1
|
Nishiura H, Nakajima T, Saito S, Kato A, Hatai H, Ochiai K. Assessing avian leukosis virus proviral load and lesion correlates in fowl glioma-inducing virus-infected Japanese bantam chickens. J Vet Diagn Invest 2023; 35:484-491. [PMID: 37452573 PMCID: PMC10467450 DOI: 10.1177/10406387231186954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The fowl glioma-inducing virus prototype (FGVp) and its variants, which belong to avian leukosis virus subgroup A (ALV-A), induce cardiomyocyte abnormalities and gliomas in chickens. However, the molecular mechanisms underlying these myocardial changes remain unclear, and ALV-induced tumorigenesis, which is caused by proviral insertional mutagenesis, does not explain the early development of cardiac changes in infected chickens. We established a quantitative PCR (qPCR) assay to measure ALV-A proviral loads in the brains and hearts of FGV-infected Japanese bantam chickens and compared these results with morphologic lesions. Four of 22 bantams had both gliomas and cardiac lesions. Hearts with cardiac lesions had a higher proviral load (10.3 ± 2.7 proviral copies/nucleus) than those without cardiac lesions (0.4 ± 0.4), suggesting that the proviral load in hearts is correlated with the frequency of myocardial changes. Our qPCR method may be useful in the study of ALV-induced cardiomyocyte abnormalities.
Collapse
Affiliation(s)
- Hayate Nishiura
- Laboratory of Veterinary Pathology, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Tomoe Nakajima
- Laboratory of Veterinary Pathology, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Shun Saito
- Laboratory of Veterinary Pathology, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Azusa Kato
- Laboratory of Veterinary Pathology, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Hitoshi Hatai
- Farm Animal Clinical Skills and Disease Control Center, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Kenji Ochiai
- Laboratory of Veterinary Pathology, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
2
|
Freick M, Schreiter R, Weber J, Vahlenkamp TW, Heenemann K. Avian leukosis virus (ALV) is highly prevalent in fancy-chicken flocks in Saxony. Arch Virol 2022; 167:1169-1174. [PMID: 35301570 PMCID: PMC8964621 DOI: 10.1007/s00705-022-05404-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
The current prevalence of avian leukosis virus (ALV) in fancy chickens in Germany is unknown. Therefore, 537 cloacal swabs from 50 purebred fancy-chicken flocks in Saxony were tested for the presence of the ALV p27 protein using a commercial antigen-capture ELISA. The detection rate was 28.7% at the individual-animal level and 56.0% at the flock level. Phylogenetic analysis of PCR products obtained from 22 different flocks revealed the highest similarity to ALV subtype K. When classifying breeds by their origin, ALV detection rates differed significantly. Evaluation of questionnaire data revealed no significant differences between ALV-positive and negative flocks regarding mortality.
Collapse
Affiliation(s)
- Markus Freick
- Faculty Agriculture/Environment/Chemistry, HTW Dresden-University of Applied Sciences, Pillnitzer Platz 2, 01326, Dresden, Germany.
| | - Ruben Schreiter
- ZAFT e.V.-Centre for Applied Research and Technology, Friedrich-List-Platz 1, 01069, Dresden, Germany
| | - Jim Weber
- Veterinary Practice Zettlitz, Straße der Jugend 68, 09306, Zettlitz OT Methau, Germany
| | - Thomas W Vahlenkamp
- Veterinary Faculty, Center for Infectious Diseases, Institute of Virology, University of Leipzig, An den Tierkliniken 29, 04103, Leipzig, Germany
| | - Kristin Heenemann
- Veterinary Faculty, Center for Infectious Diseases, Institute of Virology, University of Leipzig, An den Tierkliniken 29, 04103, Leipzig, Germany
| |
Collapse
|
3
|
Yan Y, Zhang H, Gao S, Zhang H, Zhang X, Chen W, Lin W, Xie Q. Differential DNA Methylation and Gene Expression Between ALV-J-Positive and ALV-J-Negative Chickens. Front Vet Sci 2021; 8:659840. [PMID: 34136553 PMCID: PMC8203102 DOI: 10.3389/fvets.2021.659840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/28/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Avian leukosis virus subgroup J (ALV-J) is an oncogenic virus that causes serious economic losses in the poultry industry; unfortunately, there is no effective vaccine against ALV-J. DNA methylation plays a crucial role in several biological processes, and an increasing number of diseases have been proven to be related to alterations in DNA methylation. In this study, we screened ALV-J-positive and -negative chickens. Subsequently, we generated and provided the genome-wide gene expression and DNA methylation profiles by MeDIP-seq and RNA-seq of ALV-J-positive and -negative chicken samples; 8,304 differentially methylated regions (DMRs) were identified by MeDIP-seq analysis (p ≤ 0.005) and 515 differentially expressed genes were identified by RNA-seq analysis (p ≤ 0.05). As a result of an integration analysis, we screened six candidate genes to identify ALV-J-negative chickens that possessed differential methylation in the promoter region. Furthermore, TGFB2 played an important role in tumorigenesis and cancer progression, which suggested TGFB2 may be an indicator for identifying ALV-J infections.
Collapse
Affiliation(s)
- Yiming Yan
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Huihua Zhang
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Shuang Gao
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Huanmin Zhang
- United States Department of Agriculture (USDA), Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, United States
| | - Xinheng Zhang
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Weiguo Chen
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Wencheng Lin
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Qingmei Xie
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| |
Collapse
|
4
|
Characterization of arrhythmias, evaluation of cardiac biomarkers and their association with survival in calves suffering from foot-and-mouth disease. J Vet Cardiol 2021; 36:64-76. [PMID: 34116498 DOI: 10.1016/j.jvc.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Foot-and-mouth disease (FMD) causes mortality in calves due to myocarditis; however, the effects of FMD virus on cardiac arrhythmogenesis and Purkinje cells are unknown. Identifying diagnostic and prognostic markers in FMD-affected calves may be useful in disease management in the endemic countries. MATERIALS AND METHODS A total of 81 FMD-affected calves were prospectively monitored till death or recovery. Foot-and-mouth disease was diagnosed by serology and reverse transcriptase-polymerase chain reaction (RT-PCR). Electrocardiography was recorded and serum cardiac biomarkers were measured. Histopathological examination of the ventricular myocardium was carried out in the calves that died of FMD (n = 33). Apparently healthy calves (n = 15) served as control. RESULTS Serology and RT-PCR consistently revealed that the FMD was caused by serotype O virus. Arrhythmias occurred in 62 of 81 (76.5%) FMD-affected calves, of which, ventricular premature complexes (VPCs) were the most common type (22%). The combined mortality rate due to ventricular tachycardia, polymorphic VPCs, and atrial fibrillation was 27.6%. Receiver operating characteristic curve analysis revealed that cardiac troponin I (cTnI) concentrations of ≥1.3 ng/mL were diagnostic of myocarditis with a sensitivity and specificity of 90% and 100%, respectively. Similarly, serum cTnI concentrations of <6.4 ng/mL were a good predictor of survival [odds ratio of 263; 95% confidence interval: 29-2371]. Histopathology of the myocardium revealed hyaline degeneration, necrosis, edema, mononuclear cell infiltration, and disruption by fibroblasts. Atrophy of the Purkinje cells was also present. CONCLUSIONS FMD induces cardiac arrhythmias and Purkinje cell pathology in the calf. Portable ECG coupled with assay of serum cTnI would help in predicting survival in FMD-affected calves.
Collapse
|
5
|
|
6
|
Zhang X, Yan Z, Li X, Lin W, Dai Z, Yan Y, Lu P, Chen W, Zhang H, Chen F, Ma J, Xie Q. GADD45β, an anti-tumor gene, inhibits avian leukosis virus subgroup J replication in chickens. Oncotarget 2016; 7:68883-68893. [PMID: 27655697 PMCID: PMC5356597 DOI: 10.18632/oncotarget.12027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/05/2016] [Indexed: 01/29/2023] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is a retroviruses that induces neoplasia, hepatomegaly, immunosuppression and poor performance in chickens. The tumorigenic and pathogenic mechanisms of ALV-J remain a hot topic. To explore anti-tumor genes that promote resistance to ALV-J infection in chickens, we bred ALV-J resistant and susceptible chickens (F3 generation). RNA-sequencing (RNA-Seq) of liver tissue from the ALV-J resistant and susceptible chickens identified 216 differentially expressed genes; 88 of those genes were up-regulated in the ALV-J resistant chickens (compared to the susceptible ones). We screened for significantly up-regulated genes (P < 0.01) of interest in the ALV-J resistant chickens, based on their involvement in biological signaling pathways. Functional analyses showed that overexpression of GADD45β inhibited ALV-J replication. GADD45β could enhance defense against ALV-J infection and may be used as a molecular marker to identify ALV-J infections.
Collapse
Affiliation(s)
- Xinheng Zhang
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Zhuanqiang Yan
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
| | - Xinjian Li
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, P. R. China
| | - Zhenkai Dai
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Yiming Yan
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Piaopiao Lu
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Weiguo Chen
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, P. R. China
| | - Huanmin Zhang
- USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, U.S.A
| | - Feng Chen
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, P. R. China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, P. R. China
| |
Collapse
|