1
|
Miao H, Zhang J, Zheng Y, Jia C, Hu Y, Wang J, Zhang J, Sun P, Jin Z, Zhou Y, Zheng S, Wang W, Rouard M, Xie J, Liu J. Shaping the future of bananas: advancing genetic trait regulation and breeding in the postgenomics era. HORTICULTURE RESEARCH 2025; 12:uhaf044. [PMID: 40236735 PMCID: PMC11997438 DOI: 10.1093/hr/uhaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/03/2025] [Indexed: 04/17/2025]
Abstract
Bananas (Musa spp.) are among the top-produced food crops, serving as a primary source of food for millions of people. Cultivated bananas originated primarily from the wild diploid species Musa acuminata (A genome) and Musa balbisiana (B genome) through intra- and interspecific hybridization and selections via somatic variation. Following the publication of complete A- and B-genome sequences, prospects for complementary studies on S- and T-genome traits, key gene identification for yield, ripening, quality, and stress resistance, and advances in molecular breeding have significantly expanded. In this review, latest research progress on banana A, B, S, and T genomes is briefly summarized, highlighting key advances in banana cytoplasmic inheritance, flower and fruit development, sterility, and parthenocarpy, postharvest ripening and quality regulation, and biotic and abiotic stress resistance associated with desirable economic traits. We provide updates on transgenic, gene editing, and molecular breeding. We also explore future directions for banana breeding and genetic improvement.
Collapse
Affiliation(s)
- Hongxia Miao
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Jianbin Zhang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Yunke Zheng
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Caihong Jia
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Yulin Hu
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture and Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xiuhu Road 1, Mazhang District, Zhanjiang 524000, China
| | - Jingyi Wang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Jing Zhang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Peiguang Sun
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Zhiqiang Jin
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
| | - Yongfeng Zhou
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Pengfei Road 7, Dapengxin District, Shenzhen 518000, China
| | - Sijun Zheng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Beijing Road 2238, Kunming 650205, China
- Bioversity International, Yunnan Academy of Agricultural Sciences, Beijing Road 2238, Kunming 650205, China
| | - Wei Wang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, Montpellier 34397, Cedex 5, France
| | - Jianghui Xie
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
| | - Juhua Liu
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| |
Collapse
|
2
|
Liu Z, Sun Y, Liu Z, Song J, Yang W, Wang Z, Liang T, Liang D. Transcriptome analysis reveals regulatory mechanism of postharvest softening in kiwiberry. BMC PLANT BIOLOGY 2024; 24:994. [PMID: 39438842 PMCID: PMC11515738 DOI: 10.1186/s12870-024-05715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Kiwiberry is an emerging edible fruit with market potential owing to its advantages of small size, thin and hairless skin, and sweet taste. However, kiwiberry is highly susceptible to softening after harvest, which poses a challenge for storage and transport. To reveal the underlying cause of kiwiberry softening, it is essential to investigate the characteristics of postharvest fruit and the molecular mechanisms that affect changes in fruit firmness. RESULTS Morphological observations and analysis of physical parameters showed that the skin of kiwiberry did not change markedly from the 1st to the 7th day after harvest, while the colour of the inner pericarp gradually turned yellow. By the 9th day of room temperature storage, the kiwiberries began to rot. The hardness decreased rapidly from the 1st to the 5th day postharvest, reaching the low level on the 5th day. The starch and pectin contents of kiwiberry showed a downward trend with increasing storage time. Transcriptome sequencing and weighted gene co-expression network analysis identified 29 key genes associated with the changes in the hardness of kiwiberry after harvest. Gene Ontology enrichment analysis indicated that these 29 genes are mainly involved in pectin metabolism, starch synthesis, starch decomposition, and starch metabolism. In addition, three transcription factors, AGL31, HAT14, and ALC, were identified to be strongly positively correlated with the 29 genes that affect the hardness changes of kiwiberry after harvest, and 28 of the 29 key genes were predicted to be regulated by HAT14. CONCLUSIONS These results reveal the changes in morphological characteristics and physiological indicators during the postharvest ripening and softening of kiwiberry stored under room temperature conditions. Transcriptome analysis identified 29 key genes and three transcription factors that affect the firmness changes of postharvest kiwiberry. The results of this study thus provide insight into the transcriptional regulatory mechanism of kiwiberry softening during storage to improve the postharvest quality.
Collapse
Affiliation(s)
- Zhao Liu
- Institute of Economic Forestry, Liaoning Academy of Agricultural Sciences, Dalian, 116031, China
| | - Yang Sun
- Institute of Economic Forestry, Liaoning Academy of Agricultural Sciences, Dalian, 116031, China
| | - Zhenpan Liu
- Institute of Economic Forestry, Liaoning Academy of Agricultural Sciences, Dalian, 116031, China
| | - Jianyu Song
- Institute of Economic Forestry, Liaoning Academy of Agricultural Sciences, Dalian, 116031, China
| | - Weicong Yang
- Institute of Economic Forestry, Liaoning Academy of Agricultural Sciences, Dalian, 116031, China
| | - Zhannan Wang
- Institute of Economic Forestry, Liaoning Academy of Agricultural Sciences, Dalian, 116031, China
| | - Taiming Liang
- Liaoning Hongyang Ecological Industry Development Co., Ltd, Shenyang, 110122, China
| | - Dejun Liang
- Institute of Economic Forestry, Liaoning Academy of Agricultural Sciences, Dalian, 116031, China.
| |
Collapse
|
3
|
Sun P, Zhu Z, Jin Z, Xie J, Miao H, Liu J. Molecular Characteristics and Functional Identification of a Key Alpha-Amylase-Encoding Gene AMY11 in Musa acuminata. Int J Mol Sci 2024; 25:7832. [PMID: 39063074 PMCID: PMC11276985 DOI: 10.3390/ijms25147832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Alpha-amylase (AMY) plays a significant role in regulating the growth, development, and postharvest quality formation in plants. Nevertheless, little is known about the genome-wide features, expression patterns, subcellular localization, and functional regulation of AMY genes (MaAMYs) in the common starchy banana (Musa acuminata). Twelve MaAMY proteins from the banana genome database were clustered into two groups and contained a conserved catalytic domain. These MaAMYs formed collinear pairs with the AMYs of maize and rice. Three tandem gene pairs were found within the MaAMYs and are indicative of putative gene duplication events. Cis-acting elements of the MaAMY promoters were found to be involved in phytohormone, development, and stress responses. Furthermore, MaAMY02, 08, 09, and 11 were actively expressed during fruit development and ripening. Specifically, MaAMY11 showed the highest expression level at the middle and later stages of banana ripening. Subcellular localization showed that MaAMY02 and 11 were predominately found in the chloroplast, whereas MaAMY08 and 09 were primarily localized in the cytoplasm. Notably, transient attenuation of MaAMY11 expression resulted in an obvious increase in the starch content of banana fruit, while a significant decrease in starch content was confirmed through the transient overexpression of MaAMY11. Together, these results reveal new insights into the structure, evolution, and expression patterns of the MaAMY family, affirming the functional role of MaAMY11 in the starch degradation of banana fruit.
Collapse
Affiliation(s)
- Peiguang Sun
- National Key Laboratory of Tropical Crop Biological Breeding, Institute of Tropical Bioscience and Biotechnology and Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (P.S.); (Z.Z.); (Z.J.); (J.X.)
| | - Zhao Zhu
- National Key Laboratory of Tropical Crop Biological Breeding, Institute of Tropical Bioscience and Biotechnology and Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (P.S.); (Z.Z.); (Z.J.); (J.X.)
- College of Tropical Crops, Hainan University, 58 Renmin Avenue, Haikou 571100, China
| | - Zhiqiang Jin
- National Key Laboratory of Tropical Crop Biological Breeding, Institute of Tropical Bioscience and Biotechnology and Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (P.S.); (Z.Z.); (Z.J.); (J.X.)
| | - Jianghui Xie
- National Key Laboratory of Tropical Crop Biological Breeding, Institute of Tropical Bioscience and Biotechnology and Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (P.S.); (Z.Z.); (Z.J.); (J.X.)
| | - Hongxia Miao
- National Key Laboratory of Tropical Crop Biological Breeding, Institute of Tropical Bioscience and Biotechnology and Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (P.S.); (Z.Z.); (Z.J.); (J.X.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Juhua Liu
- National Key Laboratory of Tropical Crop Biological Breeding, Institute of Tropical Bioscience and Biotechnology and Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (P.S.); (Z.Z.); (Z.J.); (J.X.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
4
|
Wang L, Liu L, Zhao J, Li C, Wu H, Zhao H, Wu Q. Granule-bound starch synthase in plants: Towards an understanding of their evolution, regulatory mechanisms, applications, and perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111843. [PMID: 37648115 DOI: 10.1016/j.plantsci.2023.111843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Amylose content (AC) is a significant quality trait in starchy crops, affecting their processing and application by the food and non-food industries. Therefore, fine-tuning AC in these crops has become a focus for breeders. Granule-bound starch synthase (GBSS) is the core enzyme that directly determines the AC levels. Several excellent reviews have summarized key progress in various aspects of GBSS research in recent years, but they mostly focus on cereals. Herein, we provide an in-depth review of GBSS research in monocots and dicots, focusing on the molecular characteristics, evolutionary relationships, expression patterns, molecular regulation mechanisms, and applications. We also discuss future challenges and directions for controlling AC in starchy crops, and found simultaneously increasing both the PTST and GBSS gene expression levels may be an effective strategy to increase amylose content.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Linling Liu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Jiali Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China.
| |
Collapse
|
5
|
Liu J, Miao H, Wang Y, Zhang J, Zhang J, Zhen Y, Wang J, Jia C, Xu B, Li X, Xie J, Jin Z. Elucidating the role of MaBAM9b in starch degradation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111497. [PMID: 36244523 DOI: 10.1016/j.plantsci.2022.111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Banana is a typical starch conversion fruit. The high content of starch at harvest is quickly digested and converted to soluble sugars during the postharvest ripening process, ultimately contributing to fruit flavor. This process is regulated in a complex manner by genes and environmental factors. MaBAM9b is one of the main enzyme genes previously found by transcriptomic analysis to be highly expressed in banana fruit. However, its exact role in starch degradation remains unclear. Here, full-length MaBAM9b was isolated from banana fruit, and its subcellular localization, protein expression, and transient expression in banana fruit slices were investigated. In addition, sense and anti-sense MaBAM9b were transformed into rice (Oryza sativa L. japonica. cv. 'Nipponbare') to identify the function of MaBAM9b. MaBAM9b was 1599 bp and encoded 532 amino acids. It contained two conserved domains of PLN02803 and glycosyl hydrolase family 14 and was localized in the chloroplast. The protein expression pattern of MaBAM9b remained consistently high throughout banana fruit ripening and starch degradation. Transient overexpression or inhibition of MaBAM9b in banana fruit greatly improved or suppressed starch degradation. Genetic modification of rice indicated that overexpression of MaBAM9b greatly improved starch degradation and seed germination, while inhibition of its expression suppressed these biological processes. These results support the key role of MaBAM9b in starch degradation and provide a target gene for banana fruit quality improvement and biological breeding.
Collapse
Affiliation(s)
- Juhua Liu
- Sanya Research Institute; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101 Haikou, China; School of Horticulture, Hainan University, 571100 Haikou, China.
| | - Hongxia Miao
- Sanya Research Institute; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101 Haikou, China
| | - Yudi Wang
- School of Horticulture, Hainan University, 571100 Haikou, China
| | - Jianbin Zhang
- Sanya Research Institute; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101 Haikou, China
| | - Jing Zhang
- Sanya Research Institute; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101 Haikou, China
| | - Yunke Zhen
- Sanya Research Institute; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101 Haikou, China
| | - Jingyi Wang
- Sanya Research Institute; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101 Haikou, China
| | - Caihong Jia
- Sanya Research Institute; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101 Haikou, China
| | - Biyu Xu
- Sanya Research Institute; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101 Haikou, China
| | - Xinguo Li
- School of Horticulture, Hainan University, 571100 Haikou, China.
| | - Jianghui Xie
- Sanya Research Institute; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101 Haikou, China.
| | - Zhiqiang Jin
- Sanya Research Institute; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101 Haikou, China.
| |
Collapse
|
6
|
Liu J, Liu M, Wang J, Zhang J, Miao H, Wang Z, Jia C, Zhang J, Xu B, Jin Z. Transcription factor MaMADS36 plays a central role in regulating banana fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7078-7091. [PMID: 34282447 DOI: 10.1093/jxb/erab341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Bananas are model fruits for studying starch conversion and climactericity. Starch degradation and ripening are two important biological processes that occur concomitantly in banana fruit. Ethylene biosynthesis and postharvest fruit ripening processes, i.e. starch degradation, fruit softening, and sugar accumulation, are highly correlated and thus could be controlled by a common regulatory switch. However, this switch has not been identified. In this study, we transformed red banana (Musa acuminata L.) with sense and anti-sense constructs of the MaMADS36 transcription factor gene (also MuMADS1, Ma05_g18560.1). Analysis of these lines showed that MaMADS36 interacts with 74 other proteins to form a co-expression network and could act as an important switch to regulate ethylene biosynthesis, starch degradation, softening, and sugar accumulation. Among these target genes, musa acuminata beta-amylase 9b (MaBAM9b, Ma05_t07800.1), which encodes a starch degradation enzyme, was selected to further investigate the regulatory mechanism of MaMADS36. Our findings revealed that MaMADS36 directly binds to the CA/T(r)G box of the MaBAM9b promoter to increase MaBAM9b transcription and, in turn, enzyme activity and starch degradation during ripening. These results will further our understanding of the fine regulatory mechanisms of MADS-box transcription factors in regulating fruit ripening, which can be applied to breeding programs to improve fruit shelf-life.
Collapse
Affiliation(s)
- Juhua Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Mengting Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Horticulture, Hainan University, Haikou, China
| | - Jingyi Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jing Zhang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hongxia Miao
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhuo Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Caihong Jia
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianbin Zhang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhiqiang Jin
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
7
|
Tussipkan D, Manabayeva SA. Employing CRISPR/Cas Technology for the Improvement of Potato and Other Tuber Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:747476. [PMID: 34764969 PMCID: PMC8576567 DOI: 10.3389/fpls.2021.747476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/04/2021] [Indexed: 05/07/2023]
Abstract
New breeding technologies have not only revolutionized biological science, but have also been employed to generate transgene-free products. Genome editing is a powerful technology that has been used to modify genomes of several important crops. This review describes the basic mechanisms, advantages and disadvantages of genome editing systems, such as ZFNs, TALENs, and CRISPR/Cas. Secondly, we summarize in detail all studies of the CRISPR/Cas system applied to potato and other tuber crops, such as sweet potato, cassava, yam, and carrot. Genes associated with self-incompatibility, abiotic-biotic resistance, nutrient-antinutrient content, and post-harvest factors targeted utilizing the CRISPR/Cas system are analyzed in this review. We hope that this review provides fundamental information that will be useful for future breeding of tuber crops to develop novel cultivars.
Collapse
Affiliation(s)
| | - Shuga A. Manabayeva
- Plant Genetic Engineering Laboratory, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| |
Collapse
|
8
|
Yu J, Wang K, Beckles DM. Starch branching enzymes as putative determinants of postharvest quality in horticultural crops. BMC PLANT BIOLOGY 2021; 21:479. [PMID: 34674662 PMCID: PMC8529802 DOI: 10.1186/s12870-021-03253-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Starch branching enzymes (SBEs) are key determinants of the structure and amount of the starch in plant organs, and as such, they have the capacity to influence plant growth, developmental, and fitness processes, and in addition, the industrial end-use of starch. However, little is known about the role of SBEs in determining starch structure-function relations in economically important horticultural crops such as fruit and leafy greens, many of which accumulate starch transiently. Further, a full understanding of the biological function of these types of starches is lacking. Because of this gap in knowledge, this minireview aims to provide an overview of SBEs in horticultural crops, to investigate the potential role of starch in determining postharvest quality. A systematic examination of SBE sequences in 43 diverse horticultural species, identified SBE1, 2 and 3 isoforms in all species examined except apple, olive, and Brassicaceae, which lacked SBE1, but had a duplicated SBE2. Among our findings after a comprehensive and critical review of published data, was that as apple, banana, and tomato fruits ripens, the ratio of the highly digestible amylopectin component of starch increases relative to the more digestion-resistant amylose fraction, with parallel increases in SBE2 transcription, fruit sugar content, and decreases in starch. It is tempting to speculate that during the ripening of these fruit when starch degradation occurs, there are rearrangements made to the structure of starch possibly via branching enzymes to increase starch digestibility to sugars. We propose that based on the known action of SBEs, and these observations, SBEs may affect produce quality, and shelf-life directly through starch accumulation, and indirectly, by altering sugar availability. Further studies where SBE activity is fine-tuned in these crops, can enrich our understanding of the role of starch across species and may improve horticulture postharvest quality.
Collapse
Affiliation(s)
- Jingwei Yu
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Graduate Group of Horticulture & Agronomy, University of California, Davis, CA, 95616, USA
- Present Address: Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Keyun Wang
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Diane M Beckles
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
9
|
WU Y, SUN M, LI S, MIN R, GAO C, LYU Q, REN Z, XIA Y. Molecular cloning, characterization and expression analysis of three key starch synthesis-related genes from the bulb of a rare lily germplasm, Lilium brownii var. giganteum. J Zhejiang Univ Sci B 2021; 22:476-491. [PMID: 34128371 PMCID: PMC8214946 DOI: 10.1631/jzus.b2000545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/10/2020] [Indexed: 11/11/2022]
Abstract
Starch is the predominant compound in bulb scales, and previous studies have shown that bulblet development is closely associated with starch enrichment. However, how starch synthesis affects bulbification at the molecular level is unclear. In this study, we demonstrate that Lilium brownii var. giganteum, a wild lily with a giant bulb in nature, and L. brownii, the native species, have different starch levels and characteristics according to cytological and ultra-structural observations. We cloned the complete sequence of three key gene-encoding enzymes (LbgAGPS, LbgGBSS, andLbgSSIII) during starch synthesis by rapid amplification of 5' and 3' complementary DNA (cDNA) ends (RACE) technology. Bioinformatics analysis revealed that the proteins deduced by these genes contain the canonical conserved domains. Constructed phylogenetic trees confirmed the evolutionary relationships with proteins from other species, including monocotyledons and dicotyledons. The transcript levels of various tissues and time course samples obtained during bulblet development uncovered relatively high expression levels in bulblets and gradual increase expression accompanying bulblet growth. Moreover, a set of single nucleotide polymorphisms (SNPs) was discovered in the AGPS genes of four lily genotypes, and a purifying selection fashion was predicted according to the non-synonymous/synonymous (Ka/Ks) values. Taken together, our results suggested that key starch-synthesizing genes might play important roles in bulblet development and lead to distinctive phenotypes in bulblet size.
Collapse
Affiliation(s)
- Yun WU
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou310018, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Minyi SUN
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Shiqi LI
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Ruihan MIN
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Cong GAO
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Qundan LYU
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui323000, China
| | - Ziming REN
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Yiping XIA
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
10
|
Xanthopoulou A, Montero-Pau J, Picó B, Boumpas P, Tsaliki E, Paris HS, Tsaftaris A, Kalivas A, Mellidou I, Ganopoulos I. A comprehensive RNA-Seq-based gene expression atlas of the summer squash (Cucurbita pepo) provides insights into fruit morphology and ripening mechanisms. BMC Genomics 2021; 22:341. [PMID: 33980145 PMCID: PMC8114506 DOI: 10.1186/s12864-021-07683-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Summer squash (Cucurbita pepo: Cucurbitaceae) are a popular horticultural crop for which there is insufficient genomic and transcriptomic information. Gene expression atlases are crucial for the identification of genes expressed in different tissues at various plant developmental stages. Here, we present the first comprehensive gene expression atlas for a summer squash cultivar, including transcripts obtained from seeds, shoots, leaf stem, young and developed leaves, male and female flowers, fruits of seven developmental stages, as well as primary and lateral roots. RESULTS In total, 27,868 genes and 2352 novel transcripts were annotated from these 16 tissues, with over 18,000 genes common to all tissue groups. Of these, 3812 were identified as housekeeping genes, half of which assigned to known gene ontologies. Flowers, seeds, and young fruits had the largest number of specific genes, whilst intermediate-age fruits the fewest. There also were genes that were differentially expressed in the various tissues, the male flower being the tissue with the most differentially expressed genes in pair-wise comparisons with the remaining tissues, and the leaf stem the least. The largest expression change during fruit development was early on, from female flower to fruit two days after pollination. A weighted correlation network analysis performed on the global gene expression dataset assigned 25,413 genes to 24 coexpression groups, and some of these groups exhibited strong tissue specificity. CONCLUSIONS These findings enrich our understanding about the transcriptomic events associated with summer squash development and ripening. This comprehensive gene expression atlas is expected not only to provide a global view of gene expression patterns in all major tissues in C. pepo but to also serve as a valuable resource for functional genomics and gene discovery in Cucurbitaceae.
Collapse
Affiliation(s)
- Aliki Xanthopoulou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Javier Montero-Pau
- Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBiBE), Universitat de València, 46022 Valencia, Spain
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Panagiotis Boumpas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Eleni Tsaliki
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Harry S. Paris
- Department of Vegetable Crops and Plant Genetics, Agricultural Research Organization, Newe Ya‘ar Research Center, 3009500 Ramat Yishay, Israel
| | | | - Apostolos Kalivas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| |
Collapse
|
11
|
Miao H, Sun P, Liu Q, Liu J, Jia C, Zhao D, Xu B, Jin Z. Molecular identification of the key starch branching enzyme-encoding gene SBE2.3 and its interacting transcription factors in banana fruits. HORTICULTURE RESEARCH 2020; 7:101. [PMID: 32637129 PMCID: PMC7326998 DOI: 10.1038/s41438-020-0325-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 06/01/2023]
Abstract
Starch branching enzyme (SBE) has rarely been studied in common starchy banana fruits. For the first time, we report here the molecular characterization of seven SBE (MaSBE) and six SBE (MbSBE) genes in the banana A- and B-genomes, respectively, which could be classified into three distinct subfamilies according to genome-wide identification. Systematic transcriptomic analysis revealed that six MaSBEs and six MbSBEs were expressed in the developing banana fruits of two different genotypes, BaXi Jiao (BX, AAA) and Fen Jiao (FJ, AAB), among which MaSBE2.3 and MbSBE2.3 were highly expressed. Transient silencing of MaSBE2.3 expression in banana fruit discs led to a significant decrease in its transcription, which coincides with significant reductions in total starch and amylopectin contents compared to those of empty vector controls. The suggested functional role of MaSBE2.3 in banana fruit development was corroborated by its transient overexpression in banana fruit discs, which led to significant enhancements in total starch and amylopectin contents. A number of transcription factors, including three auxin response factors (ARF2/12/24) and two MYBs (MYB3/308), that interact with the MaSBE2.3 promoter were identified by yeast one-hybrid library assays. Among these ARFs and MYBs, MaARF2/MaMYB308 and MaARF12/MaARF24/MaMYB3 were demonstrated via a luciferase reporter system to upregulate and downregulate the expression of MaSBE2.3, respectively.
Collapse
Affiliation(s)
- Hongxia Miao
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101 Haikou, People’s Republic of China
| | - Peiguang Sun
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, 571101 Haikou, Hainan Province People’s Republic of China
| | - Qing Liu
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, ACT 2601 Australia
| | - Juhua Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101 Haikou, People’s Republic of China
| | - Caihong Jia
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101 Haikou, People’s Republic of China
| | - Dongfang Zhao
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101 Haikou, People’s Republic of China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101 Haikou, People’s Republic of China
| | - Zhiqiang Jin
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101 Haikou, People’s Republic of China
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, People’s Republic of China
| |
Collapse
|
12
|
Solis-Badillo E, Agama-Acevedo E, Tiessen A, Lopez Valenzuela JA, Bello-Perez LA. ADP-Glucose Pyrophosphorylase Is Located in the Plastid and Cytosol in the Pulp of Tropical Banana Fruit (Musa acuminata). PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:76-82. [PMID: 31848854 DOI: 10.1007/s11130-019-00788-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) is a key enzyme of starch synthesis in seeds, tubers and fruits. UDP-glucose pyrophosphorylase (UGPase) is an important enzyme of sucrose metabolism in the cytosol while alkaline phosphatase (ALP) is a marker enzyme of the amyloplast that keeps the production of ADPG by removing PPi. Unripe banana accumulates starch in the pulp during development, while ripe fruits are characterized by the accumulation of soluble sugars. The aim of the study was to compare starch granule structure, carbohydrate levels, subcellular location and activities of three enzymes: AGPase, UGPase and ALP. Protein extracts from the cytosolic and amyloplastidial fractions were obtained from the pulp of banana fruit at three developmental stages (11, 16 and 21 weeks after flowering) and analyzed by electrophoresis and immunodetection. Protein profiles were similar during ripening, showing a main electrophoretic band at 50-55 kDa. Higher protein content was found in the cytosolic than in the amyloplastidial fraction. Starch granules and ALP activity were enriched in the amyloplast, whereas AGPase showed a subcellular distribution similar to UGPase. Immunoblot analysis also confirmed the presence of AGPase in both cytosol and amyloplast. AGPase activity was higher in the cytosol than in the amyloplast. Both AGPase activity and western blot band intensity were highest at 16 weeks. UGPase activity was highest at 21 weeks. We conclude that cytosolic production of ADP-glucose is not an exclusive feature of cereal endosperms due to plant breeding, but it also occurs in fruits of non-domesticated plants such as tropical banana (Musa acuminata). This work increases our understanding about pyrophosphorylase activities in the pulp of banana fruit.
Collapse
Affiliation(s)
| | | | - Axel Tiessen
- Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Irapuato, Mexico
- Laboratorio Nacional PlanTECC, Irapuato, Mexico
| | | | | |
Collapse
|
13
|
Liu B, Lin R, Jiang Y, Jiang S, Xiong Y, Lian H, Zeng Q, Liu X, Liu ZJ, Chen S. Transcriptome Analysis and Identification of Genes Associated with Starch Metabolism in Castanea henryi Seed (Fagaceae). Int J Mol Sci 2020; 21:E1431. [PMID: 32093295 PMCID: PMC7073145 DOI: 10.3390/ijms21041431] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/21/2022] Open
Abstract
Starch is the most important form of carbohydrate storage and is the major energy reserve in some seeds, especially Castanea henryi. Seed germination is the beginning of the plant's life cycle, and starch metabolism is important for seed germination. As a complex metabolic pathway, the regulation of starch metabolism in C. henryi is still poorly understood. To explore the mechanism of starch metabolism during the germination of C. henryi, we conducted a comparative gene expression analysis at the transcriptional level using RNA-seq across four different germination stages, and analyzed the changes in the starch and soluble sugar contents. The results showed that the starch content increased in 0-10 days and decreased in 10-35 days, while the soluble sugar content continuously decreased in 0-30 days and increased in 30-35 days. We identified 49 candidate genes that may be associated with starch and sucrose metabolism. Three ADP-glucose pyrophosphorylase (AGPase) genes, two nucleotide pyrophosphatase/phosphodiesterases (NPPS) genes and three starch synthases (SS) genes may be related to starch accumulation. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the expression levels of these genes. Our study combined transcriptome data with physiological and biochemical data, revealing potential candidate genes that affect starch metabolism during seed germination, and provides important data about starch metabolism and seed germination in seed plants.
Collapse
Affiliation(s)
- Bin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.L.); (R.L.); (Y.J.); (S.J.); (Y.X.); (H.L.); (Q.Z.); (X.L.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Ruqiang Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.L.); (R.L.); (Y.J.); (S.J.); (Y.X.); (H.L.); (Q.Z.); (X.L.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yuting Jiang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.L.); (R.L.); (Y.J.); (S.J.); (Y.X.); (H.L.); (Q.Z.); (X.L.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shuzhen Jiang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.L.); (R.L.); (Y.J.); (S.J.); (Y.X.); (H.L.); (Q.Z.); (X.L.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yuanfang Xiong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.L.); (R.L.); (Y.J.); (S.J.); (Y.X.); (H.L.); (Q.Z.); (X.L.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hui Lian
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.L.); (R.L.); (Y.J.); (S.J.); (Y.X.); (H.L.); (Q.Z.); (X.L.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Qinmeng Zeng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.L.); (R.L.); (Y.J.); (S.J.); (Y.X.); (H.L.); (Q.Z.); (X.L.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xuedie Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.L.); (R.L.); (Y.J.); (S.J.); (Y.X.); (H.L.); (Q.Z.); (X.L.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shipin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.L.); (R.L.); (Y.J.); (S.J.); (Y.X.); (H.L.); (Q.Z.); (X.L.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
14
|
Dos Santos CP, Batista MC, da Cruz Saraiva KD, Roque ALM, de Souza Miranda R, Alexandre E Silva LM, Moura CFH, Alves Filho EG, Canuto KM, Costa JH. Transcriptome analysis of acerola fruit ripening: insights into ascorbate, ethylene, respiration, and softening metabolisms. PLANT MOLECULAR BIOLOGY 2019; 101:269-296. [PMID: 31338671 DOI: 10.1007/s11103-019-00903-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The first transcriptome coupled to metabolite analyses reveals major trends during acerola fruit ripening and shed lights on ascorbate, ethylene signalling, cellular respiration, sugar accumulation, and softening key regulatory genes. Acerola is a fast growing and ripening fruit that exhibits high amounts of ascorbate. During ripening, the fruit experience high respiratory rates leading to ascorbate depletion and a quickly fragile and perishable state. Despite its growing economic importance, understanding of its developmental metabolism remains obscure due to the absence of genomic and transcriptomic data. We performed an acerola transcriptome sequencing that generated over 600 million reads, 40,830 contigs, and provided the annotation of 25,298 unique transcripts. Overall, this study revealed the main metabolic changes that occur in the acerola ripening. This transcriptional profile linked to metabolite measurements, allowed us to focus on ascorbate, ethylene, respiration, sugar, and firmness, the major metabolism indicators for acerola quality. Our results suggest a cooperative role of several genes involved in AsA biosynthesis (PMM, GMP1 and 3, GME1 and 2, GGP1 and 2), translocation (NAT3, 4, 6 and 6-like) and recycling (MDHAR2 and DHAR1) pathways for AsA accumulation in unripe fruits. Moreover, the association of metabolites with transcript profiles provided a comprehensive understanding of ethylene signalling, respiration, sugar accumulation and softening of acerola, shedding light on promising key regulatory genes. Overall, this study provides a foundation for further examination of the functional significance of these genes to improve fruit quality traits.
Collapse
Affiliation(s)
- Clesivan Pereira Dos Santos
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Mathias Coelho Batista
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Kátia Daniella da Cruz Saraiva
- Federal Institute of Education, Science and Technology of Paraíba, Campus Princesa Isabel, Princesa Isabel, Paraíba, Brazil
| | - André Luiz Maia Roque
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | | | | | | | | | | | - José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil.
| |
Collapse
|
15
|
Tappiban P, Smith DR, Triwitayakorn K, Bao J. Recent understanding of starch biosynthesis in cassava for quality improvement: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Xia J, Zhu D, Wang R, Cui Y, Yan Y. Crop resistant starch and genetic improvement: a review of recent advances. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2495-2511. [PMID: 30374526 DOI: 10.1007/s00122-018-3221-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/24/2018] [Indexed: 05/12/2023]
Abstract
Resistant starch (RS), as a healthy dietary fiber, meets with great human favor along with the rapid development and improvement of global living standards. RS shows direct effects in reducing postprandial blood glucose levels, serum cholesterol levels and glycemic index. Therefore, RS plays an important role in preventing and improving non-communicable diseases, such as obesity, diabetes, colon cancer, cardiovascular diseases and chronic kidney disease. In addition, RS leads to its potential applied value in the development of high-quality foodstuffs, such as bread, noodles and dumplings. This paper reviews the recent advances in RS research, focusing mainly on RS classification and measurement, formation, quantitative trait locus mapping, genome-wide association studies, molecular marker development and genetic improvement through induced mutations, plant breeding combined with marker-assisted selection and genetic transformation. Challenges and perspectives on further RS research are also discussed.
Collapse
Affiliation(s)
- Jian Xia
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Dong Zhu
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Ruomei Wang
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Yue Cui
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Yueming Yan
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China.
| |
Collapse
|
17
|
Effects of ( S)-Carvone and Gibberellin on Sugar Accumulation in Potatoes during Low Temperature Storage. Molecules 2018; 23:molecules23123118. [PMID: 30487439 PMCID: PMC6321255 DOI: 10.3390/molecules23123118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/18/2018] [Accepted: 11/28/2018] [Indexed: 01/25/2023] Open
Abstract
Potato tubers (Solanum tuberosum L.) are usually stored at low temperature, which can suppress sprouting and control the occurrence of diseases. However, low temperatures lead potatoes to easily suffer from cold-induced sweetening (CIS), which has a negative effect on food processing. The aim of this research was to investigate potential treatments on controlling CIS in potatoes during postharvest storage. “Atlantic” potatoes were treated with gibberellin and (S)-carvone, respectively, and stored at 4 °C for 90 days. The results showed that gibberellin can significantly accelerate sprouting and sugar accumulation by regulating expressions of ADP-glucose pyrophosphorylase (AGPase), granule-bound starch synthase (GBSS), β-amylase (BAM1/2), UDP-glucose pyrophosphorylase (UGPase) and invertase inhibitor (INH1/2) genes. The opposite effects were found in the (S)-carvone treatment group, where CIS was inhibited by modulation of the expressions of GBSS and INH1/2 genes. In summary, gibberellin treatment can promote sugar accumulation while (S)-carvone treatment has some effects on alleviating sugar accumulation. Thus, (S)-carvone can be considered as a potential inhibitor of some of the sugars which are vital in controlling CIS in potatoes. However, the chemical concentration, treatment time, and also the treatment method needs to be optimized before industrial application.
Collapse
|
18
|
Lesponne I, Naar J, Planchon S, Serchi T, Montano M. DNA and Protein Analyses to Confirm the Absence of Cross-Contamination and Support the Clinical Reliability of Extensively Hydrolysed Diets for Adverse Food Reaction-Pets. Vet Sci 2018; 5:vetsci5030063. [PMID: 29949938 PMCID: PMC6163677 DOI: 10.3390/vetsci5030063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Adverse food reactions (AFR) are a common cause of skin diseases in cats and dogs. The correct diagnosis and management of AFR relies upon clinical nutrition. The reliability of commercial hypoallergenic diets commonly used in AFR has been questioned because studies have shown the presence of proteins not declared on the label ingredients. It is proposed that extensively hydrolysed protein-based diets constitute a reliable nutritional solution. Royal Canin Anallergenic™ Canine and Feline diets are formulated with very low molecular weight feather protein and purified corn starch. Protein gel electrophoresis and thin layer paper chromatography were used to characterize protein hydrolysis in these diets and their hydrolysed raw materials; protein species were identified by mass spectrometry. To detect cross-contaminating protein, species-specific DNA was measured and correlated with ancillary protein content using calibration curves. The only protein components detected in the extensively hydrolysed feather protein raw material were amino acids and small oligopeptides. GBSS-I (Granule-bound starch synthase 1) was detected in the finished diets; this has not been reported as a clinically apparent allergen in dogs or cats. The DNA threshold corresponding to the maximum acceptable level of ancillary protein was not exceeded in 99.9% of more than 2150 product batches tested and no products were released to the market with cross-contaminating proteins. These results demonstrate the extensive level of protein hydrolysis in Royal Canin Anallergenic™ Canine and Feline diets and the absence of cross-contaminating protein, both key requirements for a diet to be used during diagnosis and for management of pets with AFR.
Collapse
Affiliation(s)
| | - Jérôme Naar
- Research & Development, Royal Canin SAS, 30470 Aimargues, France.
| | - Sébastien Planchon
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Belval, 4008 Luxembourg.
| | - Tommaso Serchi
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Belval, 4008 Luxembourg.
| | - Mauricio Montano
- Mars Petcare Central Laboratory, Mars Inc., 30470 Aimargues, France.
| |
Collapse
|
19
|
Gao M, Zhang S, Luo C, He X, Wei S, Jiang W, He F, Lin Z, Yan M, Dong W. Transcriptome analysis of starch and sucrose metabolism across bulb development in Sagittaria sagittifolia. Gene 2018; 649:99-112. [DOI: 10.1016/j.gene.2018.01.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/14/2018] [Accepted: 01/22/2018] [Indexed: 11/25/2022]
|
20
|
Differential Proteomic Analysis Reveals the Effect of Calcium on Malus baccata Borkh. Leaves under Temperature Stress. Int J Mol Sci 2017; 18:ijms18081755. [PMID: 28800123 PMCID: PMC5578145 DOI: 10.3390/ijms18081755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 12/17/2022] Open
Abstract
In the cool apple-producing areas of northern China, air temperature during early spring changes in a rapid and dramatic manner, which affects the growth and development of apple trees at the early stage of the growing season. Previous studies have shown that the treatment of calcium can increase the cold tolerance of Malus baccata Borkh., a widely-used rootstock apple tree in northern China. To better understand the physiological function of calcium in the response of M. baccata to temperature stress, we analyzed the effect of calcium treatment (2% CaCl₂) on M. baccata leaves under temperature stress. Physiological analysis showed that temperature stress aggravated membrane lipid peroxidation, reduced chlorophyll content and induced photo-inhibition in leaves, whereas these indicators of stress injuries were alleviated by the application of calcium. An isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics approach was used in this study. Among the 2114 proteins that were detected in M. baccata leaves, 41, 25, and 34 proteins were differentially regulated by the increasing, decreasing, and changing temperature treatments, respectively. Calcium treatment induced 9 and 15 proteins after increasing and decreasing temperature, respectively, in comparison with non-treated plants. These calcium-responsive proteins were mainly related to catalytic activity, binding, and structural molecule activity. Hierarchical cluster analysis indicated that the changes in abundance of the proteins under increasing temperature and changing temperature treatments were similar, and the changes in protein abundance under decreasing temperature and increasing temperature with calcium treatment were similar. The findings of this study will allow a better understanding of the mechanisms underlying the role of calcium in M. baccata leaves under temperature stress.
Collapse
|
21
|
The AGPase Family Proteins in Banana: Genome-Wide Identification, Phylogeny, and Expression Analyses Reveal Their Involvement in the Development, Ripening, and Abiotic/Biotic Stress Responses. Int J Mol Sci 2017; 18:ijms18081581. [PMID: 28757545 PMCID: PMC5577994 DOI: 10.3390/ijms18081581] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 11/20/2022] Open
Abstract
ADP-glucose pyrophosphorylase (AGPase) is the first rate-limiting enzyme in starch biosynthesis and plays crucial roles in multiple biological processes. Despite its importance, AGPase is poorly studied in starchy fruit crop banana (Musa acuminata L.). In this study, eight MaAGPase genes have been identified genome-wide in M. acuminata, which could be clustered into the large (APL) and small (APS) subunits. Comprehensive transcriptomic analysis revealed temporal and spatial expression variations of MaAPLs and MaAPSs and their differential responses to abiotic/biotic stresses in two banana genotypes, Fen Jiao (FJ) and BaXi Jiao (BX). MaAPS1 showed generally high expression at various developmental and ripening stages and in response to abiotic/biotic stresses in both genotypes. MaAPL-3 and -2a were specifically induced by abiotic stresses including cold, salt, and drought, as well as by fungal infection in FJ, but not in BX. The presence of hormone-related and stress-relevant cis-acting elements in the promoters of MaAGPase genes suggests that MaAGPases may play an important role in multiple biological processes. Taken together, this study provides new insights into the complex transcriptional regulation of AGPases, underlying their key roles in promoting starch biosynthesis and enhancing stress tolerance in banana.
Collapse
|
22
|
Miao H, Sun P, Liu Q, Jia C, Liu J, Hu W, Jin Z, Xu B. Soluble Starch Synthase III-1 in Amylopectin Metabolism of Banana Fruit: Characterization, Expression, Enzyme Activity, and Functional Analyses. FRONTIERS IN PLANT SCIENCE 2017; 8:454. [PMID: 28424724 PMCID: PMC5371607 DOI: 10.3389/fpls.2017.00454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/15/2017] [Indexed: 05/26/2023]
Abstract
Soluble starch synthase (SS) is one of the key enzymes involved in amylopectin biosynthesis in plants. However, no information is currently available about this gene family in the important fruit crop banana. Herein, we characterized the function of MaSSIII-1 in amylopectin metabolism of banana fruit and described the putative role of the other MaSS family members. Firstly, starch granules, starch and amylopectin content were found to increase during banana fruit development, but decline during storage. The SS activity started to increase later than amylopectin and starch content. Secondly, four putative SS genes were cloned and characterized from banana fruit. Among them, MaSSIII-1 showed the highest expression in banana pulp during fruit development at transcriptional levels. Further Western blot analysis suggested that the protein was gradually increased during banana fruit development, but drastically reduced during storage. This expression pattern was highly consistent with changes in starch granules, amylopectin content, and SS activity at the late phase of banana fruit development. Lastly, overexpression of MaSSIII-1 in tomato plants distinctly changed the morphology of starch granules and significantly increased the total starch accumulation, amylopectin content, and SS activity at mature-green stage in comparison to wild-type. The findings demonstrated that MaSSIII-1 is a key gene expressed in banana fruit and responsible for the active amylopectin biosynthesis, this is the first report in a fresh fruit species. Such a finding may enable the development of molecular markers for banana breeding and genetic improvement of nutritional value and functional properties of banana fruit.
Collapse
Affiliation(s)
- Hongxia Miao
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Peiguang Sun
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Qing Liu
- Commonwealth Scientific and Industrial Research Organization Agriculture and FoodCanberra, ACT, Australia
| | - Caihong Jia
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Juhua Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Wei Hu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Zhiqiang Jin
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| |
Collapse
|
23
|
Jourda C, Cardi C, Gibert O, Giraldo Toro A, Ricci J, Mbéguié-A-Mbéguié D, Yahiaoui N. Lineage-Specific Evolutionary Histories and Regulation of Major Starch Metabolism Genes during Banana Ripening. FRONTIERS IN PLANT SCIENCE 2016; 7:1778. [PMID: 27994606 PMCID: PMC5133247 DOI: 10.3389/fpls.2016.01778] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/11/2016] [Indexed: 05/24/2023]
Abstract
Starch is the most widespread and abundant storage carbohydrate in plants. It is also a major feature of cultivated bananas as it accumulates to large amounts during banana fruit development before almost complete conversion to soluble sugars during ripening. Little is known about the structure of major gene families involved in banana starch metabolism and their evolution compared to other species. To identify genes involved in banana starch metabolism and investigate their evolutionary history, we analyzed six gene families playing a crucial role in plant starch biosynthesis and degradation: the ADP-glucose pyrophosphorylases (AGPases), starch synthases (SS), starch branching enzymes (SBE), debranching enzymes (DBE), α-amylases (AMY) and β-amylases (BAM). Using comparative genomics and phylogenetic approaches, these genes were classified into families and sub-families and orthology relationships with functional genes in Eudicots and in grasses were identified. In addition to known ancestral duplications shaping starch metabolism gene families, independent evolution in banana and grasses also occurred through lineage-specific whole genome duplications for specific sub-families of AGPase, SS, SBE, and BAM genes; and through gene-scale duplications for AMY genes. In particular, banana lineage duplications yielded a set of AGPase, SBE and BAM genes that were highly or specifically expressed in banana fruits. Gene expression analysis highlighted a complex transcriptional reprogramming of starch metabolism genes during ripening of banana fruits. A differential regulation of expression between banana gene duplicates was identified for SBE and BAM genes, suggesting that part of starch metabolism regulation in the fruit evolved in the banana lineage.
Collapse
Affiliation(s)
- Cyril Jourda
- CIRAD, UMR AGAPMontpellier, France
- CIRAD, UMR PVBMTSaint-Pierre, France
| | | | - Olivier Gibert
- CIRAD, UMR QUALISUDMontpellier, France
- CIRAD, UMR QUALISUDJakarta, Indonesia
| | | | | | | | | |
Collapse
|
24
|
Sun P, Miao H, Yu X, Jia C, Liu J, Zhang J, Wang J, Wang Z, Wang A, Xu B, Jin Z. A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis. PLoS One 2016; 11:e0160690. [PMID: 27486844 PMCID: PMC4972433 DOI: 10.1371/journal.pone.0160690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/23/2016] [Indexed: 11/18/2022] Open
Abstract
The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response. To date, there have been no studies on the role of ASR genes in delayed flowering time. Here, we found that the ASR from banana, designated as MaASR, was preferentially expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflorescence. MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype. The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers, and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that overexpression of MaASR delays flowering through reduced expression of several genes, including photoperiod pathway genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage); however, the expression of the autonomous pathway genes was not affected. This study provides the first evidence of a role for ASR genes in delayed flowering time in plants.
Collapse
Affiliation(s)
- Peiguang Sun
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 570102, China
| | - Hongxia Miao
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaomeng Yu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Caihong Jia
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Juhua Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jianbin Zhang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jingyi Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhuo Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Anbang Wang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 570102, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- * E-mail: (BX); (ZJ)
| | - Zhiqiang Jin
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 570102, China
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- * E-mail: (BX); (ZJ)
| |
Collapse
|
25
|
Nougué O, Corbi J, Ball SG, Manicacci D, Tenaillon MI. Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis pathway. BMC Evol Biol 2014; 14:103. [PMID: 24884572 PMCID: PMC4041918 DOI: 10.1186/1471-2148-14-103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 05/02/2014] [Indexed: 12/15/2022] Open
Abstract
Background Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families. While some gene duplications occurred in the Archaeplastida ancestor, most were generated during the sbp redirection process, and the remaining few paralogs were generated through compartmentalization or tissue specialization during the evolution of the land plants. In the present study, we tested models of duplicated gene evolution in order to understand the evolutionary forces that have led to the development of SBP in angiosperms. We combined phylogenetic analyses and tests on the rates of evolution along branches emerging from major duplication events in six gene families encoding sbp enzymes. Results We found evidence of positive selection along branches following cytosolic or plastidial specialization in two starch phosphorylases and identified numerous residues that exhibited changes in volume, polarity or charge. Starch synthases, branching and debranching enzymes functional specializations were also accompanied by accelerated evolution. However, none of the sites targeted by selection corresponded to known functional domains, catalytic or regulatory. Interestingly, among the 13 duplications tested, 7 exhibited evidence of positive selection in both branches emerging from the duplication, 2 in only one branch, and 4 in none of the branches. Conclusions The majority of duplications were followed by accelerated evolution targeting specific residues along both branches. This pattern was consistent with the optimization of the two sub-functions originally fulfilled by the ancestral gene before duplication. Our results thereby provide strong support to the so-called “Escape from Adaptive Conflict” (EAC) model. Because none of the residues targeted by selection occurred in characterized functional domains, we propose that enzyme specialization has occurred through subtle changes in affinity, activity or interaction with other enzymes in complex formation, while the basic function defined by the catalytic domain has been maintained.
Collapse
Affiliation(s)
| | | | | | - Domenica Manicacci
- University Paris-Sud, UMR 0320/UMR 8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France.
| | | |
Collapse
|