1
|
Gonçalves AEDSS, Rocha GZ, Marin R, Camargo RL, dos Santos A, do Carmo H, Guadagnini D, Petrucci O, Moysés ZP, Salemi VMC, Oliveira AG, Saad MJA. Pulmonary Hypertension in Obese Mice Is Accompanied by a Reduction in PPAR-γ Expression in Pulmonary Artery. Front Endocrinol (Lausanne) 2021; 12:701994. [PMID: 34552556 PMCID: PMC8450870 DOI: 10.3389/fendo.2021.701994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/16/2021] [Indexed: 11/14/2022] Open
Abstract
Obesity and insulin resistance (IR) are well-studied risk factors for systemic cardiovascular disease, but their impact on pulmonary hypertension (PH) is not well clarified. This study aims to investigate if diet-induced obesity induces PH and if peroxisome-proliferator-activated receptor (PPAR-γ) and/or endoplasmic reticulum (ER) stress are involved in this process. Mice were maintained on a high-fat diet (HFD) for 4 months, and IR and PH were confirmed. In a separate group, after 4 months of HFD, mice were treated with pioglitazone (PIO) or 4-phenylbutyric acid for the last month. The results demonstrated that HFD for at least 4 months is able to increase pulmonary artery pressure, which is maintained, and this animal model can be used to investigate the link between IR and PH, without changes in ER stress in the pulmonary artery. There was also a reduction in circulating adiponectin and in perivascular adiponectin expression in the pulmonary artery, associated with a reduction in PPAR-γ expression. Treatment with PIO improved IR and PH and reversed the lower expression of adiponectin and PPAR-γ in the pulmonary artery, highlighting this drug as potential benefit for this poorly recognized complication of obesity.
Collapse
Affiliation(s)
| | - Guilherme Zweig Rocha
- Department of Internal Medicine, Faculty of Medicine, State University of Campinas, Campinas, Brazil
| | - Rodrigo Marin
- Department of Internal Medicine, Faculty of Medicine, State University of Campinas, Campinas, Brazil
| | - Rafael Ludemann Camargo
- Department of Internal Medicine, Faculty of Medicine, State University of Campinas, Campinas, Brazil
| | - Andrey dos Santos
- Department of Internal Medicine, Faculty of Medicine, State University of Campinas, Campinas, Brazil
| | - Helison do Carmo
- Department of Internal Medicine, Faculty of Medicine, State University of Campinas, Campinas, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, Faculty of Medicine, State University of Campinas, Campinas, Brazil
| | - Orlando Petrucci
- Department of Internal Medicine, Faculty of Medicine, State University of Campinas, Campinas, Brazil
| | - Zenaide Providello Moysés
- Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Vera Maria Cury Salemi
- Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Mario José Abdalla Saad
- Department of Internal Medicine, Faculty of Medicine, State University of Campinas, Campinas, Brazil
- *Correspondence: Mario José Abdalla Saad,
| |
Collapse
|
2
|
Castania JA, Katayama PL, Brognara F, Moraes DJA, Sabino JPJ, Salgado HC. Selective denervation of the aortic and carotid baroreceptors in rats. Exp Physiol 2019; 104:1335-1342. [PMID: 31161612 DOI: 10.1113/ep087764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/03/2019] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The traditional surgical approach for sino-aortic denervation in rats leads to simultaneous carotid baroreceptor and chemoreceptor deactivation, which does not permit their individual study in different situations. What is the main finding and its importance? We have described a new surgical approach capable of selective denervation of the arterial (aortic and carotid) baroreceptors, keeping the carotid bodies (chemoreceptors) intact. It is understood that this technique might be a useful tool for investigating the relative role of the baro- and chemoreceptors in several physiological and pathophysiological conditions. ABSTRACT Studies have demonstrated that the traditional surgical approach for sino-aortic denervation in rats leads to simultaneous carotid baroreceptor and chemoreceptor deactivation. The present study reports a new surgical approach to denervate the aortic and the carotid baroreceptors selectively, keeping the carotid bodies (peripheral chemoreceptors) intact. Wistar rats were subjected to specific aortic and carotid baroreceptor denervation (BAROS-X) or sham surgery (SHAM). Baroreflex activation was achieved by i.v. administration of phenylephrine, whereas peripheral chemoreflex activation was produced by i.v. administration of potassium cyanide. The SHAM and BAROS-X rats displayed significant hypertensive responses to phenylephrine administration. However, the reflex bradycardia following the hypertensive response caused by phenylephrine was remarkable in SHAM, but not significant in the BAROS-X animals, confirming the efficacy of the surgical procedure to abolish the baroreflex. In addition, the baroreflex activation elicited by phenylephrine increased carotid sinus nerve activity only in SHAM, but not in the BAROS-X animals, providing support to the notion that the baroreceptor afferents were absent. Instead, the classical peripheral chemoreflex hypertensive and bradycardic responses to potassium cyanide were similar in both groups, suggesting that the carotid body chemoreceptors were preserved after BAROS-X. In summary, we describe a new surgical approach in which only the baroreceptors are eliminated, while the carotid chemoreceptors are preserved. Therefore, it is understood that this procedure is potentially a useful tool for examining the relative roles of the arterial baroreceptors versus the chemoreceptors in several pathophysiological conditions, for instance, arterial hypertension and heart failure.
Collapse
Affiliation(s)
- Jaci A Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Pedro L Katayama
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda Brognara
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Davi J A Moraes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Paulo J Sabino
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Effect of the Antioxidant Lipoic Acid in Aortic Phenotype in a Marfan Syndrome Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3967213. [PMID: 29765495 PMCID: PMC5889865 DOI: 10.1155/2018/3967213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/24/2018] [Indexed: 11/18/2022]
Abstract
Marfan syndrome (MFS) cardiovascular manifestations such as aortic aneurysms and cardiomyopathy carry substantial morbidity/mortality. We investigated the effects of lipoic acid, an antioxidant, on ROS production and aortic remodeling in a MFS mgΔloxPneo mouse model. MFS and WT (wild-type) 1-month-old mice were allocated to 3 groups: untreated, treated with losartan, and treated with lipoic acid. At 6 months old, echocardiography, ROS production, and morphological analysis of aortas were performed. Aortic ROS generation in 6-month-old MFS animals was higher at advanced stages of disease in MFS. An unprecedented finding in MFS mice analyzed by OCT was the occurrence of focal inhomogeneous regions in the aortic arch, either collagen-rich extremely thickened or collagen-poor hypotrophic regions. MFS animals treated with lipoic acid showed markedly reduced ROS production and lower ERK1/2 phosphorylation; meanwhile, aortic dilation and elastic fiber breakdown were unaltered. Of note, lipoic acid treatment associated with the absence of focal inhomogeneous regions in MFS animals. Losartan reduced aortic dilation and elastic fiber breakdown despite no change in ROS generation. In conclusion, oxidant generation by itself seems neutral with respect to aneurysm progression in MFS; however, lipoic acid-mediated reduction of inhomogeneous regions may potentially associate with less anisotropy and reduced chance of dissection/rupture.
Collapse
|
4
|
de Lima AD, Guido MC, Tavares ER, Carvalho PO, Marques AF, de Melo MDT, Salemi VMC, Kalil-Filho R, Maranhão RC. The Expression of Lipoprotein Receptors Is Increased in the Infarcted Area After Myocardial Infarction Induced in Rats With Cardiac Dysfunction. Lipids 2018; 53:177-187. [DOI: 10.1002/lipd.12014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Aline D. de Lima
- Laboratory of Metabolism and Lipids; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Maria C. Guido
- Laboratory of Metabolism and Lipids; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Elaine R. Tavares
- Laboratory of Metabolism and Lipids; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Priscila O. Carvalho
- Laboratory of Metabolism and Lipids; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Alyne F. Marques
- Laboratory of Metabolism and Lipids; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Marcelo D. T. de Melo
- Heart Failure Unit and Clinical Cardiology Division; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Vera M. C. Salemi
- Heart Failure Unit and Clinical Cardiology Division; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Roberto Kalil-Filho
- Heart Failure Unit and Clinical Cardiology Division; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Raul C. Maranhão
- Laboratory of Metabolism and Lipids; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
- Faculty of Pharmaceutical Sciences; University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| |
Collapse
|
5
|
Wang H, da Silva J, Alencar A, Zapata-Sudo G, Lin MR, Sun X, Ahmad S, Ferrario CM, Groban L. Mast Cell Inhibition Attenuates Cardiac Remodeling and Diastolic Dysfunction in Middle-aged, Ovariectomized Fischer 344 × Brown Norway Rats. J Cardiovasc Pharmacol 2017; 68:49-57. [PMID: 26981683 DOI: 10.1097/fjc.0000000000000385] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The incidence of left ventricular diastolic dysfunction (LVDD) increases in women after menopause, yet the mechanisms are unclear. Because mast cells participate in the pathological processes of various cardiac diseases, we hypothesized that mast cell inhibition would protect against estrogen loss-induced LVDD. The mast cell stabilizer, cromolyn sodium (30 mg·kg·d), or vehicle was administered subcutaneously by osmotic minipump to ovariectomized (OVX) female Fischer 344 × Brown Norway (F344BN) rats starting at 4 weeks after surgery. Eight weeks after OVX, systolic blood pressure increased by 20% in OVX versus sham rats, and this effect was attenuated after 4 weeks of cromolyn treatment. Also, cromolyn mitigated the adverse reductions in myocardial relaxation (e') and increases in left ventricle (LV) filling pressures (E/e'), LV mass, wall thicknesses, and interstitial fibrosis from OVX. Although cardiac mast cell number was increased after OVX, cardiac chymase activity was not overtly altered by estrogen status and tended to decrease by cromolyn. Contrariwise, Ang II content was greater in hearts of OVX versus sham rats, and cromolyn attenuated this effect. Taken together, mast cell inhibition with cromolyn attenuates LV remodeling and LVDD in OVX-Fischer 344 × Brown Norway rats possibly through actions on the heart level and/or through vasodilatory effects at the vascular level.
Collapse
Affiliation(s)
- Hao Wang
- *Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC;†Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC;‡Institute of Biomedical Sciences, Drug Development Program, Federal University of Rio de Janeiro, Brazil;§Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC;¶Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC;‖Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC; and**Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
The Effects of Diabetes Induction on the Rat Heart: Differences in Oxidative Stress, Inflammatory Cells, and Fibrosis between Subendocardial and Interstitial Myocardial Areas. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5343972. [PMID: 28781721 PMCID: PMC5525092 DOI: 10.1155/2017/5343972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/08/2017] [Indexed: 12/26/2022]
Abstract
Diabetic cardiomyopathy (DCM) is characterized by cardiac remodeling and impaired diastolic function that may lead to heart failure. The aim of this study was to evaluate oxidative stress, inflammatory cells, and fibrosis in both subendocardial (SEN) and interstitial (INT) areas of the myocardium. Male Wistar rats were allocated to 2 groups of 9 animals, a control (CT) group and streptozotocin-induced diabetes (DM). After 8 weeks, echocardiography morphometry, protein expression, and confocal microscopy in SEN and INT areas of the left ventricle (LV) were performed. The echocardiographic analysis showed that diabetes induction leads to cardiac dilation, hypertrophy, and LV diastolic dysfunction. As compared to CT, the induction of diabetes increased inflammatory cells and fibrosis in both SEN and INT areas of DM myocardium and increased ROS generation only in SEN. Comparing the SEN and INT areas in the DM group, inflammatory cells and fibrosis in SEN were greater than in INT. In conclusion, diabetic myocardium SEN area, wherein oxidative stress was more pronounced, is more susceptible to cardiac dysfunction than INT area. This finding can be important for the understanding of the heart remodeling process occurring in DCM and perhaps to engender targeted therapies to attenuate or revert DCM-related diastolic dysfunction.
Collapse
|
7
|
Maranhão RC, Guido MC, de Lima AD, Tavares ER, Marques AF, Tavares de Melo MD, Nicolau JC, Salemi VM, Kalil-Filho R. Methotrexate carried in lipid core nanoparticles reduces myocardial infarction size and improves cardiac function in rats. Int J Nanomedicine 2017; 12:3767-3784. [PMID: 28553113 PMCID: PMC5440040 DOI: 10.2147/ijn.s129324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose Acute myocardial infarction (MI) is accompanied by myocardial inflammation, fibrosis, and ventricular remodeling that, when excessive or not properly regulated, may lead to heart failure. Previously, lipid core nanoparticles (LDE) used as carriers of the anti-inflammatory drug methotrexate (MTX) produced an 80-fold increase in the cell uptake of MTX. LDE-MTX treatment reduced vessel inflammation and atheromatous lesions induced in rabbits by cholesterol feeding. The aim of the study was to investigate the effects of LDE-MTX on rats with MI, compared with commercial MTX treatment. Materials and methods Thirty-eight Wistar rats underwent left coronary artery ligation and were treated with LDE-MTX, or with MTX (1 mg/kg intraperitoneally, once/week, starting 24 hours after surgery) or with LDE without drug (MI-controls). A sham-surgery group (n=12) was also included. Echocardiography was performed 24 hours and 6 weeks after surgery. The animals were euthanized and their hearts were analyzed for morphometry, protein expression, and confocal microscopy. Results LDE-MTX treatment achieved a 40% improvement in left ventricular (LV) systolic function and reduced cardiac dilation and LV mass, as shown by echocardiography. LDE-MTX reduced the infarction size, myocyte hypertrophy and necrosis, number of inflammatory cells, and myocardial fibrosis, as shown by morphometric analysis. LDE-MTX increased antioxidant enzymes; decreased apoptosis, macrophages, reactive oxygen species production; and tissue hypoxia in non-infarcted myocardium. LDE-MTX increased adenosine bioavailability in the LV by increasing adenosine receptors and modulating adenosine catabolic enzymes. LDE-MTX increased the expression of myocardial vascular endothelium growth factor (VEGF) associated with adenosine release; this correlated not only with an increase in angiogenesis, but also with other parameters improved by LDE-MTX, suggesting that VEGF increase played an important role in the beneficial effects of LDE-MTX. Overall effects of commercial MTX were minor, and did not improve LV function or infarction size. Both treatments did not induce any toxicity. Conclusion The remarkable improvement in heart function and reduction in infarction size achieved by LDE-MTX supports future clinical trials.
Collapse
Affiliation(s)
- Raul C Maranhão
- Laboratory of Metabolism and Lipids.,Faculty of Pharmaceutical Sciences
| | | | | | | | | | - Marcelo D Tavares de Melo
- Heart Failure Unit, Clinical Cardiology Division, Heart Institute (InCor), Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Jose C Nicolau
- Heart Failure Unit, Clinical Cardiology Division, Heart Institute (InCor), Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Vera Mc Salemi
- Heart Failure Unit, Clinical Cardiology Division, Heart Institute (InCor), Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Roberto Kalil-Filho
- Heart Failure Unit, Clinical Cardiology Division, Heart Institute (InCor), Medical School Hospital, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Chang H, Gu HX, Gong M, Han JJ, Wang Y, Xia ZL, Zhao XM. Characteristic enhancement of blood pressure V-shaped waves in sinoaortic-denervated rats in a conscious and quiet state. Physiol Res 2016; 65:571-580. [PMID: 26988153 DOI: 10.33549/physiolres.933062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A hemodynamic feature of chronic sinoaortic-denervated (SAD) rats is the increase in blood pressure variability (BPV) without significant changes in the average level of blood pressure (BP). The current study was designed to investigate the changes in BP V-shaped waves (V waves) in SAD rats. Sprague-Dawley (SD) rats were divided into 2 groups: SAD rats and sham-operated rats (n=13). Hemodynamics measurements were obtained in conscious, freely moving rats, four weeks after sinoaortic denervation or sham operation. V wave indices were evaluated in rats in both conscious and quiet states. Additionally, normal and high BPV was simulated by the production of V waves with different amplitudes. The results showed that the V wave amplitude was dramatically increased, with a significantly prolonged duration and reduced frequency in SAD rats. V wave BPV in SAD rats was significantly increased, though BP remained unchanged. The twenty-four hour BPV in all rats was positively correlated with amplitude, duration time and V wave BPV and negatively correlated with frequency. The systolic BP spectral powers in the low frequency range (0.38-0.45 Hz) were significantly reduced in the V waves of SAD rats. Moreover, there was a remarkable increase in mean BPV and a normal mean BP after simulating high BPV in SAD rats. These results suggest that enhancement of V waves might be a waveform character of BP in SAD rats in both the conscious and quiet states. These types of V waves appear to be related to a depression of sympathetic regulation of BP induced by sinoaortic denervation.
Collapse
Affiliation(s)
- Huan Chang
- Key Laboratory of Atherosclerosis in Universities of Shandong (Taishan Medical University), Taian, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Irigoyen MC, De Angelis K, Dos Santos F, Dartora DR, Rodrigues B, Consolim-Colombo FM. Hypertension, Blood Pressure Variability, and Target Organ Lesion. Curr Hypertens Rep 2016; 18:31. [PMID: 27002717 DOI: 10.1007/s11906-016-0642-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hypertensive patients have a higher risk of developing health complications, particularly cardiovascular (CV) events, than individuals with normal blood pressure (BP). Severity of complications depends on the magnitude of BP elevation and other CV risk factors associated with the target organ damage. Therefore, BP control and management of organ damage may contribute to reduce this risk. BP variability (BPV) has been considered a physiological marker of autonomic nervous system control and may be implicated in increased CV risk in hypertension. This review will present some evidence relating BPV and target organ damage in hypertension in clinical and experimental settings.
Collapse
Affiliation(s)
- Maria-Cláudia Irigoyen
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, 05403-900, São Paulo, SP, Brazil.
| | - Kátia De Angelis
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Fernando Dos Santos
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, 05403-900, São Paulo, SP, Brazil
| | - Daniela R Dartora
- Instituto de Cardiologia do Rio Grande do Sul/ Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre, RS, Brazil
| | - Bruno Rodrigues
- Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fernanda Marciano Consolim-Colombo
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, 05403-900, São Paulo, SP, Brazil.,Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| |
Collapse
|
10
|
Pourzitaki C, Tsaousi G, Manthou ME, Karakiulakis G, Kouvelas D, Papakonstantinou E. Furosemide modifies heart hypertrophy and glycosaminoglycan myocardium content in a rat model of neurogenic hypertension. Eur J Pharmacol 2016; 784:155-63. [PMID: 27221775 DOI: 10.1016/j.ejphar.2016.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
Hypertension is a major risk factor for atherogenesis and heart hypertrophy, both of which are associated with specific morphological and functional changes of the myocardium. Glycosaminoglycans (GAGs) are complex molecules involved both in tissue morphology and function. In the present study, we investigated the effects of neurogenic hypertension and subsequent antihypertensive treatment with furosemide, on heart hypertrophy and the content of GAGs in the myocardium. Neurogenic hypertension was achieved in male Wistar rats by bilateral aortic denervation (bAD). At days 2, 7 and 15 after surgery, animals were sacrificed and the hearts were dissected away, weighted, and homogenized. Total GAGs were assessed by measuring the uronic acid content colorimetrically and individual GAGs were isolated and characterized by enzymatic treatment, with GAG-degrading enzymes, using electrophoresis on polyacrylamide gradient gels and cellulose acetate membranes. In bAD-animals blood pressure, blood pressure lability, heart rate and heart weight were significantly increased 15 days postoperatively. These effects were prevented by treatment with furosemide. Major GAGs identified in the heart were chondroitin sulphates, heparin (H), heparan sulphate (HS) and hyaluronic acid. The content of uronic and the relative content of H and HS in the heart in bAD animals significantly decreased from day 2 to day 15 postoperatively. Furosemide prevented the bAD induced decrease in GAG content. Considering that H and HS are potent inhibitors of cardiomyocyte hypertrophy, our results indicate that heart hypertrophy induced by neurogenic hypertension may be associated with decreases in the relative content of heparin and heparan sulphate in the heart.
Collapse
Affiliation(s)
- Chryssa Pourzitaki
- 2nd Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Georgia Tsaousi
- Clinic of Anesthesiology and Intensive Care, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department Histology and Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Karakiulakis
- 1st Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios Kouvelas
- 2nd Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Papakonstantinou
- 1st Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
11
|
Zhang L, Li F, Zhi G, Zhang B, Chen YD. NADPH oxidase contributes to the left ventricular dysfunction induced by sinoaortic denervation in rats. Free Radic Res 2014; 49:57-66. [PMID: 25356862 DOI: 10.3109/10715762.2014.978768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this work was to investigate the role nicotinamide adenine dinucleotide phosphate (NADPH) oxidase on left ventricular dysfunction of rats submitted to sinoaortic denervation (SAD). Experiment 1: 8 weeks after SAD of rats, NADPH oxidase in left ventricles was assayed by Western blotting analysis. Experiment 2: Rats were subjected to SAD and received treatment with apocynin (an NADPH oxidase inhibitor, 30 mg/kg/day, intragastric administration) for 8 weeks; 8 weeks after SAD, Nox2 and Nox4 expressions and Rac1 activity of left ventricles were higher in SAD rats than those in sham-operated rats. Although treatment of SAD rats with apocynin did not affect blood pressure, blood pressure variability (BPV), and baroreflex function, it significantly attenuated left ventricular hypertrophy marked by reduced expression of atrial natriuretic factor and β-myosin heavy chain. Treatment of SAD rats with apocynin abated oxidative stress marked by reduced malondialdehyde formation and suppressed nuclear factor-kappa B (NFκB) activation; inflammation marked by reduced monocyte chemoattractant protein-1 expression and myeloperoxidase activity; attenuated endoplasmic reticulum stress marked by reduced expression of CCAAT-enhancer-binding protein homologous protein, chaperone-glucose-regulated protein 78, and X-box protein 1; and alleviated cardiac fibrosis marked by reduced mRNA levels of collagens I and III and transforming growth factor beta. In conclusion, exaggerated BPV induces chronic myocardial oxidative stress and thereby aggravates cardiac remodeling in rats. These data suggest a potential role of NADPH oxidases in the pathogenesis of cardiac dysfunction induced by exaggerated BPV.
Collapse
Affiliation(s)
- L Zhang
- First Geriatric Cardiology Department, Chinese PLA General Hospital , Beijing , P. R. China
| | | | | | | | | |
Collapse
|