1
|
Khoury S, Beauvais A, Colas J, Saint-Martin Willer A, Perros F, Humbert M, Vandebrouck C, Montani D, Ferreira T, Antigny F. Lipidomic Profile Analysis of Lung Tissues Revealed Lipointoxication in Pulmonary Veno-Occlusive Disease. Biomolecules 2022; 12:biom12121878. [PMID: 36551306 PMCID: PMC9775349 DOI: 10.3390/biom12121878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary arterial hypertension (PAH) occurring in a heritable form (hPVOD) due to biallelic inactivating mutations of EIF2AK4 (encoding GCN2, general control nonderepressible 2) or in a sporadic form in older age (sPVOD), following exposure to chemotherapy or organic solvents. In contrast to PAH, PVOD is characterized by a particular remodeling of the pulmonary venous system and the obliteration of small pulmonary veins by fibrous intimal thickening and patchy capillary proliferation. The pathobiological knowledge of PVOD is poor, explaining the absence of medical therapy for PVOD. Lung transplantation remains the only therapy for eligible PVOD patients. As we recently demonstrated, respiratory diseases, chronic obstructive pulmonary disease, or cystic fibrosis exhibit lipointoxication signatures characterized by excessive levels of saturated phospholipids contributing to the pathological features of these diseases, including endoplasmic reticulum stress, pro-inflammatory cytokines production, and bronchoconstriction. In this study, we investigated and compared the clinical data and lung lipid signature of control (10 patients), idiopathic PAH (7 patients), heritable PAH (9 BMPR2 mutations carriers), hPVOD (10 EIF2AK4 mutation carriers), and sPVOD (6 non-carriers) subjects. Mass spectrometry analyses demonstrated lung lipointoxication only in hPVOD patients, characterized by an increased abundance of saturated phosphatidylcholine (PC) at the expense of the polyunsaturated species in the lungs of hPVOD patients. The present data suggest that lipointoxication could be a potential player in the etiology of PVOD.
Collapse
Affiliation(s)
- Spiro Khoury
- Laboratoire Cooperatif “Lipotoxicity and Channelopathies-ConicMeds”, Universite de Poitiers, Rue Georges Bonnet, 86073 Poitiers, France
| | - Antoine Beauvais
- Facultede Medecine, Universite Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- INSERM, UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Jenny Colas
- Laboratoire Cooperatif “Lipotoxicity and Channelopathies-ConicMeds”, Universite de Poitiers, Rue Georges Bonnet, 86073 Poitiers, France
- PReTI Laboratory, University of Poitiers, 86073 Poitiers, France
| | - Anaïs Saint-Martin Willer
- Facultede Medecine, Universite Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- INSERM, UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Frédéric Perros
- Facultede Medecine, Universite Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- INSERM, UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Marc Humbert
- Facultede Medecine, Universite Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- INSERM, UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Clarisse Vandebrouck
- Laboratoire Cooperatif “Lipotoxicity and Channelopathies-ConicMeds”, Universite de Poitiers, Rue Georges Bonnet, 86073 Poitiers, France
- PReTI Laboratory, University of Poitiers, 86073 Poitiers, France
| | - David Montani
- Facultede Medecine, Universite Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- INSERM, UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Thierry Ferreira
- Laboratoire Cooperatif “Lipotoxicity and Channelopathies-ConicMeds”, Universite de Poitiers, Rue Georges Bonnet, 86073 Poitiers, France
- PReTI Laboratory, University of Poitiers, 86073 Poitiers, France
| | - Fabrice Antigny
- Facultede Medecine, Universite Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- INSERM, UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Correspondence:
| |
Collapse
|
2
|
Kadri L, Bacle A, Khoury S, Vandebrouck C, Bescond J, Faivre JF, Ferreira T, Sebille S. Polyunsaturated Phospholipids Increase Cell Resilience to Mechanical Constraints. Cells 2021; 10:937. [PMID: 33920685 PMCID: PMC8073313 DOI: 10.3390/cells10040937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
If polyunsaturated fatty acids (PUFAs) are generally accepted to be good for health, the mechanisms of their bona fide benefits still remain elusive. Membrane phospholipids (PLs) of the cardiovascular system and skeletal muscles are particularly enriched in PUFAs. The fatty acid composition of PLs is known to regulate crucial membrane properties, including elasticity and plasticity. Since muscle cells undergo repeated cycles of elongation and relaxation, we postulated in the present study that PUFA-containing PLs could be central players for muscle cell adaptation to mechanical constraints. By a combination of in cellulo and in silico approaches, we show that PUFAs, and particularly the ω-3 docosahexaenoic acid (DHA), regulate important properties of the plasma membrane that improve muscle cell resilience to mechanical constraints. Thanks to their unique property to contortionate within the bilayer plane, they facilitate the formation of vacuole-like dilation (VLD), which, in turn, avoid cell breakage under mechanical constraints.
Collapse
|
3
|
Vandebrouck C, Ferreira T. Glued in lipids: Lipointoxication in cystic fibrosis. EBioMedicine 2020; 61:103038. [PMID: 33038767 PMCID: PMC7648119 DOI: 10.1016/j.ebiom.2020.103038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/27/2020] [Accepted: 09/14/2020] [Indexed: 01/14/2023] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the CF transmembrane regulator (CFTR) gene, which encodes a chloride channel located at the apical surface of epithelial cells. Unsaturated Fatty Acid (UFA) deficiency has been a persistent observation in tissues from patients with CF. However, the impacts of such deficiencies on the etiology of the disease have been the object of intense debates. The aim of the present review is first to highlight the general consensus on fatty acid dysregulations that emerges from, sometimes apparently contradictory, studies. In a second step, a unifying mechanism for the potential impacts of these fatty acid dysregulations in CF cells, based on alterations of membrane biophysical properties (known as lipointoxication), is proposed. Finally, the contribution of lipointoxication to the progression of the CF disease and how it could affect the efficacy of current treatments is also discussed.
Collapse
Affiliation(s)
- Clarisse Vandebrouck
- Laboratoire "Lipointoxication and Channelopathies (LiTch) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France; Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM; EA 7349)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Thierry Ferreira
- Laboratoire "Lipointoxication and Channelopathies (LiTch) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France.
| |
Collapse
|
4
|
Garić D, De Sanctis JB, Dumut DC, Shah J, Peña MJ, Youssef M, Petrof BJ, Kopriva F, Hanrahan JW, Hajduch M, Radzioch D. Fenretinide favorably affects mucins (MUC5AC/MUC5B) and fatty acid imbalance in a manner mimicking CFTR-induced correction. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158538. [PMID: 31678518 DOI: 10.1016/j.bbalip.2019.158538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis (CF) is the most common genetic disease in Caucasians. CF is manifested by abnormal accumulation of mucus in the lungs, which serves as fertile ground for the growth of microorganisms leading to recurrent infections and ultimately, lung failure. Mucus in CF patients consists of DNA from dead neutrophils as well as mucins produced by goblet cells. MUC5AC mucin leads to pathological plugging of the airways whereas MUC5B has a protective role against bacterial infection. Therefore, decreasing the level of MUC5AC while maintaining MUC5B intact would in principle be a desirable mucoregulatory treatment outcome. Fenretinide prevented the lipopolysaccharide-induced increase of MUC5AC gene expression, without affecting the level of MUC5B, in a lung goblet cell line. Additionally, fenretinide treatment reversed the pro-inflammatory imbalance of fatty acids by increasing docosahexaenoic acid and decreasing the levels of arachidonic acid in a lung epithelial cell line and primary leukocytes derived from CF patients. Furthermore, for the first time we also demonstrate the effect of fenretinide on multiple unsaturated fatty acids, as well as differential effects on the levels of long- compared to very-long-chain saturated fatty acids which are important substrates of complex phospholipids. Finally, we demonstrate that pre-treating mice with fenretinide in a chronic model of P. aeruginosa lung infection efficiently decreases the accumulation of mucus. These findings suggest that fenretinide may offer a new approach to therapeutic modulation of pathological mucus production in CF.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Bolivarian Republic of Venezuela
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Juhi Shah
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Maria Johanna Peña
- Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Bolivarian Republic of Venezuela
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Basil J Petrof
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Francisek Kopriva
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - John W Hanrahan
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Kadri L, Ferru-Clément R, Bacle A, Payet LA, Cantereau A, Hélye R, Becq F, Jayle C, Vandebrouck C, Ferreira T. Modulation of cellular membrane properties as a potential therapeutic strategy to counter lipointoxication in obstructive pulmonary diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3069-3084. [PMID: 29960042 DOI: 10.1016/j.bbadis.2018.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/04/2018] [Accepted: 06/25/2018] [Indexed: 02/08/2023]
Abstract
Maintaining the equilibrium between saturated and unsaturated fatty acids within membrane phospholipids (PLs) is crucial to sustain the optimal membrane biophysical properties, compatible with selective organelle-based processes. Lipointoxication is a pathological condition under which saturated PLs tend to accumulate within the cell at the expense of unsaturated species, with major impacts on organelle function. Here, we show that human bronchial epithelial cells extracted from lungs of patients with Obstructive Pulmonary Diseases (OPDs), i. e. Cystic Fibrosis (CF) individuals and Smokers, display a characteristic lipointoxication signature, with excessive amounts of saturated PLs. Reconstitution of this signature in cellulo and in silico revealed that such an imbalance results in altered membrane properties and in a dramatic disorganization of the intracellular network of bronchial epithelial cells, in a process which can account for several OPD traits. Such features include Endoplasmic Reticulum-stress, constitutive IL8 secretion, bronchoconstriction and, ultimately, epithelial cell death by apoptosis. We also demonstrate that a recently-identified lipid-like molecule, which has been shown to behave as a "membrane-reshaper", counters all the lipointoxication hallmarks tested. Altogether, these insights highlight the modulation of membrane properties as a potential new strategy to heal and prevent highly detrimental symptoms associated with OPDs.
Collapse
Affiliation(s)
- Linette Kadri
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Romain Ferru-Clément
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Amélie Bacle
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Laurie-Anne Payet
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Anne Cantereau
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Reynald Hélye
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Frédéric Becq
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Christophe Jayle
- Service de Chirurgie Cardiothoracique, CHU Poitiers, Poitiers, France
| | - Clarisse Vandebrouck
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Thierry Ferreira
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France.
| |
Collapse
|