- Bioinformatics and System Biology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227, Republic of Korea.
| |
Collapse
|
26
|
Milanović V, Osimani A, Aquilanti L, Tavoletti S, Garofalo C, Polverigiani S, Litta-Mulondo A, Cocolin L, Ferrocino I, Di Cagno R, Turroni S, Lazzi C, Pellegrini N, Clementi F. Occurrence of antibiotic resistance genes in the fecal DNA of healthy omnivores, ovo-lacto vegetarians and vegans. Mol Nutr Food Res 2017; 61. [PMID: 28464483 DOI: 10.1002/mnfr.201601098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 01/08/2023]
Abstract
SCOPE The effects of long-term omnivore, ovo-lacto vegetarian and vegan diets on the occurrence of 12 antibiotic resistance (AR) genes in the human gut were studied. METHODS AND RESULTS The feces of 144 healthy volunteers recruited from Turin, Bari, Bologna, and Parma were screened for the occurrence of genes conferring resistance to tetracyclines, macrolide-lincosamide-streptogramin B, vancomycin, and β-lactams. Overall, erm(B), tet(W) and tet(M) were detected at the highest frequency. A low effect from the diet on the AR gene distribution emerged, with tet(K) and vanB occurring at a lower and higher frequency in vegans and omnivores, respectively. A correlation of the intake of eggs, milk from animal sources and cheese with an increased occurrence of tet(K) was observed, together with a higher incidence of vanB in consumers of eggs, poultry meat, fish and seafood. When the detection frequencies of AR genes in volunteers from Bari and the other sites were comparatively evaluated, a north-to-south gradient was observed, whereas no effect of sex or age was highlighted. Except for tet(K), a negligible three-factor interaction was seen. CONCLUSION A high impact of the geographical location on AR gene distribution was seen in the cohort of subjects analyzed, irrespective of their dietary habits.
Collapse
Affiliation(s)
- Vesna Milanović
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Osimani
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Ancona, Italy
| | - Lucia Aquilanti
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Ancona, Italy
| | - Stefano Tavoletti
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Ancona, Italy
| | - Cristiana Garofalo
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Ancona, Italy
| | - Serena Polverigiani
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Ancona, Italy
| | - Alice Litta-Mulondo
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Ancona, Italy
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Science (DISAFA), University of Turin, Grugliasco, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Science (DISAFA), University of Turin, Grugliasco, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Camilla Lazzi
- Department of Food Science, University of Parma, Parma, Italy
| | | | - Francesca Clementi
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
27
|
Collier ZJ, Gottlieb LJ, Alverdy JC. Stochasticity among Antibiotic-Resistance Profiles of Common Burn-Related Pathogens over a Six-Year Period. Surg Infect (Larchmt) 2017; 18:327-335. [DOI: 10.1089/sur.2016.191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
| | - Lawrence J. Gottlieb
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
- Department of Surgery, University of Chicago, Chicago, Illinois
| | - John C. Alverdy
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
- Department of Surgery, University of Chicago, Chicago, Illinois
| |
Collapse
|
28
|
Osimani A, Garofalo C, Aquilanti L, Milanović V, Cardinali F, Taccari M, Pasquini M, Tavoletti S, Clementi F. Transferable Antibiotic Resistances in Marketed Edible Grasshoppers (Locusta migratoria migratorioides). J Food Sci 2017; 82:1184-1192. [PMID: 28339104 DOI: 10.1111/1750-3841.13700] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/14/2017] [Accepted: 02/25/2017] [Indexed: 11/30/2022]
Abstract
Grasshoppers are the most commonly eaten insects by humans worldwide, as they are rich in proteins and micronutrients. This study aimed to assess the occurrence of transferable antibiotic resistance genes in commercialized edible grasshoppers. To this end, the prevalence of 12 selected genes [aac(6')-Ie aph(2″)-Ia, blaZ, erm(A), erm(B), erm(C), mecA, tet(M), tet(O), tet(S), tet(K), vanA, vanB] coding for resistance to antibiotics conventionally used in clinical practice was determined. The majority of samples were positive for tet(M) (70.0%), tet(K) (83.3%) and blaZ (83.3%). A low percentage of samples were positive for erm(B) (16.7%), erm(C) (26.7%), and aac(6')-Ie aph(2″)-Ia (13.3%), whereas no samples were positive for erm(A), vanA, vanB, tet(O), and mecA. Cluster analysis identified 4 main clusters, allowing a separation of samples on the basis of their country of origin.
Collapse
Affiliation(s)
- Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Manuela Taccari
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Marina Pasquini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Stefano Tavoletti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
29
|
Abstract
The treatment of microbial infections has suffered greatly in this present century of pathogen dominance. Inspite of extensive research efforts and scientific advancements, the worldwide emergence of microbial tolerance continues to plague survivability. The innate property of microbe to resist any antibiotic due to evolution is the virtue of intrinsic resistance. However, the classical genetic mutations and extrachromosomal segments causing gene exchange attribute to acquired tolerance development. Rampant use of antimicrobials causes certain selection pressure which increases the resistance frequency. Genomic duplication, enzymatic site modification, target alteration, modulation in membrane permeability, and the efflux pump mechanism are the major contributors of multidrug resistance (MDR), specifically antibiotic tolerance development. MDRs will lead to clinical failures for treatment and pose health crisis. The molecular mechanisms of antimicrobial resistance are diverse as well as complex and still are exploited for new discoveries in order to prevent the surfacing of “superbugs.” Antimicrobial chemotherapy has diminished the threat of infectious diseases to some extent. To avoid the indiscriminate use of antibiotics, the new ones licensed for use have decreased with time. Additionally, in vitro assays and genomics for anti-infectives are novel approaches used in resolving the issues of microbial resistance. Proper use of drugs can keep it under check and minimize the risk of MDR spread.
Collapse
|
30
|
Imperial ICVJ, Ibana JA. Addressing the Antibiotic Resistance Problem with Probiotics: Reducing the Risk of Its Double-Edged Sword Effect. Front Microbiol 2016; 7:1983. [PMID: 28018315 PMCID: PMC5156686 DOI: 10.3389/fmicb.2016.01983] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/28/2016] [Indexed: 12/27/2022] Open
Abstract
Antibiotic resistance is a global public health problem that requires our attention. Indiscriminate antibiotic use is a major contributor in the introduction of selective pressures in our natural environments that have significantly contributed in the rapid emergence of antibiotic-resistant microbial strains. The use of probiotics in lieu of antibiotic therapy to address certain health conditions in both animals and humans may alleviate these antibiotic-mediated selective pressures. Probiotic use is defined as the actual application of live beneficial microbes to obtain a desired outcome by preventing diseased state or improving general health. Multiple studies have confirmed the beneficial effects of probiotic use in the health of both livestock and humans. As such, probiotics consumption is gaining popularity worldwide. However, concerns have been raised in the use of some probiotics strains that carry antibiotic resistance genes themselves, as they have the potential to pass the antibiotic resistance genes to pathogenic bacteria through horizontal gene transfer. Therefore, with the current public health concern on antibiotic resistance globally, in this review, we underscore the need to screen probiotic strains that are used in both livestock and human applications to assure their safety and mitigate their potential in significantly contributing to the spread of antibiotic resistance genes in our natural environments.
Collapse
Affiliation(s)
- Ivan C V J Imperial
- Immunopharmacology Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman Quezon City, Philippines
| | - Joyce A Ibana
- Immunopharmacology Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman Quezon City, Philippines
| |
Collapse
|
31
|
Reynolds LJ, Roberts AP, Anjum MF. Efflux in the Oral Metagenome: The Discovery of a Novel Tetracycline and Tigecycline ABC Transporter. Front Microbiol 2016; 7:1923. [PMID: 27999567 PMCID: PMC5138185 DOI: 10.3389/fmicb.2016.01923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023] Open
Abstract
Antibiotic resistance in human bacterial pathogens and commensals is threatening our ability to treat infections and conduct common medical procedures. As novel antibiotics are discovered and marketed it is important that we understand how resistance to them may arise and know what environments may act as reservoirs for such resistance genes. In this study a tetracycline and tigecycline resistant clone was identified by screening a human saliva metagenomic library in Escherichia coli EPI300 on agar containing 5 μg/ml tetracycline. Sequencing of the DNA insert present within the tetracycline resistant clone revealed it to contain a 7,765 bp fragment harboring novel ABC half transporter genes, tetAB(60). Mutagenesis studies performed on these genes confirmed that they were responsible for the tetracycline and tigecycline resistance phenotypes. Growth studies performed using E. coli EPI300 clones that harbored either the wild type, the mutated, or none of these genes indicated that there was a fitness cost associated with presence of these genes, with the isolate harboring both genes exhibiting a significantly slower growth than control strains. Given the emergence of E. coli strains that are sensitive only to tigecycline and doxycycline it is concerning that such a resistance mechanism has been identified in the human oral cavity.
Collapse
Affiliation(s)
- Liam J Reynolds
- Department of Microbial Diseases, UCL Eastman Dental Institute, Faculty of Medical Sciences, University College LondonLondon, UK; Department of Bacteriology, Animal and Plant Health AgencyAddlestone, UK
| | - Adam P Roberts
- Department of Microbial Diseases, UCL Eastman Dental Institute, Faculty of Medical Sciences, University College London London, UK
| | - Muna F Anjum
- Department of Microbial Diseases, UCL Eastman Dental Institute, Faculty of Medical Sciences, University College LondonLondon, UK; Department of Bacteriology, Animal and Plant Health AgencyAddlestone, UK
| |
Collapse
|
32
|
Abstract
Antibiotic resistance is considered one of the greatest threats to global public health. Resistance is often conferred by the presence of antibiotic resistance genes (ARGs), which are readily found in the oral microbiome. In-depth genetic analyses of the oral microbiome through metagenomic techniques reveal a broad distribution of ARGs (including novel ARGs) in individuals not recently exposed to antibiotics, including humans in isolated indigenous populations. This has resulted in a paradigm shift from focusing on the carriage of antibiotic resistance in pathogenic bacteria to a broader concept of an oral resistome, which includes all resistance genes in the microbiome. Metagenomics is beginning to demonstrate the role of the oral resistome and horizontal gene transfer within and between commensals in the absence of selective pressure, such as an antibiotic. At the chairside, metagenomic data reinforce our need to adhere to current antibiotic guidelines to minimize the spread of resistance, as such data reveal the extent of ARGs without exposure to antimicrobials and the ecologic changes created in the oral microbiome by even a single dose of antibiotics. The aim of this review is to discuss the role of metagenomics in the investigation of the oral resistome, including the transmission of antibiotic resistance in the oral microbiome. Future perspectives, including clinical implications of the findings from metagenomic investigations of oral ARGs, are also considered.
Collapse
|
33
|
von Wintersdorff CJH, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, Savelkoul PHM, Wolffs PFG. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front Microbiol 2016; 7:173. [PMID: 26925045 PMCID: PMC4759269 DOI: 10.3389/fmicb.2016.00173] [Citation(s) in RCA: 831] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022] Open
Abstract
The emergence and spread of antibiotic resistance among pathogenic bacteria has been a rising problem for public health in recent decades. It is becoming increasingly recognized that not only antibiotic resistance genes (ARGs) encountered in clinical pathogens are of relevance, but rather, all pathogenic, commensal as well as environmental bacteria—and also mobile genetic elements and bacteriophages—form a reservoir of ARGs (the resistome) from which pathogenic bacteria can acquire resistance via horizontal gene transfer (HGT). HGT has caused antibiotic resistance to spread from commensal and environmental species to pathogenic ones, as has been shown for some clinically important ARGs. Of the three canonical mechanisms of HGT, conjugation is thought to have the greatest influence on the dissemination of ARGs. While transformation and transduction are deemed less important, recent discoveries suggest their role may be larger than previously thought. Understanding the extent of the resistome and how its mobilization to pathogenic bacteria takes place is essential for efforts to control the dissemination of these genes. Here, we will discuss the concept of the resistome, provide examples of HGT of clinically relevant ARGs and present an overview of the current knowledge of the contributions the various HGT mechanisms make to the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Christian J H von Wintersdorff
- Department of Medical Microbiology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+ Maastricht, Netherlands
| | - John Penders
- Department of Medical Microbiology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+Maastricht, Netherlands; Department of Medical Microbiology, Caphri School for Public Health and Primary Care, Maastricht University Medical Center+Maastricht, Netherlands
| | - Julius M van Niekerk
- Department of Medical Microbiology, Caphri School for Public Health and Primary Care, Maastricht University Medical Center+ Maastricht, Netherlands
| | - Nathan D Mills
- Department of Medical Microbiology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+ Maastricht, Netherlands
| | - Snehali Majumder
- Department of Medical Microbiology, Caphri School for Public Health and Primary Care, Maastricht University Medical Center+ Maastricht, Netherlands
| | - Lieke B van Alphen
- Department of Medical Microbiology, Caphri School for Public Health and Primary Care, Maastricht University Medical Center+ Maastricht, Netherlands
| | - Paul H M Savelkoul
- Department of Medical Microbiology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+Maastricht, Netherlands; Department of Medical Microbiology, Caphri School for Public Health and Primary Care, Maastricht University Medical Center+Maastricht, Netherlands; Department of Medical Microbiology and Infection Control, VU University Medical CenterAmsterdam, Netherlands
| | - Petra F G Wolffs
- Department of Medical Microbiology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+Maastricht, Netherlands; Department of Medical Microbiology, Caphri School for Public Health and Primary Care, Maastricht University Medical Center+Maastricht, Netherlands
| |
Collapse
|
34
|
Bostwick DG, Woody J, Hunt C, Budd W. Antimicrobial resistance genes and modelling of treatment failure in bacterial vaginosis: clinical study of 289 symptomatic women. J Med Microbiol 2016; 65:377-386. [PMID: 26887782 DOI: 10.1099/jmm.0.000236] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Clinical management of bacterial vaginosis (BV) is difficult owing to inaccurate diagnostic tests, limited drug choices, and a high rate of recurrence. To our knowledge, there has not been a previous study of antimicrobial resistance (AMR) genes in community practice using next-generation sequencing (NGS). A case-control study (1 : 1 age-matched with and without BV) was undertaken in a series of 326 nongravid women of reproductive age with symptoms of BV to determine the prevalence of AMR genes. NGS was used to describe the complete vaginal microbiota and identify bacterial genes associated with resistance to: macrolides and/or lincosamides - ermA, ermB, ermC, erM, ermTR and mefA; tetracyclines, β-lactams, streptomycin, gentamicin and/or tobramycin - acrA, acrB, mecA, tet, tetA, tolC and aac2; 5-nitroimadazoles - nim and nimB; and triazoles - cdr1 and mdr1. An evidence base was created to inform treatment decisions applicable to individual patients. AMR genes were identified in all drug classes: macrolides, 35.2 %; lincosamides, 35.6 %; tetracyclines, 21.8 %; aminoglycosides (streptomycin, gentamicin and tobramycin), 5.2 % each; 5-nitroimidazoles, 0.3 %; and triazoles, 18.7 %. There was more than a fourfold-higher frequency of AMR genes in pathogens from BV than from non-BV patients for macrolides (58.2 versus 12.3 %, respectively), lincosamides (58.9 versus 12.3 %) and tetracyclines (35.6 versus 8.0 %) (Fisher's exact test; all p < 0.001). For each patient with BV, the spectrum of resistance genes was matched to the pathogens present. AMR genes were present in the majority of vaginal microbiomes of patients with symptoms of BV.
Collapse
|
35
|
Abstract
In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota (‘the gut resistome’). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium.
Collapse
Affiliation(s)
- Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
36
|
Francino MP. Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of Resistances. Front Microbiol 2016; 6:1543. [PMID: 26793178 PMCID: PMC4709861 DOI: 10.3389/fmicb.2015.01543] [Citation(s) in RCA: 505] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022] Open
Abstract
The human microbiome is overly exposed to antibiotics, due, not only to their medical use, but also to their utilization in farm animals and crops. Microbiome composition can be rapidly altered by exposure to antibiotics, with potential immediate effects on health, for instance through the selection of resistant opportunistic pathogens that can cause acute disease. Microbiome alterations induced by antibiotics can also indirectly affect health in the long-term. The mutualistic microbes in the human body interact with many physiological processes, and participate in the regulation of immune and metabolic homeostasis. Therefore, antibiotic exposure can alter many basic physiological equilibria, promoting long-term disease. In addition, excessive antibiotic use fosters bacterial resistance, and the overly exposed human microbiome has become a significant reservoir of resistance genes, contributing to the increasing difficulty in controlling bacterial infections. Here, the complex relationships between antibiotics and the human microbiome are reviewed, with focus on the intestinal microbiota, addressing (1) the effects of antibiotic use on the composition and function of the gut microbiota, (2) the impact of antibiotic-induced microbiota alterations on immunity, metabolism, and health, and (3) the role of the gut microbiota as a reservoir of antibiotic resistances.
Collapse
Affiliation(s)
- M P Francino
- Unitat Mixta d'Investigació en Genòmica i Salut, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública/Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValènciaValència, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
| |
Collapse
|
37
|
Goldschmidt P. Social Sciences for the Prevention of Blindness. Trop Med Health 2015; 43:141-8. [PMID: 26161032 PMCID: PMC4491490 DOI: 10.2149/tmh.2014-32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/19/2015] [Indexed: 11/11/2022] Open
Abstract
Organizations working for the elimination of Chlamydia-triggered blindness (trachoma) follow the WHO SAFE strategy (surgery for trichiasis, antibiotics, face washing and environmental changes) with the aim to achieve a minimum of 80% of children with clean faces in endemic communities, mass treatment covering the whole district with trachoma rates of 10% or more and surveillance plans. Trachoma recurrence that is common after implementing the SAFE strategy 3, 5 or even 7 times evidence that the cognitive processes requiring assimilation and integration of knowledge did not register with parents, caretakers and children. Moreover, repeated awareness campaigns to improve hygiene did not systematically produce irreversible changes of behavior in neglected populations. In view of this evidence, the rational behind mass drug administration as the mainstay of preventable blindness elimination demands a wider scope than simple mathematical models. The reluctance to see disappointing outcomes that leads to repeated interventions may suggest from a sociologic point of view that the strategies are products of those evaluating the activities of those who fund them and vice versa. A similar articulation emerges for reciprocal interactions between researchers and those judging the pertinence and quality of their work. So far, the lack of autocritic elimination strategy approaches may expose inbred circles that did not properly grasp the fact that antibiotics, trichiasis surgery and education limited to improvement of hygiene are inefficient if not associated with long-term basic educational actions in schools.
Collapse
Affiliation(s)
- Pablo Goldschmidt
- Laboratorie du Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts , 28, rue de Charenton, Paris 75012, France
| |
Collapse
|
38
|
Impact of Ciprofloxacin and Clindamycin Administration on Gram-Negative Bacteria Isolated from Healthy Volunteers and Characterization of the Resistance Genes They Harbor. Antimicrob Agents Chemother 2015; 59:4410-6. [PMID: 25987611 DOI: 10.1128/aac.00068-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/21/2015] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to assess the impact of ciprofloxacin, clindamycin, and placebo administration on culturable Gram-negative isolates and the antibiotic resistance genes they harbor. Saliva and fecal samples were collected from healthy human volunteers before and at intervals, up to 1 year after antibiotic administration. Samples were plated on selective and nonselective media to monitor changes in different colony types or bacterial species. Following ciprofloxacin administration, there was a decrease of Escherichia coli in feces and after clindamycin administration a decrease of Bacteroides in feces and Leptotrichia in saliva, which all returned to pretreatment levels within 1 to 4 months. Ciprofloxacin administration also resulted in an increase in ciprofloxacin-resistant Veillonella in saliva, which persisted for 12 months. Additionally, 949 aerobic and anaerobic isolates purified from ciprofloxacin- and clindamycin-containing plates were screened for the presence of resistance genes. Resistance gene carriage was widespread in isolates from all three treatment groups, and no association was observed between genes and antibiotic administration. Although the anaerobic component of the microbiota was not a major reservoir of aerobe-associated antimicrobial resistance (AMR) genes, we detected the sulfonamide resistance gene sul2 in anaerobic isolates. The longitudinal nature of the study allowed identification of distinct Escherichia coli clones harboring multiple resistance genes, including one carrying an extended-spectrum β-lactamase blaCTX-M group 9 gene, which persisted in the gut for up to 4 months. This study provided insight into the effects of antibiotic administration on healthy microbiota and the diversity of resistance genes harbored therein.
Collapse
|
39
|
Anjum MF. Screening methods for the detection of antimicrobial resistance genes present in bacterial isolates and the microbiota. Future Microbiol 2015; 10:317-20. [DOI: 10.2217/fmb.15.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
40
|
Kirchner M, Mafura M, Hunt T, Abu-Oun M, Nunez-Garcia J, Hu Y, Weile J, Coates A, Card R, Anjum MF. Antimicrobial resistance characteristics and fitness of Gram-negative fecal bacteria from volunteers treated with minocycline or amoxicillin. Front Microbiol 2014; 5:722. [PMID: 25566232 PMCID: PMC4269195 DOI: 10.3389/fmicb.2014.00722] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/02/2014] [Indexed: 11/13/2022] Open
Abstract
A yearlong study was performed to examine the effect of antibiotic administration on the bacterial gut flora. Gram-negative facultative anaerobic bacteria were recovered from the feces of healthy adult volunteers administered amoxicillin, minocycline or placebo, and changes determined in antimicrobial resistance (AMR) gene carriage. Seventy percent of the 1039 facultative anaerobic isolates recovered were identified by MALDI-TOF as Escherichia coli. A microarray used to determine virulence and resistance gene carriage demonstrated that AMR genes were widespread in all administration groups, with the most common resistance genes being blaTEM, dfr, strB, tet(A), and tet(B). Following amoxicillin administration, an increase in the proportion of amoxicillin resistant E. coli and a three-fold increase in the levels of blaTEM gene carriage was observed, an effect not observed in the other two treatment groups. Detection of virulence genes, including stx1A, indicated not all E. coli were innocuous commensals. Approximately 150 E. coli collected from 6 participants were selected for pulse field gel electrophoresis (PFGE), and a subset used for characterisation of plasmids and Phenotypic Microarrays (PM). PFGE indicated some E. coli clones had persisted in volunteers for up to 1 year, while others were transient. Although there were no unique characteristics associated with plasmids from persistent or transient isolates, PM assays showed transient isolates had greater adaptability to a range of antiseptic biocides and tetracycline; characteristics which were lost in some, but not all persistent isolates. This study indicates healthy individuals carry bacteria harboring resistance to a variety of antibiotics and biocides in their intestinal tract. Antibiotic administration can have a temporary effect of selecting bacteria, showing co-resistance to multiple antibiotics, some of which can persist within the gut for up to 1 year.
Collapse
Affiliation(s)
- Miranda Kirchner
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, UK
| | - Muriel Mafura
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, UK
| | - Theresa Hunt
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, UK
| | - Manal Abu-Oun
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, UK
| | - Javier Nunez-Garcia
- Specialist Scientific Services Department, Animal and Plant Health Agency Addlestone, UK
| | - Yanmin Hu
- Department of Medical Microbiology, Institute of Infection and Immunity, St. George's University of London London, UK
| | - Jan Weile
- Institute for Laboratory and Transfusion Medicine at the Heart and Diabetes Centre NRW, University Hospital of the Ruhr University Bochum, Germany
| | - Anthony Coates
- Department of Medical Microbiology, Institute of Infection and Immunity, St. George's University of London London, UK
| | - Roderick Card
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, UK
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, UK
| |
Collapse
|
41
|
Abstract
Antibiotic resistance is a major threat to human health and well-being. To effectively combat this problem we need to understand the range of different resistance genes that allow bacteria to resist antibiotics. To do this the whole microbiota needs to be investigated. As most bacteria cannot be cultivated in the laboratory, the reservoir of antibiotic resistance genes in the non-cultivatable majority remains relatively unexplored. Currently the only way to study antibiotic resistance in these organisms is to use metagenomic approaches. Furthermore, the only method that does not require any prior knowledge about the resistance genes is functional metagenomics, which involves expressing genes from metagenomic clones in surrogate hosts. In this review the methods and limitations of functional metagenomics to isolate new antibiotic resistance genes and the mobile genetic elements that mediate their spread are explored.
Collapse
Affiliation(s)
- Peter Mullany
- Department of Microbial Diseases; UCL Eastman Dental Institute; University College London; London, UK
| |
Collapse
|