1
|
Nishimura T, Mori S, Shikata H, Nakamura M, Hashiguchi Y, Abe Y, Hagihara T, Yoshikawa HY, Toyota M, Higaki T, Morita MT. Cell polarity linked to gravity sensing is generated by LZY translocation from statoliths to the plasma membrane. Science 2023; 381:1006-1010. [PMID: 37561884 DOI: 10.1126/science.adh9978] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Organisms have evolved under gravitational force, and many sense the direction of gravity by means of statoliths in specialized cells. In flowering plants, starch-accumulating plastids, known as amyloplasts, act as statoliths to facilitate downstream gravitropism. The gravity-sensing mechanism has long been considered a mechanosensing process by which amyloplasts transmit forces to intracellular structures, but the molecular mechanism underlying this has not been elucidated. We show here that LAZY1-LIKE (LZY) family proteins involved in statocyte gravity signaling associate with amyloplasts and the proximal plasma membrane. This results in polar localization according to the direction of gravity. We propose a gravity-sensing mechanism by which LZY translocation to the plasma membrane signals the direction of gravity by transmitting information on the position of amyloplasts.
Collapse
Affiliation(s)
- Takeshi Nishimura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Course for Basic Biology, The Graduate Institute for Advanced Studies, SOKENDAI, Hayama 240-0115, Japan
| | - Shogo Mori
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Hiromasa Shikata
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Course for Basic Biology, The Graduate Institute for Advanced Studies, SOKENDAI, Hayama 240-0115, Japan
| | - Moritaka Nakamura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Yasuko Hashiguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshinori Abe
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
| | - Takuma Hagihara
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
| | | | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Suntory Foundation for Life Sciences, Kyoto 619-0284, Japan
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Course for Basic Biology, The Graduate Institute for Advanced Studies, SOKENDAI, Hayama 240-0115, Japan
| |
Collapse
|
2
|
Che X, Splitt BL, Eckholm MT, Miller ND, Spalding EP. BRXL4-LAZY1 interaction at the plasma membrane controls Arabidopsis branch angle and gravitropism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:211-224. [PMID: 36478485 PMCID: PMC10107345 DOI: 10.1111/tpj.16055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Gravitropism guides growth to shape plant architecture above and below ground. Mutations in LAZY1 impair stem gravitropism and cause less upright inflorescence branches (wider angles). The LAZY1 protein resides at the plasma membrane and in the nucleus. The plasma membrane pool is necessary and sufficient for setting branch angles. To investigate the molecular mechanism of LAZY1 function, we screened for LAZY1-interacting proteins in yeast. We identified BRXL4, a shoot-specific protein related to BREVIS RADIX. The BRXL4-LAZY1 interaction occurred at the plasma membrane in plant cells, and not detectably in the nucleus. Mutations in the C-terminus of LAZY1, but not other conserved regions, prevented the interaction. Opposite to lazy1, brxl4 mutants displayed faster gravitropism and more upright branches. Overexpressing BRXL4 produced strong lazy1 phenotypes. The apparent negative regulation of LAZY1 function is consistent with BRXL4 reducing LAZY1 expression or the amount of LAZY1 at the plasma membrane. Measurements indicated that both are true. LAZY1 mRNA was three-fold more abundant in brxl4 mutants and almost undetectable in BRXL4 overexpressors. Plasma membrane LAZY1 was higher and nuclear LAZY1 lower in brxl4 mutants compared with the wild type. To explain these results, we suggest that BRXL4 reduces the amount of LAZY1 at the plasma membrane where it functions in gravity signaling and promotes LAZY1 accumulation in the nucleus where it reduces LAZY1 expression, possibly by suppressing its own transcription. This explanation of how BRXL4 negatively regulates LAZY1 suggests ways to modify shoot system architecture for practical purposes.
Collapse
Affiliation(s)
- Ximing Che
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Bessie L. Splitt
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Magnus T. Eckholm
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Nathan D. Miller
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Edgar P. Spalding
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| |
Collapse
|
3
|
Kawamoto N, Morita MT. Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle. THE NEW PHYTOLOGIST 2022; 236:1637-1654. [PMID: 36089891 PMCID: PMC9828789 DOI: 10.1111/nph.18474] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Gravity is one of the fundamental environmental cues that affect plant development. Indeed, the plant architecture in the shoots and roots is modulated by gravity. Stems grow vertically upward, whereas lateral organs, such as the lateral branches in shoots, tend to grow at a specific angle according to a gravity vector known as the gravitropic setpoint angle (GSA). During this process, gravity is sensed in specialised gravity-sensing cells named statocytes, which convert gravity information into biochemical signals, leading to asymmetric auxin distribution and driving asymmetric cell division/expansion in the organs to achieve gravitropism. As a hypothetical offset mechanism against gravitropism to determine the GSA, the anti-gravitropic offset (AGO) has been proposed. According to this concept, the GSA is a balance of two antagonistic growth components, that is gravitropism and the AGO. Although the nature of the AGO has not been clarified, studies have suggested that gravitropism and the AGO share a common gravity-sensing mechanism in statocytes. This review discusses the molecular mechanisms underlying gravitropism as well as the hypothetical AGO in the control of the GSA.
Collapse
Affiliation(s)
- Nozomi Kawamoto
- Division of Plant Environmental ResponsesNational Institute for Basic BiologyMyodaijiOkazaki444‐8556Japan
| | - Miyo Terao Morita
- Division of Plant Environmental ResponsesNational Institute for Basic BiologyMyodaijiOkazaki444‐8556Japan
| |
Collapse
|
4
|
Liang C, Wei C, Wang L, Guan Z, Shi T, Huang J, Li B, Lu Y, Liu H, Wang Y. Characterization of a Novel Creeping Tartary Buckwheat ( Fagopyrum tataricum) Mutant lazy1. FRONTIERS IN PLANT SCIENCE 2022; 13:815131. [PMID: 35574111 PMCID: PMC9094088 DOI: 10.3389/fpls.2022.815131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/02/2022] [Indexed: 06/15/2023]
Abstract
Gravity is known as an important environmental factor involved in the regulation of plant architecture. To identify genes related to the gravitropism of Tartary buckwheat, a creeping line was obtained and designated as lazy1 from the mutant bank by 60Co-γ ray radiation. Genetic analysis indicated that the creeping phenotype of lazy1 was attributed to a single recessive locus. As revealed by the horizontal and inverted suspension tests, lazy1 was completely lacking in shoot negative gravitropism. The creeping growth of lazy1 occurred at the early seedling stage, which could not be recovered by exogenous heteroauxin, hormodin, α-rhodofix, or gibberellin. Different from the well-organized and equivalent cell elongation of wild type (WT), lazy1 exhibited dilated, distorted, and abnormally arranged cells in the bending stem. However, no statistical difference of indole-3-acetic acid (IAA) levels was found between the far- and near-ground bending sides in lazy1, which suggests that the asymmetric cell elongation of lazy1 was not induced by auxin gradient. Whereas, lazy1 showed up-expressed gibberellin-regulated genes by quantitative real-time PCR (qRT-PCR) as well as significantly higher levels of gibberellin, suggesting that gibberellin might be partly involved in the regulation of creeping growth in lazy1. RNA sequencing (RNA-seq) identified a number of differentially expressed genes (DEGs) related to gravitropism at stages I (before bending), II (bending), and III (after bending) between WT and lazy1. Venn diagram indicated that only Pectate lyase 5 was down-expressed at stages I [Log2 fold change (Log2FC): -3.20], II (Log2FC: -4.97), and III (Log2FC: -1.23) in lazy1, compared with WT. Gene sequencing revealed that a fragment deletion occurred in the coding region of Pectate lyase 5, which induced the destruction of a pbH domain in Pectate lyase 5 of lazy1. qRT-PCR indicated that Pectate lyase 5 was extremely down-expressed in lazy1 at stage II (0.02-fold of WT). Meanwhile, lazy1 showed the affected expression of lignin- and cellulose-related genes and cumulatively abnormal levels of pectin, lignin, and cellulose. These results demonstrate the possibility that Pectate lyase 5 functions as the key gene that could mediate primary cell wall metabolism and get involved in the asymmetric cell elongation regulation of lazy1.
Collapse
Affiliation(s)
- Chenggang Liang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Chunyu Wei
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Li Wang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Zhixiu Guan
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Juan Huang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Bin Li
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yang Lu
- Guizhou Biotechnology Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China
| | - Hui Liu
- Guizhou Biotechnology Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China
| | - Yan Wang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| |
Collapse
|
5
|
Maqbool S, Hassan MA, Xia X, York LM, Rasheed A, He Z. Root system architecture in cereals: progress, challenges and perspective. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:23-42. [PMID: 35020968 DOI: 10.1111/tpj.15669] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Roots are essential multifunctional plant organs involved in water and nutrient uptake, metabolite storage, anchorage, mechanical support, and interaction with the soil environment. Understanding of this 'hidden half' provides potential for manipulation of root system architecture (RSA) traits to optimize resource use efficiency and grain yield in cereal crops. Unfortunately, root traits are highly neglected in breeding due to the challenges of phenotyping, but could have large rewards if the variability in RSA traits can be fully exploited. Until now, a plethora of genes have been characterized in detail for their potential role in improving RSA. The use of forward genetics approaches to find sequence variations in genes underpinning desirable RSA would be highly beneficial. Advances in computer vision applications have allowed image-based approaches for high-throughput phenotyping of RSA traits that can be used by any laboratory worldwide to make progress in understanding root function and dissection of the genetics. At the same time, the frontiers of root measurement include non-invasive methods like X-ray computer tomography and magnetic resonance imaging that facilitate new types of temporal studies. Root physiology and ecology are further supported by spatiotemporal root simulation modeling. The discovery of component traits providing improved resilience and yield advantage in target environments is a key necessity for mainstreaming root-based cereal breeding. The integrated use of pan-genome resources, now available in most cereals, coupled with new in-field phenotyping platforms has the potential for precise selection of superior genotypes with improved RSA.
Collapse
Affiliation(s)
- Saman Maqbool
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Adeel Hassan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Larry M York
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Wheat and Maize Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Wheat and Maize Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
6
|
Montesinos Á, Dardick C, Rubio-Cabetas MJ, Grimplet J. Polymorphisms and gene expression in the almond IGT family are not correlated to variability in growth habit in major commercial almond cultivars. PLoS One 2021; 16:e0252001. [PMID: 34644299 PMCID: PMC8513883 DOI: 10.1371/journal.pone.0252001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Almond breeding programs aimed at selecting cultivars adapted to intensive orchards have recently focused on the optimization of tree architecture. This multifactorial trait is defined by numerous components controlled by processes such as hormonal responses, gravitropism and light perception. Gravitropism sensing is crucial to control the branch angle and therefore, the tree habit. A gene family, denominated IGT family after a shared conserved domain, has been described as involved in the regulation of branch angle in several species, including rice and Arabidopsis, and even in fruit trees like peach. Here we identified six members of this family in almond: LAZY1, LAZY2, TAC1, DRO1, DRO2, IGT-like. After analyzing their protein sequences in forty-one almond cultivars and wild species, little variability was found, pointing a high degree of conservation in this family. To our knowledge, this is the first effort to analyze the diversity of IGT family proteins in members of the same tree species. Gene expression was analyzed in fourteen cultivars of agronomical interest comprising diverse tree habit phenotypes. Only LAZY1, LAZY2 and TAC1 were expressed in almond shoot tips during the growing season. No relation could be established between the expression profile of these genes and the variability observed in the tree habit. However, some insight has been gained in how LAZY1 and LAZY2 are regulated, identifying the IPA1 almond homologues and other transcription factors involved in hormonal responses as regulators of their expression. Besides, we have found various polymorphisms that could not be discarded as involved in a potential polygenic origin of regulation of architectural phenotypes. Therefore, we have established that neither the expression nor the genetic polymorphism of IGT family genes are correlated to diversity of tree habit in currently commercialized almond cultivars, with other gene families contributing to the variability of these traits.
Collapse
Affiliation(s)
- Álvaro Montesinos
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Hortofruticultura, Gobierno de Aragón, Avda. Montañana, Zaragoza, Spain
- Instituto Agroalimentario de Aragón–IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet, Zaragoza, Spain
| | - Chris Dardick
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States of America
| | - María José Rubio-Cabetas
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Hortofruticultura, Gobierno de Aragón, Avda. Montañana, Zaragoza, Spain
- Instituto Agroalimentario de Aragón–IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet, Zaragoza, Spain
| | - Jérôme Grimplet
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Hortofruticultura, Gobierno de Aragón, Avda. Montañana, Zaragoza, Spain
- Instituto Agroalimentario de Aragón–IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet, Zaragoza, Spain
| |
Collapse
|
7
|
Strable J. Developmental genetics of maize vegetative shoot architecture. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:19. [PMID: 37309417 PMCID: PMC10236122 DOI: 10.1007/s11032-021-01208-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 06/13/2023]
Abstract
More than 1.1 billion tonnes of maize grain were harvested across 197 million hectares in 2019 (FAOSTAT 2020). The vast global productivity of maize is largely driven by denser planting practices, higher yield potential per area of land, and increased yield potential per plant. Shoot architecture, the three-dimensional structural arrangement of the above-ground plant body, is critical to maize grain yield and biomass. Structure of the shoot is integral to all aspects of modern agronomic practices. Here, the developmental genetics of the maize vegetative shoot is reviewed. Plant architecture is ultimately determined by meristem activity, developmental patterning, and growth. The following topics are discussed: shoot apical meristem, leaf architecture, axillary meristem and shoot branching, and intercalary meristem and stem activity. Where possible, classical and current studies in maize developmental genetics, as well as recent advances leveraged by "-omics" analyses, are highlighted within these sections. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01208-1.
Collapse
Affiliation(s)
- Josh Strable
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
- Present Address: Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
8
|
Jiao Z, Du H, Chen S, Huang W, Ge L. LAZY Gene Family in Plant Gravitropism. FRONTIERS IN PLANT SCIENCE 2021; 11:606241. [PMID: 33613583 PMCID: PMC7893674 DOI: 10.3389/fpls.2020.606241] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/01/2020] [Indexed: 05/26/2023]
Abstract
Adapting to the omnipresent gravitational field was a fundamental basis driving the flourishing of terrestrial plants on the Earth. Plants have evolved a remarkable capability that not only allows them to live and develop within the Earth's gravity field, but it also enables them to use the gravity vector to guide the growth of roots and shoots, in a process known as gravitropism. Triggered by gravistimulation, plant gravitropism is a highly complex, multistep process that requires many organelles and players to function in an intricate coordinated way. Although this process has been studied for several 100 years, much remains unclear, particularly the early events that trigger the relocation of the auxin efflux carrier PIN-FORMED (PIN) proteins, which presumably leads to the asymmetrical redistribution of auxin. In the past decade, the LAZY gene family has been identified as a crucial player that ensures the proper redistribution of auxin and a normal tropic response for both roots and shoots upon gravistimulation. LAZY proteins appear to be participating in the early steps of gravity signaling, as the mutation of LAZY genes consistently leads to altered auxin redistribution in multiple plant species. The identification and characterization of the LAZY gene family have significantly advanced our understanding of plant gravitropism, and opened new frontiers of investigation into the novel molecular details of the early events of gravitropism. Here we review current knowledge of the LAZY gene family and the mechanism modulated by LAZY proteins for controlling both roots and shoots gravitropism. We also discuss the evolutionary significance and conservation of the LAZY gene family in plants.
Collapse
Affiliation(s)
- Zhicheng Jiao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Huan Du
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Shu Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Liangfa Ge
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Opposing influences of TAC1 and LAZY1 on Lateral Shoot Orientation in Arabidopsis. Sci Rep 2020; 10:6051. [PMID: 32269265 PMCID: PMC7142156 DOI: 10.1038/s41598-020-62962-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
TAC1 and LAZY1 are members of a gene family that regulates lateral shoot orientation in plants. TAC1 promotes outward orientations in response to light, while LAZY1 promotes upward shoot orientations in response to gravity via altered auxin transport. We performed genetic, molecular, and biochemical assays to investigate possible interactions between these genes. In Arabidopsis they were expressed in similar tissues and double mutants revealed the wide-angled lazy1 branch phenotype, indicating it is epistatic to the tac1 shoot phenotype. Surprisingly, the lack of TAC1 did not influence gravitropic shoot curvature responses. Combined, these results suggest TAC1 might negatively regulate LAZY1 to promote outward shoot orientations. However, additional results revealed that TAC1- and LAZY1 influence on shoot orientation is more complex than a simple direct negative regulatory pathway. Transcriptomes of Arabidopsis tac1 and lazy1 mutants compared to wild type under normal and gravistimulated conditions revealed few overlapping differentially expressed genes. Overexpression of each gene did not result in major branch angle differences. Shoot tip hormone levels were similar between tac1, lazy1, and Col, apart from exceptionally elevated levels of salicylic acid in lazy1. The data presented here provide a foundation for future study of TAC1 and LAZY1 regulation of shoot architecture.
Collapse
|
10
|
Chen Y, Xu S, Tian L, Liu L, Huang M, Xu X, Song G, Wu P, Sato S, Jiang H, Wu G. LAZY3 plays a pivotal role in positive root gravitropism in Lotus japonicus. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:168-177. [PMID: 31559427 PMCID: PMC6913700 DOI: 10.1093/jxb/erz429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/12/2019] [Indexed: 05/14/2023]
Abstract
LAZY1 family genes play important roles in both shoot and root gravitropism in plants. Here we report a Lotus japonicus mutant that displays negative gravitropic response in primary and lateral roots. Map-based cloning identified the mutant gene LAZY3 as a functional ortholog of the LAZY1 gene. Mutation of the LAZY3 gene reduced rootward polar auxin transport (PAT) in the primary root, which was also insensitive to the PAT inhibitor N-1-naphthylphthalamic acid. Moreover, immunolocalization of enhanced green fluorescent protein-tagged LAZY3 in L. japonicus exhibited polar localization of LAZY3 on the plasma membrane in root stele cells. We therefore suggest that the polar localization of LAZY3 in stele cells might be required for PAT in L. japonicus root. LAZY3 transcripts displayed asymmetric distribution at the root tip within hours of gravistimulation, while overexpression of LAZY3 under a constitutive promoter in lazy3 plants rescued the gravitropic response in roots. These data indicate that root gravitropism depends on the presence of LAZY3 but not on its asymmetric expression in root tips. Expression of other LAZY genes in a lazy3 background did not rescue the growth direction of roots, suggesting that the LAZY3 gene plays a distinct role in root gravitropism in L. japonicus.
Collapse
Affiliation(s)
- Yaping Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shaoming Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Tian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leru Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingchao Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinlan Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guanying Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pingzhi Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | - Huawu Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Corresponding author. or
| | - Guojiang Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Corresponding author. or
| |
Collapse
|
11
|
Nishimura H, Himi E, Rikiishi K, Tsugane K, Maekawa M. Establishment of nDart1-tagged lines of Koshihikari, an elite variety of rice in Japan. BREEDING SCIENCE 2019; 69:696-701. [PMID: 31988635 PMCID: PMC6977457 DOI: 10.1270/jsbbs.19049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
To utilize a transposon-tagged mutant as a breeding material in rice, an endogenous DNA transposon, nDart1-0, was introduced into Koshihikari by successive backcrossing together with aDart1-27, an active autonomous element. The founder line for nDart1-tagged lines of Koshihikari carried nDart1-0 on chromosome 9 and transposed nDart1-12s on chromosomes 1 and 8 and nDart1-3 on chromosome 11. In nDart1-tagged lines, there were the most abnormal phenotypic mutants and many aberrant chlorophyll mutants at seedling stage. At mature stage, many semi-sterile mutants were observed. Dwarf, reduced culm number and lesion mimic mutants were also found. In total, 43.2% of the lines segregated some phenotypic mutants. Thus, the nDart1-tagged lines of Koshihikari are expected to be potentially useful for screening stress-tolerant mutants under abiotic or biotic stress conditions.
Collapse
Affiliation(s)
- Hideki Nishimura
- Institute of Plant Science and Resources, Okayama University,
Kurashiki, Okayama 710-0046,
Japan
| | - Eiko Himi
- Institute of Plant Science and Resources, Okayama University,
Kurashiki, Okayama 710-0046,
Japan
| | - Kazuhide Rikiishi
- Institute of Plant Science and Resources, Okayama University,
Kurashiki, Okayama 710-0046,
Japan
| | - Kazuo Tsugane
- National Institute for Basic Biology,
Okazaki, Aichi 444-8585,
Japan
| | - Masahiko Maekawa
- Institute of Plant Science and Resources, Okayama University,
Kurashiki, Okayama 710-0046,
Japan
| |
Collapse
|
12
|
Li Z, Liang Y, Yuan Y, Wang L, Meng X, Xiong G, Zhou J, Cai Y, Han N, Hua L, Liu G, Li J, Wang Y. OsBRXL4 Regulates Shoot Gravitropism and Rice Tiller Angle through Affecting LAZY1 Nuclear Localization. MOLECULAR PLANT 2019; 12:1143-1156. [PMID: 31200078 DOI: 10.1016/j.molp.2019.05.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/07/2019] [Accepted: 05/31/2019] [Indexed: 05/03/2023]
Abstract
Rice tiller angle is a key agronomic trait that contributes to ideal plant architecture and grain production. LAZY1 (LA1) was previously shown to control tiller angle via affecting shoot gravitropism, but the underlying molecular mechanism remains largely unknown. In this study, we identified an LA1-interacting protein named Brevis Radix Like 4 (OsBRXL4). We showed that the interaction between OsBRXL4 and LA1 occurs at the plasma membrane and that their interaction determines nuclear localization of LA1. We found that nuclear localization of LA1 is essential for its function, which is different from AtLA1, its Arabidopsis ortholog. Overexpression of OsBRXL4 leads to a prostrate growth phenotype, whereas OsBRXLs RNAi plants, in which the expression levels of OsBRXL1, OsBRXL4, and OsBRXL5 were decreased, display a compact phenotype. Further genetic analysis also supported that OsBRXL4 controls rice tiller angle by affecting nuclear localization of LA1. Consistently, we demonstrated that OsBRXL4 regulates the shoot gravitropism through affecting polar auxin transport as did LA1. Taken together, our study not only identifies OsBRXL4 as a regulatory component of rice tiller angle but also provides new insights into genetic regulation of rice plant architecture.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Liang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yundong Yuan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guosheng Xiong
- Plant Phenomics Research Center, Nanjing Agriculture University, Nanjing 210095, China
| | - Jie Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yueyue Cai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ningpei Han
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lekai Hua
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
13
|
Chiou WY, Kawamoto T, Himi E, Rikiishi K, Sugimoto M, Hayashi-Tsugane M, Tsugane K, Maekawa M. LARGE GRAIN Encodes a Putative RNA-Binding Protein that Regulates Spikelet Hull Length in Rice. PLANT & CELL PHYSIOLOGY 2019; 60:503-515. [PMID: 30690508 DOI: 10.1093/pcp/pcz014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Grain size is a key determiner of grain weight, one of the yield components in rice (Oryza sativa). Therefore, to increase grain yield, it is important to elucidate the detailed mechanisms regulating grain size. The Large grain (Lgg) mutant, found in the nonautonomous DNA-based active rice transposon1 (nDart1)-tagged lines of Koshihikari, is caused by a truncated nDart1-3 and 355 bp deletion in the 5' untranslated region of LGG, which encodes a putative RNA-binding protein, through transposon display and cosegregation analysis between grain length and LGG genotype in F2 and F3. Clustered regularly interspaced short palindromic repeats/CRISPR-associated 9-mediated knockout and overexpression of LGG led to longer and shorter grains than wild type, respectively, showing that LGG regulates spikelet hull length. Expression of LGG was highest in the 0.6-mm-long young panicle and gradually decreased as the panicle elongated. LGG was also expressed in roots and leaves. These results show that LGG functions at the very early stage of panicle development. Longitudinal cell numbers of spikelet hulls of Lgg, knockout and overexpressed plants were significantly different from those of the wild type, suggesting that LGG might regulate longitudinal cell proliferation in the spikelet hull. RNA-Seq analysis of 1-mm-long young panicles from LGG knockout and overexpressing plants revealed that the expressions of many cell cycle-related genes were reduced in knockout plants relative to LGG-overexpressing plants and wild type, whereas some genes for cell proliferation were highly expressed in knockout plants. Taken together, these results suggest that LGG might be a regulator of cell cycle and cell division in the rice spikelet hull.
Collapse
Affiliation(s)
- Wan-Yi Chiou
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Tadafumi Kawamoto
- Radioisotope Research Institute, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Eiko Himi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Kazuhide Rikiishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Manabu Sugimoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Mika Hayashi-Tsugane
- Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Okazaki, Japan
| | - Kazuo Tsugane
- Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology in the School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Masahiko Maekawa
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
14
|
Zhou Y, Zhou G, Broughton S, Westcott S, Zhang X, Xu Y, Xu L, Li C, Zhang W. Towards the identification of a gene for prostrate tillers in barley (Hordeum vulgare L.). PLoS One 2018; 13:e0192263. [PMID: 29420581 PMCID: PMC5805268 DOI: 10.1371/journal.pone.0192263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/19/2018] [Indexed: 11/18/2022] Open
Abstract
Tiller angle, an important agronomic trait, contributes to crop production and plays a vital role in breeding for plant architecture. A barley line V-V-HD, which has prostrate tillers during vegetative growth and erect tillers after booting, is considered the ideal type for repressing weed growth and increasing leaf area during early growth. Genetic analysis identified that the prostrate trait in V-V-HD is controlled by a single gene. A double haploid population with 208 lines from V-V-HD × Buloke was used to map the prostrate growth gene. Ninety-six SNP markers were used for primary mapping, and subsequently, SSR and InDel markers were used for fine mapping. The gene was fine-mapped to a 3.53 Mb region on chromosome 3HL between the markers InDelz3028 and InDelz3032 with 52 candidate genes located in this region. Gene annotation analysis of the 52 genes within the target region indicated that a gene involved in zinc-ion binding (gene ID HORVU3Hr1G090910) is likely to be the candidate gene for prostrate growth in V-V-HD, and is linked to the denso/sdw gene. Association analysis showed that prostrate plants were shorter, flowered later.
Collapse
Affiliation(s)
- Yi Zhou
- Hubei Collaborative Innovation Center for Grain Industry/ School of Agriculture, Yangtze University, Jingzhou, China
- Western Barley Genetics Alliance/WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance/WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| | - Sue Broughton
- Department of Primary Industry and Regional Development, Government of Western Australia, South Perth, Australia
| | - Sharon Westcott
- Department of Primary Industry and Regional Development, Government of Western Australia, South Perth, Australia
| | - Xiaoqi Zhang
- Western Barley Genetics Alliance/WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| | - Yanhao Xu
- Hubei Collaborative Innovation Center for Grain Industry/ School of Agriculture, Yangtze University, Jingzhou, China
- Western Barley Genetics Alliance/WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/ School of Agriculture, Yangtze University, Jingzhou, China
| | - Chengdao Li
- Western Barley Genetics Alliance/WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
- Department of Primary Industry and Regional Development, Government of Western Australia, South Perth, Australia
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/ School of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
15
|
Yoshihara T, Spalding EP. LAZY Genes Mediate the Effects of Gravity on Auxin Gradients and Plant Architecture. PLANT PHYSIOLOGY 2017; 175:959-969. [PMID: 28821594 PMCID: PMC5619908 DOI: 10.1104/pp.17.00942] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/14/2017] [Indexed: 05/18/2023]
Abstract
A rice (Oryza sativa) mutant led to the discovery of a plant-specific LAZY1 protein that controls the orientation of shoots. Arabidopsis (Arabidopsis thaliana) possesses six LAZY genes having spatially distinct expression patterns. Branch angle phenotypes previously associated with single LAZY genes were here studied in roots and shoots of single and higher-order atlazy mutants. The results identify the major contributors to root and shoot branch angles and gravitropic behavior of seedling hypocotyls and primary roots. AtLAZY1 is the principal determinant of inflorescence branch angle. The weeping inflorescence phenotype of atlazy1,2,4 mutants may be due at least in part to a reversal in the gravitropism mechanism. AtLAZY2 and AtLAZY4 determined lateral root branch angle. Lateral roots of the atlazy2,4 double mutant emerged slightly upward, approximately 10° greater than perpendicular to the primary root axis, and they were agravitropic. Etiolated hypocotyls of the quadruple atlazy1,2,3,4 mutant were essentially agravitropic, but their phototropic response was robust. In light-grown seedlings, the root of the atlazy2,3,4 mutant was also agravitropic but when adapted to dim red light it displayed a reversed gravitropic response. A reversed auxin gradient across the root visualized by a fluorescent signaling reporter explained the reversed, upward bending response. We propose that AtLAZY proteins control plant architecture by coupling gravity sensing to the formation of auxin gradients that override a LAZY-independent mechanism that creates an opposing gravity-induced auxin gradient.
Collapse
Affiliation(s)
- Takeshi Yoshihara
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706
| | - Edgar P Spalding
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
16
|
Useful parasites: the evolutionary biology and biotechnology applications of transposable elements. J Genet 2017; 95:1039-1052. [PMID: 27994207 DOI: 10.1007/s12041-016-0702-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Transposable elements usually comprise the most abundant nongenic fraction of eukaryotic genomes. Because of their capacity to selfreplicate and to induce a wide range of mutations, transposable elements have long been considered as 'parasitic' or 'selfish'. Today, we recognize that the findings about genomic changes affected by transposable elements have considerably altered our view of the ways in which genomes evolve and work. Numerous studies have provided evidences that mobile elements have the potential to act as agents of evolution by increasing, rearranging and diversifying the genetic repertoire of their hosts. With large-scale sequencing becoming increasingly available, more and more scientists come across transposable element sequences in their data. I will provide examples that transposable elements, although having signatures of 'selfish' DNA, play a significant biological role in the maintainance of genome integrity and providing novel regulatoty networks. These features, along with the transpositional and mutagenic capacity to produce a raw genetic diversity, make the genome mobile fraction, a key player in species adaptation and microevolution. The last but not least, transposable elements stand as informative DNA markers that may complement other conventional DNA markers. Altogether, transposable elements represent a promising, but still largely unexplored research niche and deserve to be included into the agenda of molecular ecologists, evolutionary geneticists, conservation biologists and plant breeders.
Collapse
|
17
|
Hayward AP, Moreno MA, Howard TP, Hague J, Nelson K, Heffelfinger C, Romero S, Kausch AP, Glauser G, Acosta IF, Mottinger JP, Dellaporta SL. Control of sexuality by the sk1-encoded UDP-glycosyltransferase of maize. SCIENCE ADVANCES 2016; 2:e1600991. [PMID: 27819048 PMCID: PMC5091354 DOI: 10.1126/sciadv.1600991] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/27/2016] [Indexed: 05/05/2023]
Abstract
Sex determination in maize involves the production of staminate and pistillate florets from an initially bisexual floral meristem. Pistil elimination in staminate florets requires jasmonic acid signaling, and functional pistils are protected by the action of the silkless 1 (sk1) gene. The sk1 gene was identified and found to encode a previously uncharacterized family 1 uridine diphosphate glycosyltransferase that localized to the plant peroxisomes. Constitutive expression of an sk1 transgene protected all pistils in the plant, causing complete feminization, a gain-of-function phenotype that operates by blocking the accumulation of jasmonates. The segregation of an sk1 transgene was used to effectively control the production of pistillate and staminate inflorescences in maize plants.
Collapse
Affiliation(s)
- Andrew P. Hayward
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520–8104, USA
| | - Maria A. Moreno
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520–8104, USA
| | - Thomas P. Howard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520–8104, USA
| | - Joel Hague
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02892, USA
| | - Kimberly Nelson
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02892, USA
| | - Christopher Heffelfinger
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520–8104, USA
| | - Sandra Romero
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520–8104, USA
| | - Albert P. Kausch
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02892, USA
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Ivan F. Acosta
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - John P. Mottinger
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02892, USA
| | - Stephen L. Dellaporta
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520–8104, USA
- Corresponding author.
| |
Collapse
|
18
|
An Ethylmethane Sulfonate Mutant Resource in Pre-Green Revolution Hexaploid Wheat. PLoS One 2015; 10:e0145227. [PMID: 26678261 PMCID: PMC4683036 DOI: 10.1371/journal.pone.0145227] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 12/01/2015] [Indexed: 01/15/2023] Open
Abstract
Mutagenesis is a powerful tool used for studying gene function as well as for crop improvement. It is regaining popularity because of the development of effective and cost efficient methods for high-throughput mutation detection. Selection for semi-dwarf phenotype during green revolution has reduced genetic diversity including that for agronomically desirable traits. Most of the available mutant populations in wheat (Triticum aestivum L.) were developed in post-green revolution cultivars. Besides the identification and isolation of agronomically important alleles in the mutant population of pre-green revolution cultivar, this population can be a vital resource for expanding the genetic diversity for wheat breeding. Here we report an Ethylmethane Sulfonate (EMS) generated mutant population consisting of 4,180 unique mutant plants in a pre-green revolution spring wheat cultivar ‘Indian’. Released in early 1900s, ‘Indian’ is devoid of any known height-reducing mutations. Unique mutations were captured by proceeding with single M2 seed from each of the 4,180 M1 plants. Mutants for various phenotypic traits were identified by detailed phenotyping for altered morphological and agronomic traits on M2 plants in the greenhouse and M3 plants in the field. Of the 86 identified mutants, 75 (87%) were phenotypically stable at the M4 generation. Among the observed phenotypes, variation in plant height was the most frequent followed by the leaf morphology. Several mutant phenotypes including looped peduncle, crooked plant morphology, ‘gritty’ coleoptiles, looped lower internodes, and burnt leaf tips are not reported in other plant species. Considering the extent and diversity of the observed mutant phenotypes, this population appears to be a useful resource for the forward and reverse genetic studies. This resource is available to the scientific community.
Collapse
|
19
|
Hollender CA, Dardick C. Molecular basis of angiosperm tree architecture. THE NEW PHYTOLOGIST 2015; 206:541-56. [PMID: 25483362 DOI: 10.1111/nph.13204] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/30/2014] [Indexed: 05/24/2023]
Abstract
The architecture of trees greatly impacts the productivity of orchards and forestry plantations. Amassing greater knowledge on the molecular genetics that underlie tree form can benefit these industries, as well as contribute to basic knowledge of plant developmental biology. This review describes the fundamental components of branch architecture, a prominent aspect of tree structure, as well as genetic and hormonal influences inferred from studies in model plant systems and from trees with non-standard architectures. The bulk of the molecular and genetic data described here is from studies of fruit trees and poplar, as these species have been the primary subjects of investigation in this field of science.
Collapse
Affiliation(s)
- Courtney A Hollender
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, 2217 Wiltshire Rd, Kearnysville, WV, 25430, USA
| | | |
Collapse
|