1
|
Ma T, Guo J, Han J, Li L, Ren Y, Huang J, Diao G, Zheng X, Zheng Y. Circ_0001589/miR-1248/HMGB1 axis enhances EMT-mediated metastasis and cisplatin resistance in cervical cancer. Mol Carcinog 2023; 62:1645-1658. [PMID: 37431919 DOI: 10.1002/mc.23605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 07/12/2023]
Abstract
Cervical cancer is the fourth most common malignant tumors in female worldwide. Cirular RNAs (circRNA) represent a new class of regulatory RNA and play a pivotal role in the carcinogenesis and development of tumors. However, their functions have not been fully elucidated in cervical cancer. In this study, we identified an upregulated circRNA, circ_0001589, both in fresh clinical samples and tissue microarray of cervical cancer. Transwell assay and cell apoptosis assay by flow cytometry demonstrated circ_0001589 promotes epithelial-mesenchymal transition (EMT)-mediated cell migration and invasion, and enhanced cisplatin resistance in vitro. In addition, in nude mice model, circ_0001589 increased the number of lung metastases and recovered xenograft growth from cisplatin treatment in vivo. Mechanistically, RNA pull-down assay, RNA immunoprecipitation, and dual-luciferase reporter assay disclosed that circ_0001589 function as an competing endogenous RNA to sponge miR-1248, which directly target the 3' untranslated region of high mobility group box-B1 (HMGB1). Thereby, circ_0001589 upregulated HMGB1 protein expression and accelerate cervical cancer progression. The rescue experiments also revealed that miR-1248 overexpression or HMGB1 knockdown partially reversed the regulatory functions of circ_0001589 on cell migration, invasion, and cisplatin resistance. In summary, our findings suggest the upregulation of circ_0001589 promoted EMT-mediated cell migration and invasion, and enhanced cisplatin resistance via regulating miR-1248/HMGB1 axis in cervical cancer. These results provided new evidence for understanding the carcinogenesis mechanism and finding new therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Teng Ma
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jianxin Guo
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Han
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lanfang Li
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yifei Ren
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jie Huang
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ge Diao
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiuhui Zheng
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yingru Zheng
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Wang M, Duan Y, Yang M, Guo Y, Li F, Wang J, Si T. The analysis of immunogenic cell death induced by ablation at different temperatures in hepatocellular carcinoma cells. Front Cell Dev Biol 2023; 11:1146195. [PMID: 37187618 PMCID: PMC10175605 DOI: 10.3389/fcell.2023.1146195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction: Ablation therapy is a commonly used tool in the management of hepatocellular carcinoma (HCC). After ablation, dying cancer cells release a variety of substances that trigger subsequent immune responses. Immunogenic cell death (ICD) has been a trending topic in recent years and has been discussed many times along with oncologic chemotherapy. However, the subject of ablative therapy and ICDs has been little discussed. The purpose of this study was to investigate whether ablation treatment induces ICD in HCC cells and whether different types of ICDs arise because of different ablation temperatures. Methods: Four different HCC cell lines (H22, Hepa-16, HepG2 and SMMC7221) were cultured and treated under different temperatures (-80°C, -40°C, 0°C, 37°C, and 60°C). Cell Counting Kit-8 assay was performed to analyze the viability of different cell lines. Apoptosis was detected by flow cytometry assay, and a few ICD-related cytokines (calreticulin, ATP, high mobility group box 1, and CXCL10) were detected by immunofluorescence or enzyme-linked immunosorbent assay. Results: The apoptosis rate of all kinds of cells increased significantly in -80°C group (p < 0.01) and 60°C group (p < 0.01). The expression levels of ICD-related cytokines were mostly significantly different between the different groups. For calreticulin, Hepa1-6 cells and SMMC7221 cells showed significantly higher protein expression levels in 60°C group (p < 0.01) and significantly lower protein expression levels -80°C group (p < 0.01). The ATP, high mobility group box 1 and CXCL10 expression levels were significantly higher in 60°C, -80°C and -40°C group of all four cell lines (p < 0.01). Conclusion: Different ablative treatments could induce different types of ICDs in HCC cells, providing a promising track for the development of individualized cancer therapies.
Collapse
Affiliation(s)
- Mengdong Wang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaxin Duan
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mao Yang
- Key Laboratory of Cancer Prevention and Therapy, Department of Interventional Treatment, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Cancer Hospital Airport Hospital, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yongfei Guo
- Key Laboratory of Cancer Prevention and Therapy, Department of Interventional Treatment, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Cancer Hospital Airport Hospital, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fengtan Li
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Junping Wang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tongguo Si
- Key Laboratory of Cancer Prevention and Therapy, Department of Interventional Treatment, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Cancer Hospital Airport Hospital, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Tongguo Si,
| |
Collapse
|
3
|
Wang G, Ding B, Sun L, Guo J, Wang S, Li W, Zhang Y, Lv J, Qiu W. Construction and Validation of a Necroptosis-Related Signature Associated With the Immune Microenvironment in Liver Hepatocellular Carcinoma. Front Genet 2022; 13:859544. [PMID: 35480307 PMCID: PMC9037783 DOI: 10.3389/fgene.2022.859544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Liver hepatocellular carcinoma (LIHC) is a widespread and often deadly neoplasm. There is increasing evidence that necroptosis mediates numerous tumor-associated behaviors, as well as the regulation of the tumor microenvironment, suggesting its use as a biomarker for tumor prognosis. Methods: Data on mRNA expression and necroptosis regulators were acquired from the TCGA and KEGG databases, respectively. Clinical liver hepatocellular carcinoma (LIHC) patient data and information on the expression of necroptosis regulators were processed by unsupervised cluster analysis was performed on LIHC patients together with necroptotic regulator expression and, differentially expressed necroptosis-related genes (DENRGs) were identified by comparing the two clusters. A signature based on eight DENRGs was constructed and verified through independent data sets, and its relationship with the tumor microenvironment was investigated. Results: Unsupervised cluster analysis demonstrated inherent immune differences among LIHC patients. In all, 1,516 DENRGs were obtained by comparison between the two clusters. In the training set, the final eight genes obtained by univariate, LASSO, and multivariate Cox regression were utilized for constructing the signature. The survival and receiver operating characteristic (ROC) curve achieved satisfactory results in both sets. The high-risk group was characterized by greater immune infiltration and poor prognosis. The results of survival analysis based on the expression of eight DENRGs further confirmed the signature. Conclusion: We established and validated a risk signature based on eight DERNGs related to the tumor microenvironment. This provides a possible explanation for the different clinical effects of immunotherapy and provides a novel perspective for predicting tumor prognosis in LIHC.
Collapse
Affiliation(s)
- Gongjun Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baoning Ding
- School of Statistics, Shandong University of Finance and Economics, Jinan, China
| | | | - Jing Guo
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenqian Li
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuqi Zhang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Lv
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Wensheng Qiu, Jing Lv,
| | - Wensheng Qiu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Wensheng Qiu, Jing Lv,
| |
Collapse
|
4
|
Chavez-Dominguez RL, Perez-Medina MA, Lopez-Gonzalez JS, Galicia-Velasco M, Matias-Florentino M, Avila-Rios S, Rumbo-Nava U, Salgado-Aguayo A, Gonzalez-Gonzalez C, Aguilar-Cazares D. Role of HMGB1 in Cisplatin-Persistent Lung Adenocarcinoma Cell Lines. Front Oncol 2021; 11:750677. [PMID: 34966671 PMCID: PMC8710495 DOI: 10.3389/fonc.2021.750677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022] Open
Abstract
Significant advances have been made recently in the development of targeted therapy for lung adenocarcinoma. However, platinum-based chemotherapy remains as the cornerstone in the treatment of this neoplasm. This is the treatment option for adenocarcinomas without EGFR gain-of-function mutations or tumors that have developed resistance to targeted therapy. The High-Mobility Group Box 1 (HMGB1) is a multifunctional protein involved in intrinsic resistance to cisplatin. HMGB1 is released when cytotoxic agents, such as cisplatin, induce cell death. In the extracellular milieu, HMGB1 acts as adjuvant to induce an antitumor immune response. However, the opposite effect favoring tumor progression has also been reported. In this study, the effects of cisplatin in lung adenocarcinoma cell lines harboring clinically relevant mutations, such as EGFR mutations, were studied. Subcellular localization of HMGB1 was detected in the cell lines and in viable cells after a single exposure to cisplatin, which are designated as cisplatin-persistent cells. The mRNA expression of the receptor for advanced glycation end products (RAGE), TLR-2, and TLR-4 receptors was measured in parental cell lines and their persistent variants. Finally, changes in plasma HMGB1 from a cohort of lung adenocarcinoma patients without EGFR mutation and treated with cisplatin-based therapy were analyzed. Cisplatin-susceptible lung adenocarcinoma cell lines died by apoptosis or necrosis and released HMGB1. In cisplatin-persistent cells, nuclear relocalization of HMGB1 and overexpression of HMGB1 and RAGE, but not TLR-2 or TLR-4, were observed. In tumor cells, this HMGB1–RAGE interaction may be associated with the development of cisplatin resistance. The results indicate a direct relationship between the plasma levels of HMGB1 and overall survival. In conclusion, HMGB1 may be an effective biomarker associated with increased overall survival of lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Rodolfo L Chavez-Dominguez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico, Mexico.,Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico, Mexico
| | - Mario A Perez-Medina
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico, Mexico.,Laboratorio de Quimioterapia Experimental, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico, Mexico
| | - Jose S Lopez-Gonzalez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico, Mexico
| | - Miriam Galicia-Velasco
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico, Mexico
| | - Margarita Matias-Florentino
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico, Mexico
| | - Santiago Avila-Rios
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico, Mexico
| | - Uriel Rumbo-Nava
- Clinica de Neumo-Oncologia, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico, Mexico
| | - Alfonso Salgado-Aguayo
- Laboratorio de Enfermedades Reumaticas, Departmento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico, Mexico
| | | | - Dolores Aguilar-Cazares
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico, Mexico
| |
Collapse
|
5
|
Cell Death in Hepatocellular Carcinoma: Pathogenesis and Therapeutic Opportunities. Cancers (Basel) 2021; 14:cancers14010048. [PMID: 35008212 PMCID: PMC8750350 DOI: 10.3390/cancers14010048] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The progression of liver tumors is highly influenced by the interactions between cancer cells and the surrounding environment, and, consequently, can determine whether the primary tumor regresses, metastasizes, or establishes micrometastases. In the context of liver cancer, cell death is a double-edged sword. On one hand, cell death promotes inflammation, fibrosis, and angiogenesis, which are tightly orchestrated by a variety of resident and infiltrating host cells. On the other hand, targeting cell death in advanced hepatocellular carcinoma could represent an attractive therapeutic approach for limiting tumor growth. Further studies are needed to investigate therapeutic strategies combining current chemotherapies with novel drugs targeting either cell death or the tumor microenvironment. Abstract Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the third leading cause of cancer death worldwide. Closely associated with liver inflammation and fibrosis, hepatocyte cell death is a common trigger for acute and chronic liver disease arising from different etiologies, including viral hepatitis, alcohol abuse, and fatty liver. In this review, we discuss the contribution of different types of cell death, including apoptosis, necroptosis, pyroptosis, or autophagy, to the progression of liver disease and the development of HCC. Interestingly, inflammasomes have recently emerged as pivotal innate sensors with a highly pathogenic role in various liver diseases. In this regard, an increased inflammatory response would act as a key element promoting a pro-oncogenic microenvironment that may result not only in tumor growth, but also in the formation of a premetastatic niche. Importantly, nonparenchymal hepatic cells, such as liver sinusoidal endothelial cells, hepatic stellate cells, and hepatic macrophages, play an important role in establishing the tumor microenvironment, stimulating tumorigenesis by paracrine communication through cytokines and/or angiocrine factors. Finally, we update the potential therapeutic options to inhibit tumorigenesis, and we propose different mechanisms to consider in the tumor microenvironment field for HCC resolution.
Collapse
|
6
|
Lurje I, Werner W, Mohr R, Roderburg C, Tacke F, Hammerich L. In Situ Vaccination as a Strategy to Modulate the Immune Microenvironment of Hepatocellular Carcinoma. Front Immunol 2021; 12:650486. [PMID: 34025657 PMCID: PMC8137829 DOI: 10.3389/fimmu.2021.650486] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is a highly prevalent malignancy that develops in patients with chronic liver diseases and dysregulated systemic and hepatic immunity. The tumor microenvironment (TME) contains tumor-associated macrophages (TAM), cancer-associated fibroblasts (CAF), regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) and is central to mediating immune evasion and resistance to therapy. The interplay between these cells types often leads to insufficient antigen presentation, preventing effective anti-tumor immune responses. In situ vaccines harness the tumor as the source of antigens and implement sequential immunomodulation to generate systemic and lasting antitumor immunity. Thus, in situ vaccines hold the promise to induce a switch from an immunosuppressive environment where HCC cells evade antigen presentation and suppress T cell responses towards an immunostimulatory environment enriched for activated cytotoxic cells. Pivotal steps of in situ vaccination include the induction of immunogenic cell death of tumor cells, a recruitment of antigen-presenting cells with a focus on dendritic cells, their loading and maturation and a subsequent cross-priming of CD8+ T cells to ensure cytotoxic activity against tumor cells. Several in situ vaccine approaches have been suggested, with vaccine regimens including oncolytic viruses, Flt3L, GM-CSF and TLR agonists. Moreover, combinations with checkpoint inhibitors have been suggested in HCC and other tumor entities. This review will give an overview of various in situ vaccine strategies for HCC, highlighting the potentials and pitfalls of in situ vaccines to treat liver cancer.
Collapse
Affiliation(s)
- Isabella Lurje
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Wiebke Werner
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
7
|
Ni YA, Chen H, Nie H, Zheng B, Gong Q. HMGB1: An overview of its roles in the pathogenesis of liver disease. J Leukoc Biol 2021; 110:987-998. [PMID: 33784425 DOI: 10.1002/jlb.3mr0121-277r] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/06/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is an abundant architectural chromosomal protein that has multiple biologic functions: gene transcription, DNA replication, DNA-damage repair, and cell signaling for inflammation. HMGB1 can be released passively by necrotic cells or secreted actively by activated immune cells into the extracellular milieu after injury. Extracellular HMGB1 acts as a damage-associated molecular pattern to initiate the innate inflammatory response to infection and injury by communicating with neighboring cells through binding to specific cell-surface receptors, including Toll-like receptors (TLRs) and the receptor for advanced glycation end products (RAGE). Numerous studies have suggested HMGB1 to act as a key protein mediating the pathogenesis of chronic and acute liver diseases, including nonalcoholic fatty liver disease, hepatocellular carcinoma, and hepatic ischemia/reperfusion injury. Here, we provide a detailed review that focuses on the role of HMGB1 and HMGB1-mediated inflammatory signaling pathways in the pathogenesis of liver diseases.
Collapse
Affiliation(s)
- Yuan-Ao Ni
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Hui Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| |
Collapse
|
8
|
Handke NA, Rupp ABA, Trimpop N, von Pawel J, Holdenrieder S. Soluble High Mobility Group Box 1 (HMGB1) Is a Promising Biomarker for Prediction of Therapy Response and Prognosis in Advanced Lung Cancer Patients. Diagnostics (Basel) 2021; 11:diagnostics11020356. [PMID: 33672622 PMCID: PMC7924191 DOI: 10.3390/diagnostics11020356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND High mobility group box 1 protein (HMGB1) is known for its significant elevation in a multitude of tumors and benign diseases. In this study, we investigated the relevance of soluble HMGB1 for the prediction and monitoring of therapy response as well as the estimation of prognosis in advanced lung cancer. MATERIALS AND METHODS In a retrospective study, HMGB1 levels were assessed by an enzyme-linked immunosorbent assay (ELISA) in the sera of 96 patients with advanced lung cancer (79 non-small-cell lung carcinoma (NSCLC); 14 small cell lung carcinoma (SCLC), 3 Mesothelioma) prior to cycles 1, 2, and 3 of chemotherapy and correlated with radiological therapy response after 2 and 4 cycles as well as with overall survival. In addition, HMGB1 was compared with established tumor markers cytokeratin 19-fragments (CYFRA 21-1), carcinoembryonic antigen (CEA) and neuron specific enolase (NSE). RESULTS While pretherapeutic HMGB1 levels were not predictive or prognostically relevant in NSCLC patients, HMGB1 values prior to cycles 2 and 3 as well as kinetics from cycle 1 to 2 discriminated significantly between patients with good (remission and stable disease) and poor response (progression). Performance of HMGB1 in receiver operating characteristic (ROC) analyses of NSCLC patients, with areas under the curve (AUCs) of 0.690 at cycle 2 and 0.794 at cycle 3 as well as sensitivities of 34.4% and 37.5%, respectively, for progression at 90% specificity, was comparable with the best tumor-associated antigen CYFRA 21-1 (AUCs 0.719 and 0.799; sensitivities of 37.5% and 41.7%, respectively). Furthermore, high concentrations of HMGB1 at cycles 2 and 3 were associated with shorter overall survival in NSCLC patients. CONCLUSION Soluble HMGB1 is a promising biomarker for prediction of therapy response and prognosis in advanced NSCLC patients.
Collapse
Affiliation(s)
- Nikolaus A. Handke
- Department of Radiology, University Hospital Bonn, 53127 Bonn, Germany;
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany; (A.B.A.R.); (N.T.)
| | - Alexander B. A. Rupp
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany; (A.B.A.R.); (N.T.)
- Institute of Laboratory Medicine, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
| | - Nicolai Trimpop
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany; (A.B.A.R.); (N.T.)
| | - Joachim von Pawel
- Asklepios Lungen-Fachkliniken München-Gauting, 82131 Gauting, Germany;
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany; (A.B.A.R.); (N.T.)
- Institute of Laboratory Medicine, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
- Correspondence:
| |
Collapse
|
9
|
Zhang Y, Ren H, Li J, Xue R, Liu H, Zhu Z, Pan C, Lin Y, Hu A, Gou P, Cai J, Zhou J, Zhu W, Shi X. Elevated HMGB1 expression induced by hepatitis B virus X protein promotes epithelial-mesenchymal transition and angiogenesis through STAT3/miR-34a/NF-κB in primary liver cancer. Am J Cancer Res 2021; 11:479-494. [PMID: 33575082 PMCID: PMC7868754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023] Open
Abstract
HBV infection plays a crucial role in primary liver cancer development. Also, HBV related liver cancer has higher invasiveness and earlier discovered distant metastasis. HBV-encoded X protein (HBx) exerts various biological functions on liver cancer progression, including proliferation, invasion, and venous metastasis. There is evidence that High-mobility group box 1 (HMGB1) promotes epithelial-mesenchymal transition (EMT) and angiogenesis of tumors, including liver cancer. Therefore, this study investigates whether HMGB1 mediates HBx-induced EMT and angiogenesis in HBV related liver cancer. We collected 76 tumor samples of primary liver cancer patients to analyze the relationship between HMGB1 and portal vein tumor thrombus (PVTT) in HBV related liver cancer. To test the influence of HMGB1 on EMT and angiogenesis, we constructed HBx lentivirus transfected HepG2/Huh7 cell lines and performed invasion assays, tube formation and in vivo metastatic experiments. We evaluated HMGB1 and STAT3/miR-34a/NF-κB pathway in vivo and in vitro by immunoblot, quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence and immunohistochemistry analysis. Subsequent RNA interference (RNAi) and luciferase reporter assay were conducted to detect the functional correlation between HMGB1 and STAT3/miR-34a/NF-κB pathway. Our results showed enhanced expression of HMGB1 in HBV related liver cancer, especially with PVTT, while HMGB1 expression was associated with tumor invasion and metastasis. Further experiments indicated that the activation of STAT3 mediated HBx-induced HMGB1, which is involved in EMT and tumor angiogenesis. Besides, HMGB1 expression stimulated by HBx was dependent on the activation of the NF-κB signaling pathway, which was inhibited by miR-34a, while STAT3 suppressed the expression of miR-34a. Moreover, extracellular HMGB1 induced the IL-6/STAT3/miR-34a axis activation, which indicated a reciprocal relationship between HMGB1 and miR-34a. Collectively, our study provided evidence to reveal that HBx-mediated high expression of HMGB1 accounted for EMT and tumor angiogenesis in HBV related liver cancer, and HMGB1 may be a potential target for predicting venous metastasis.
Collapse
Affiliation(s)
- Yuheng Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School321, Zhongshan Road, Nanjing 210008, Jiangsu, P. R. China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School321, Zhongshan Road, Nanjing 210008, Jiangsu, P. R. China
| | - Jun Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei 230022, Anhui, P. R. China
| | - Ruifeng Xue
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School321, Zhongshan Road, Nanjing 210008, Jiangsu, P. R. China
| | - Hanyi Liu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School321, Zhongshan Road, Nanjing 210008, Jiangsu, P. R. China
| | - Zhengyi Zhu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School321, Zhongshan Road, Nanjing 210008, Jiangsu, P. R. China
| | - Chenyan Pan
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School321, Zhongshan Road, Nanjing 210008, Jiangsu, P. R. China
| | - Yunzhen Lin
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School321, Zhongshan Road, Nanjing 210008, Jiangsu, P. R. China
| | - Anyin Hu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School321, Zhongshan Road, Nanjing 210008, Jiangsu, P. R. China
| | - Peng Gou
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School321, Zhongshan Road, Nanjing 210008, Jiangsu, P. R. China
| | - Jiahui Cai
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School321, Zhongshan Road, Nanjing 210008, Jiangsu, P. R. China
| | - Jingchao Zhou
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School321, Zhongshan Road, Nanjing 210008, Jiangsu, P. R. China
| | - Wei Zhu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School321, Zhongshan Road, Nanjing 210008, Jiangsu, P. R. China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School321, Zhongshan Road, Nanjing 210008, Jiangsu, P. R. China
| |
Collapse
|
10
|
Bachmann M, Lamprecht L, Gonther S, Pfeilschifter J, Mühl H. A murine cellular model of necroinflammation displays RAGE-dependent cytokine induction that connects to hepatoma cell injury. J Cell Mol Med 2020; 24:10356-10366. [PMID: 32697038 PMCID: PMC7521286 DOI: 10.1111/jcmm.15649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Unresolved inflammation maintained by release of danger‐associated molecular patterns, particularly high‐mobility group box‐1 (HMGB1), is crucial for hepatocellular carcinoma (HCC) pathogenesis. To further characterize interactions between leucocytes and necrotic cancerous tissue, a cellular model of necroinflammation was studied in which murine Raw 264.7 macrophages or primary splenocytes were exposed to necrotic lysates (N‐lys) of murine hepatoma cells or primary hepatocytes. In comparison to those derived from primary hepatocytes, N‐lys from hepatoma cells were highly active—inducing in macrophages efficient expression of inflammatory cytokines like C‐X‐C motif ligand‐2 , tumor necrosis factor‐α, interleukin (IL)‐6 and IL‐23‐p19. This activity associated with higher levels of HMGB1 in hepatoma cells and was curbed by pharmacological blockage of the receptor for advanced glycation end product (RAGE)/HMGB1 axis or the mitogen‐activated protein kinases ERK1/2 pathway. Analysis of murine splenocytes furthermore demonstrated that N‐lys did not comprise of functionally relevant amounts of TLR4 agonists. Finally, N‐lys derived from hepatoma cells supported inflammatory splenic Th17 and Th1 polarization as detected by IL‐17, IL‐22 or interferon‐γ production. Altogether, a straightforward applicable model was established which allows for biochemical characterization of immunoregulation by HCC necrosis in cell culture. Data presented indicate a remarkably inflammatory capacity of necrotic hepatoma cells that, at least partly, depends on the RAGE/HMGB1 axis and may shape immunological properties of the HCC microenvironment.
Collapse
Affiliation(s)
- Malte Bachmann
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Laura Lamprecht
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Sina Gonther
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Heiko Mühl
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Yamazaki T, Vanpouille-Box C, Demaria S, Galluzzi L. Immunogenic Cell Death Driven by Radiation-Impact on the Tumor Microenvironment. Cancer Treat Res 2020; 180:281-296. [PMID: 32215874 DOI: 10.1007/978-3-030-38862-1_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Immunogenic cell death (ICD) is a particular form of cell death that can initiate adaptive immunity against antigens expressed by dying cells in the absence of exogenous adjuvants. This implies that cells undergoing ICD not only express antigens that are not covered by thymic tolerance, but also deliver adjuvant-like signals that enable the recruitment and maturation of antigen-presenting cells toward an immunostimulatory phenotype, culminating with robust cross-priming of antigen-specific CD8+ T cells. Such damage-associated molecular patterns (DAMPs), which encompass cellular proteins, small metabolites and cytokines, are emitted in a spatiotemporally defined manner in the context of failing adaptation to stress. Radiation therapy (RT) is a bona fide inducer of ICD, at least when employed according to specific doses and fractionation schedules. Here, we discuss the mechanisms whereby DAMPs emitted by cancer cells undergoing RT-driven ICD alter the functional configuration of the tumor microenvironment.
Collapse
Affiliation(s)
- Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
- Université de Paris, Paris, France.
| |
Collapse
|
12
|
Fang J, Ge X, Xu W, Xie J, Qin Z, Shi L, Yin W, Bian M, Wang H. Bioinformatics analysis of the prognosis and biological significance of HMGB1, HMGB2, and HMGB3 in gastric cancer. J Cell Physiol 2019; 235:3438-3446. [PMID: 31621076 DOI: 10.1002/jcp.29233] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/26/2019] [Indexed: 01/06/2023]
Abstract
High mobility group box (HMGB) consists primarily of HMGB1, HMGB2, and HMGB3 proteins. Although abnormal HMGB expression is associated with various tumors, the relationship with gastric cancer (GC) remains unclear. In this study, HMGB1, HMGB2, and HMGB3 expression was analyzed using the Oncomine and TCGA databases. Correlations between HMGB1, HMGB2, and HMGB3 and clinicopathological factors were analyzed. cBioPortal was used to analyze HMGB1, HMGB2, and HMGB3 genetic alterations and its gene regulation network in GC tissue. HMGB1, HMGB2, and HMGB3 expression was higher in tumor tissues than in normal tissues, especially in GC. High HMGB1, HMGB2, and HMGB3 expression may predict a poor prognosis among patients with GC (hazard ratios [HR] = 1.90; 95% confidence interval [CI]: [1.30-2.78]) and human digestive system neoplasm (HR = 1.85; 95% CI [1.64-2.10]). These findings suggest that HMGB1, HMGB2, and HMGB3 may be useful prognostic indicators for patients with GC.
Collapse
Affiliation(s)
- Jian Fang
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xuhui Ge
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Wenjing Xu
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jingjing Xie
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Zhongke Qin
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Liqing Shi
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Wenjie Yin
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Maohong Bian
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hao Wang
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
13
|
Yun Z, Meng F, Jiang P, Yue M, Li S. microRNA-548b suppresses aggressive phenotypes of hepatocellular carcinoma by directly targeting high-mobility group box 1 mRNA. Cancer Manag Res 2019; 11:5821-5834. [PMID: 31417317 PMCID: PMC6601050 DOI: 10.2147/cmar.s198615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/07/2019] [Indexed: 12/15/2022] Open
Abstract
Background and purpose: An increasing number of studies have revealed that microRNAs (miRNAs) are the main drivers of hepatocarcinogenesis including progression to later stages of liver cancer. Recently, miR-548b was identified as a cancer-related miRNA in glioma and tongue squamous cell carcinoma. Nonetheless, the expression pattern and specific roles of miR-548b in hepatocellular carcinoma (HCC) have not yet been clarified. Methods: Expression levels of miR-548b in HCC tissues and cell lines were measured by reverse-transcription quantitative PCR. In vitro and in vivo functional assays were performed to determine the effects of miR-548b on the malignant phenotypes of HCC cells. In addition, the molecular mechanisms by which miR-548b regulates the initiation and progression of HCC were investigated in detail. Results: miR-548b expression was weak in HCC tissues and cell lines. The low miR-548b expression significantly correlated with tumor size, TNM stage, and venous infiltration of HCC. In addition, exogenous miR-548b expression suppressed HCC cell proliferation, colony formation, and metastasis and induced apoptosis in vitro. Silencing of miR-548b exerted an opposite effect on these characteristics of HCC cells. Furthermore, miR-548b overexpression hindered tumor growth in vivo. Mechanistic analysis identified high-mobility group box 1 (HMGB1) as a direct target gene of miR-548b in HCC cells. Moreover, an HMGB1 knockdown reproduced the effects of miR-548b upregulation on HCC cells. Recovered HMGB1 expression reversed the effects of miR-548b on HCC cells. Notably, miR-548b overexpression deactivated the PI3K–AKT pathway in HCC cells in vitro and in vivo. Conclusion: Our findings provide the first evidence that miR-548b restrains HCC progression, at least partially, by downregulating HMGB1 and deactivating the PI3K–AKT pathway. Thus, miR-548b might be a novel target for the development of new therapies for HCC.
Collapse
Affiliation(s)
- Zhennan Yun
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Fanqi Meng
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Peiqiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Meng Yue
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Shiquan Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| |
Collapse
|
14
|
Tripathi A, Shrinet K, Kumar A. HMGB1 protein as a novel target for cancer. Toxicol Rep 2019; 6:253-261. [PMID: 30911468 PMCID: PMC6416660 DOI: 10.1016/j.toxrep.2019.03.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/23/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022] Open
Abstract
Highly conserved nuclear protein High Mobility Group Box1 (HMGB1) present in mammals has functionality as an immuno-modulator in the form of cytokine molecule, as a nuclear factor to regulate these molecules and DNA structural determination. It has proximal homologous DNA binding domains Box-A, Box-B and distal C-terminal domain. Reduced form exists in basic condition has chemotaxis activity, while form with disulphide bond reduced at 106th cysteine showed cytokine activity. The oxidized form is devoid of both activities. HMGB1 binds and bends dsDNA and also activates genes for secretion of inflammatory cytokines such as IL-1β, TNF-α, IL-6 and IL-18. It can interact with transcription factors Rel/NF-κB and p53 responsible for up-regulating oncogenes. Oxidative stressed injured tissues actively secrete HMGB1 outside cells to necrotize other nearby tissues passively in cytosol. Acetylation of HMGB1 weakens its binding with DNA, and promotes its migration to different tissues leading to secretion of inflammatory-cytokines. HMGB1 expression has been found very important in the genesis and promotion of different cancer by promoting metastasis. In current article, we emphasized on condition based structural variability of HMGB1, mechanism of release, physiological functions and its functionality as a biomarker for cancer to be targeted to curb cancer genesis and progression.
Collapse
Affiliation(s)
| | | | - Arvind Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
15
|
Zhang W, An F, Xia M, Zhan Q, Tian W, Jiao Y. Increased HMGB1 expression correlates with higher expression of c-IAP2 and pERK in colorectal cancer. Medicine (Baltimore) 2019; 98:e14069. [PMID: 30653121 PMCID: PMC6370169 DOI: 10.1097/md.0000000000014069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to investigate the relationship between high-mobility group box 1 (HMGB1) and colorectal cancer (CRC).In this prospective study, patients with CRC undergoing primary surgery and healthy subjects (control group) were enrolled from July 2013 to December 2014. The serum HMGB1 concentration and HMGB1 mRNA expression were determined using enzyme-linked immunosorbent assay reverse transcription-polymerase chain reaction, respectively. Immunohistochemical analysis was performed to determine HMGB1, pERK, and c-inhibitor of apoptosis protein 2 (c-IAP2) protein expression levels in the cancer tissues.A total 144 patients with CRC and 50 healthy subjects underwent serum HMGB1 testing. Resected specimens of 50 patients were used for HMGB1 mRNA and protein expression analyses. Mean serum HMGB1 level in the patients with CRC was higher than that of the control group (8.42 μg/L vs 1.79 μg/L, P < .05). Mean serum HMGB1 level in the patients with CRC with distant metastasis was significantly higher than that of the controls (13.32 μg/L vs 7.37 μg/L, P < .05). The HMGB1 mRNA and protein expression levels in the CRC tissues were significantly higher than those in the adjacent normal mucosa. HMGB1 protein expression positively correlated with the lymph node metastasis. There were positive correlations between HMGB1 and c-IAP2 (r = 0.457, P < .05), HMGB1 and pERK (r = 0.461, P < .05), as well as pERK and c-IAP2 (r = 0.399, P < .05).HMGB1 expression in CRC correlates with distant and lymph node metastasis. It may inhibit apoptosis by inducing activation of pERK and c-IAP2.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing, Medical University, Wuxi, Jiangsu
| | - Fangmei An
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing, Medical University, Wuxi, Jiangsu
| | - Min Xia
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing, Medical University, Wuxi, Jiangsu
| | - Qiang Zhan
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing, Medical University, Wuxi, Jiangsu
| | - Wenying Tian
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing, Medical University, Wuxi, Jiangsu
| | - Yang Jiao
- School of Radiation Medicine and Protection and Collaborative Innovation Center, Radiation Medicine of Jiangsu Higher Education Institutions, Medical School of Soochow University, Suzhou, China
| |
Collapse
|
16
|
miR-505 enhances doxorubicin-induced cytotoxicity in hepatocellular carcinoma through repressing the Akt pathway by directly targeting HMGB1. Biomed Pharmacother 2018; 104:613-621. [PMID: 29803174 DOI: 10.1016/j.biopha.2018.05.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/02/2018] [Accepted: 05/18/2018] [Indexed: 12/21/2022] Open
Abstract
Compelling evidence has suggested the relevance of miRNAs in resistance to chemotherapeutic agents in HCC. miR-505 was reported to be downregulated and function as a tumor suppressor in HCC cells by binding to high-mobility group box 1 (HMGB1). Whether miR-505/HMGB1 axis was involved in ADM cytotoxicity in HCC remains to be addressed. The aim of this study was to explore the effect of miR-505/HMGB1 axis on ADM cytotoxicity in HCC cells. MTT, flow cytometry analysis, and caspase-3 activity assays were conducted to assess ADM-induced cytotoxicity. The protein level of phosphorylation of histone H2 AX at Ser139 (γH2AX) was detected to evaluate DNA damage. The effects of miR-505 and HMGB1 on the protein kinase B (Akt) pathway were determined by examining the protein levels of phosphorylated Akt (p-Akt), Akt, phosphorylated glycogen synthase kinase-3β (p-GSK-3β), and GSK-3β. We found that HMGB1 knockdown and miR-505 overexpression exacerbated ADM-induced cell viability inhibition, enhanced ADM-induced apoptosis, and increased caspase-3 activity in ADM-treated HCC cells. However, HMGB1 overexpression reversed the effects of miR-505 on ADM-induced cytotoxicity in HCC cells. HMGB1 knockdown and miR-505 overexpression promoted ADM-induced DNA damage in HCC cells, which was abated by HMGB1 overexpression. On a molecular mechanism level, HMGB1 silencing and miR-505 overexpression inactivated the Akt pathway in HCC cells, while exogenous HMGB1 resisted miR-505-induced Akt pathway inactivation. In conclusion, miR-505 overexpression enhanced ADM-induced cytotoxicity in HCC cells, at least partly by targeting HMGB1 and inactivating the Akt pathway.
Collapse
|
17
|
Jiang M, Li X, Quan X, Li X, Zhou B. Single Nucleotide Polymorphisms in HMGB1 Correlate with Lung Cancer Risk in the Northeast Chinese Han Population. Molecules 2018; 23:E832. [PMID: 29617336 PMCID: PMC6017634 DOI: 10.3390/molecules23040832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is the principal cause of cancer-associated deaths. HMGB1 has been reported to be associated with tumorigenesis. This study aimed to investigate the relationship between rs1412125 and rs1360485 polymorphisms in HMGB1 and the risk and survival of lung cancer. 850 cases and 733 controls were included. Logistic regression analysis and survival analysis were performed to investigate the association between SNPs and the risk and survival of lung cancer. Crossover analysis was used to analyze the interaction between SNPs and tobacco exposure. Results indicated that rs1412125 polymorphism was associated with lung cancer risk, especially with the risk of lung adenocarcinoma and small cell lung cancer. Carriers with CT and CC genotypes had a decreased risk of lung cancer (CT + CC vs.TT: adjusted OR = 0.736, p = 0.004). Similar results were obtained in the stratification analysis for non-smokers and female population. For rs1360485 polymorphism, AG and GG genotypes could decrease the risk of lung adenocarcinoma and female lung cancer by 0.771-fold and 0.789-fold. However, no significant interaction between polymorphisms and tobacco exposure or association between SNPs and the survival of lung cancer was observed. This study indicated polymorphisms in HMGB1 may be a novel biomarker for female lung adenocarcinoma risk.
Collapse
Affiliation(s)
- Min Jiang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China.
- Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Province Department of Education, Shenyang 110122, China.
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China.
- Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Province Department of Education, Shenyang 110122, China.
| | - Xiaowei Quan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China.
- Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Province Department of Education, Shenyang 110122, China.
| | - Xiaoying Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China.
- Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Province Department of Education, Shenyang 110122, China.
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China.
- Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Province Department of Education, Shenyang 110122, China.
| |
Collapse
|
18
|
MicroRNA-Mediated Regulation of HMGB1 in Human Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2754941. [PMID: 29651425 PMCID: PMC5832039 DOI: 10.1155/2018/2754941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/04/2018] [Indexed: 12/15/2022]
Abstract
High-mobility group box 1 (HMGB1) is a potential therapeutic target and novel biomarker in a variety of malignant tumors, including hepatocellular carcinoma (HCC). More recently, a number of microRNAs (miRNAs) are identified as a class of regulators for broad control of HMGB1-mediated biological actions in eukaryotic cells. In this review article we will describe representative miRNAs involved in regulating the HMGB1 signaling pathways in HCC cell lines and/or animal models. We also propose the possible mechanisms underlying the miRNA/HMGB1 axis and discuss the future clinical significance of miRNAs targeting HMGB1 molecule for HCC therapy.
Collapse
|
19
|
Precision diagnosis and treatment of liver cancer in China. Cancer Lett 2018; 412:283-288. [DOI: 10.1016/j.canlet.2017.10.008] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023]
|
20
|
A. Richard S. High-mobility group box 1 is a promising diagnostic and therapeutic monitoring biomarker in Cancers: A review. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.4.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
21
|
Xiao Y, Sun L, Fu Y, Huang Y, Zhou R, Hu X, Zhou P, Quan J, Li N, Fan XG. High mobility group box 1 promotes sorafenib resistance in HepG2 cells and in vivo. BMC Cancer 2017; 17:857. [PMID: 29246127 PMCID: PMC5731191 DOI: 10.1186/s12885-017-3868-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/29/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Primary liver cancer is a lethal malignancy with a high mortality worldwide. Currently, sorafenib is the most effective molecular-targeted drug against hepatocellular carcinoma (HCC). However, the sorafenib resistance rate is high. The molecular mechanism of this resistance has not been fully elucidated. High mobility group box 1 (HMGB1) is a multifaceted protein that plays a key role in the proliferation, apoptosis, metastasis and angiogenesis of HCC cells. In addition, HMGB1 has been suggested to contribute to chemotherapy resistance in tumours, including lung cancer, osteosarcoma, neuroblastoma, leukaemia, and colorectal cancer. This study investigated the association between HMGB1 and sorafenib resistance in HCC. METHODS HepG2 cells with HMGB1 knockdown or overexpression were generated. The efficacy of sorafenib in these cells was tested using flow cytometry and a cell counting assay. The subcellular localization of HMGB1 in HepG2 cells following sorafenib treatment was measured by western blotting and confocal microscopy. A murine subcutaneous HCC model was generated to examine the association between HMGB1 and the sensitivity of sorafenib treatment. RESULTS The HMGB1 knockdown cells exhibited a significantly higher apoptotic level and lower cell viability than the normal HMGB1 expressing cells following the sorafenib treatment. In addition, the cell viability observed in the HMGB1 overexpressing cells was higher than that observed in the control cells following the sorafenib intervention. Sorafenib had a better tumour inhibition effect in the HMGB1 knockdown group in vivo. The amount of mitochondrial HMGB1 decreased, while the amount of cytosolic HMGB1 increased following the exposure to sorafenib. Altogether, HMGB1 translocated from the mitochondria to the cytoplasm outside the mitochondria following the exposure of HepG2 cells to sorafenib. CONCLUSIONS A novel potential role of HMGB1 in the regulation of sorafenib therapy resistance in HCC was observed. The knockdown of HMGB1 restores sensitivity to sorafenib and enhances HepG2 cell death, while HMGB1 overexpression blunts these effects. The translocation of HMGB1 from the mitochondria to the cytosol following sorafenib treatment provides new insight into sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Yinzong Xiao
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University, Changsha, 410008, China
| | - Yongming Fu
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Huang
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Rongrong Zhou
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xingwang Hu
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Pengcheng Zhou
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jun Quan
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Xue-Gong Fan
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
22
|
Liu YJ, Li W, Chang F, Liu JN, Lin JX, Chen DX. MicroRNA-505 is downregulated in human osteosarcoma and regulates cell proliferation, migration and invasion. Oncol Rep 2017; 39:491-500. [PMID: 29251324 PMCID: PMC5783616 DOI: 10.3892/or.2017.6142] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/23/2017] [Indexed: 02/05/2023] Open
Abstract
Recent studies have demonstrated that microRNAs (miRNAs/miRs) are involved in osteosarcoma tumorigenesis, progression, invasion and metastasis. For example, miR-505 plays important roles in human carcinogenesis; however, its exact function in osteosarcoma remains unclear. MicroRNA profiles of osteosarcoma and normal tissues were obtained by miRNA microarray assays, which were validated by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Then, high-mobility group box 1 (HMGB1) expression was evaluated by qRT-PCR and western blot analysis. The correlation between miR-505 and HMGB1 was analyzed by Pearson correlation. In vitro, the biological functions of miR-505 were examined by wound healing, MTT and Transwell assays and western blot analysis in MG63 cells transfected with miRNA mimics or empty vector. Luciferase assay was utilized to assess whether HMGB1 is a target of miR-505. miRNA microarrays revealed 26 aberrant miRNAs in osteosarcoma tissues; miR-505 showed the most pronounced decrease (P<0.01), which was significantly associated with TNM stage and metastasis status (P<0.05). In addition, HMGB1 was highly expressed in osteosarcoma tissues (P<0.01), with a significantly negative correlation with miR-505 (r=−0.6679, P<0.001). Furthermore, miR-505 inhibited proliferation, migration and invasion abilities of MG63 cells (P<0.01). Moreover, luciferase activity of the HMGB1-3′-UTR plasmid was suppressed following miR-505 binding (P<0.01). Finally, HMGB1 overexpression partly reversed the effects of miR-505 on MG63 cells. In conclusion, miR-505 levels are decreased in osteosarcoma tissues, and reduced miR-505 expression is significantly associated with poorer clinical prognosis in patients with osteosarcomas. miR-505 inhibits osteosarcoma cell proliferation, migration and invasion by regulating HMGB1.
Collapse
Affiliation(s)
- Yu-Jiang Liu
- Department of Spine Surgery, Hiser Medical Center of Qingdao, Qingdao, Shandong 266000, P.R. China
| | - Wei Li
- Department of Spine Surgery, Hiser Medical Center of Qingdao, Qingdao, Shandong 266000, P.R. China
| | - Feng Chang
- Department of Spine Surgery, Hiser Medical Center of Qingdao, Qingdao, Shandong 266000, P.R. China
| | - Jian-Na Liu
- Department of Spine Surgery, Hiser Medical Center of Qingdao, Qingdao, Shandong 266000, P.R. China
| | - Jun-Xin Lin
- Department of Orthopedics, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong 266000, P.R. China
| | - De-Xi Chen
- Department of Spine Surgery, Hiser Medical Center of Qingdao, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
23
|
Fumigaclavine C exhibits anti-inflammatory effects by suppressing high mobility group box protein 1 relocation and release. Eur J Pharmacol 2017; 812:234-242. [DOI: 10.1016/j.ejphar.2017.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 12/25/2022]
|
24
|
Berretta M, Cavaliere C, Alessandrini L, Stanzione B, Facchini G, Balestreri L, Perin T, Canzonieri V. Serum and tissue markers in hepatocellular carcinoma and cholangiocarcinoma: clinical and prognostic implications. Oncotarget 2017; 8:14192-14220. [PMID: 28077782 PMCID: PMC5355172 DOI: 10.18632/oncotarget.13929] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022] Open
Abstract
HCC represents the sixth most common cancer worldwide and the second leading cause of cancer-related death. Despite the high incidence, treatment options for advanced HCC remain limited and unsuccessful, resulting in a poor prognosis. Despite the major advances achieved in the diagnostic management of HCC, only one third of the newly diagnosed patients are presently eligible for curative treatments. Advances in technology and an increased understanding of HCC biology have led to the discovery of novel biomarkers. Improving our knowledge about serum and tissutal markers could ultimately lead to an early diagnosis and better and early treatment strategies for this deadly disease. Serum biomarkers are striking potential tools for surveillance and early diagnosis of HCC thanks to the non-invasive, objective, and reproducible assessments they potentially enable. To date, many biomarkers have been proposed in the diagnosis of HCC. Cholangiocarcinoma (CCA) is an aggressive malignancy, characterized by early lymph node involvement and distant metastasis, with 5-year survival rates of 5%-10%. The identification of new biomarkers with diagnostic, prognostic or predictive value is especially important as resection (by surgery or combined with a liver transplant) has shown promising results and novel therapies are emerging. However, the relatively low incidence of CCA, high frequency of co-existing cholestasis or cholangitis (primary sclerosing cholangitis –PSC- above all), and difficulties with obtaining adequate samples, despite advances in sampling techniques and in endoscopic visualization of the bile ducts, have complicated the search for accurate biomarkers. In this review, we attempt to analyze the existing literature on this argument.
Collapse
Affiliation(s)
| | - Carla Cavaliere
- Department of Onco-Ematology Medical Oncology, S.G. Moscati Hospital of Taranto Taranto, Italy
| | - Lara Alessandrini
- Division of Pathology, National Cancer Institute, Aviano (PN), Italy
| | - Brigida Stanzione
- Department of Medical Oncology, National Cancer Institute, Aviano (PN), Italy
| | - Gaetano Facchini
- Department of Medical Oncology, National Cancer Institute, "G. Pascale" Foundation, Naples, Italy
| | - Luca Balestreri
- Department of Radiology, National Cancer Institute, Aviano (PN), Italy
| | - Tiziana Perin
- Division of Pathology, National Cancer Institute, Aviano (PN), Italy
| | | |
Collapse
|
25
|
He SJ, Cheng J, Feng X, Yu Y, Tian L, Huang Q. The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget 2017; 8:64534-64550. [PMID: 28969092 PMCID: PMC5610024 DOI: 10.18632/oncotarget.17885] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is an abundant protein in most eukaryocytes. It can bind to several receptors such as advanced glycation end products (RAGE) and Toll-like receptors (TLRs), in direct or indirect way. The biological effects of HMGB1 depend on its expression and subcellular location. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription, telomere maintenance, and genome stability. While outside the nucleus, it possesses more complicated functions, including regulating cell proliferation, autophagy, inflammation and immunity. During tumor development, HMGB1 has been characterized as both a pro- and anti-tumoral protein by either promoting or suppressing tumor growth, proliferation, angiogenesis, invasion and metastasis. However, the current knowledge concerning the positive and negative effects of HMGB1 on tumor development is not explicit. Here, we evaluate the role of HMGB1 in tumor development and attempt to reconcile the dual effects of HMGB1 in carcinogenesis. Furthermore, we would like to present current strategies targeting against HMGB1, its receptor or release, which have shown potentially therapeutic value in cancer intervention.
Collapse
Affiliation(s)
- Si-Jia He
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Cheng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Feng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yu
- Oncology Department, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ling Tian
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Li S, Huang Y, Huang Y, Fu Y, Tang D, Kang R, Zhou R, Fan XG. The long non-coding RNA TP73-AS1 modulates HCC cell proliferation through miR-200a-dependent HMGB1/RAGE regulation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:51. [PMID: 28403886 PMCID: PMC5389141 DOI: 10.1186/s13046-017-0519-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/28/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND P73 antisense RNA 1 T (non-protein coding), also known as TP73-AS1, is a long non-coding RNA (lncRNA) which is involved in cell proliferation and the development of tumors. However, the exact effects and molecular mechanisms of TP73-AS1 in hepatocellular carcinoma (HCC) progression are still unknown. The present study is aimed to investigate the detailed functions and the mechanism of TP73-AS1 in regulation of HCC cell proliferation. METHODS TP73-AS1 expression in HCC tissues and cell lines was determined using real-time PCR assays; the correlation of TP73-AS1 expression with clinicopathological features of HCC was analyzed. The functions of TP73-AS1 in regulation of HCC cell proliferation was evaluated using MTT and BrdU assays. The candidate upstream miRNAs of HMGB1 were screened using miRcode, miRWalk, miRanda and Target scan, verified using real-time PCR assays. The interaction between TP73-AS1 and miR-200a was confirmed using Luciferase report gene assays. The proten levels of HMGB1 signaling-related factors in response to co-processing TP73-AS1 knockdown and miR-200a inhibition were determined using Western blot assays and ELISA. Further, miR-200a, HMGB1 mRNA and RAGE mRNA and their correlations in HCC tissues were determined. RESULTS TP73-AS1 was upregulated in HCC tissues and cell lines. High TP73-AS1 expression was correlated with worse clinicopathological features, poorer prognosis and shorter survival. Knockdown of TP73-AS1 inhibited the HCC proliferation and the expression levels of HMGB1, RAGE and NF-κB in HCC cells. By using online tools, we screened out several candidate upstream miRNAs of HMGB1, among which miR-200a overexpression inhibited HMGB1 mRNA expression the most significantly. By using luciferase assays, we confirmed that miR-200a could directly bind to TP73-AS1 and the 3'UTR of HMGB1; TP73-AS1 competed with HMGB1 for miR-200a binding. MiR-200a inhibition could up-regulate HMGB1, RAGE, NF-κB expression as well as NF-κB regulated cytokines levels, which could be partially restored by si-TP73-AS1. In HCC tissues, miR-200a was down-regulated while HMGB1 and RAGE were up-regulated; TP73-AS1 was inversely correlated with miR-200a, while positively correlated with HMGB1 and RAGE, respectively. CONCLUSION Our data indicated that TP73-AS1 might be an oncogenic lncRNA that promoted proliferation of HCC and could be regarded as a therapeutic target in human HCC.
Collapse
Affiliation(s)
- Shaling Li
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Huang
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yun Huang
- Department of Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yongming Fu
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Rongrong Zhou
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Xue-Gong Fan
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
27
|
Zhu J, Luo J, Li Y, Jia M, Wang Y, Huang Y, Ke S. HMGB1 induces human non-small cell lung cancer cell motility by activating integrin αvβ3/FAK through TLR4/NF-κB signaling pathway. Biochem Biophys Res Commun 2016; 480:522-527. [DOI: 10.1016/j.bbrc.2016.10.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/17/2016] [Indexed: 01/10/2023]
|
28
|
Gu J, Xu R, Li Y, Zhang J, Wang S. MicroRNA-218 modulates activities of glioma cells by targeting HMGB1. Am J Transl Res 2016; 8:3780-3790. [PMID: 27725858 PMCID: PMC5040676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
To explore the effects of microRNA-218 (miR-218) on glioma cell lines and the related mechanism. U251 and U87 cells were transfected with negative control, miR-218 mimic or miR-218 inhibitor using lipofectamine 2000. The expressions of mRNA and proteins were detected with qRT-PCR and Western blotting. The cell proliferation, apoptosis, migration and invasion were studied using MTT, flow cytometry, Transwell assay and scratch-wound assay, respectively. The targeting effect of HMGB1 by miR-218 was measured with luciferase reporter assay. The results showed that miR-218 was significantly downregulated while HMGB1 was upregulated in both glioma cell lines. Transfection of miR-218 significantly reduced the cell viability and colony formation, increased cell apoptosis and arrested cell in G0/G1 phase. Transfection of miR-218 also decreased the invasion and migration of glioma cells. The expressions of HMGB1, RAGE, cyclin D1 and MMP-9 were downregulated while the expression of caspase-9 was upregulated by miR-218. Silencing HMGB1 increased the expression of RAGE, cyclin D1, MMP-9 but decreased the expression of caspase-9 in U251 and U87 cells. Co-transfection with pcHMGB1 and miR-218 significantly decreased the growth inhibition and increased the apoptosis of glioma cells while these effects were abolished in glioma cells co-transfected with HMGB1 siRNA and miR-218 inhibitor. In addition, co-transfection with pcHMGB1 and miR-218 inhibitor increased the invasiveness of U251 and U87 cells. These findings suggested that miR-218 may negatively regulate HMGB-mediated suppression of RAGE to regulate cell proliferation, apoptosis and invasion, and that intervention of miR-218-HMGB1-RAGE may be useful for developing potential clinical strategies.
Collapse
Affiliation(s)
- Jianjun Gu
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College156 Road Xi’erhuanbei, Fuzhou 350025, Fujian, P. R. China
| | - Rong Xu
- Department of Neurosurgery, Huashan Hospital Affiliated to Fudan UniversityShanghai 200040, P. R. China
| | - Yaxing Li
- Department of Oncology, Taizhou People’s Hospital Affiliated to Medical College of The Nantong UniversityTaizhou 225300, Jiangsu, P. R. China
| | - Jianhe Zhang
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College156 Road Xi’erhuanbei, Fuzhou 350025, Fujian, P. R. China
| | - Shousen Wang
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College156 Road Xi’erhuanbei, Fuzhou 350025, Fujian, P. R. China
| |
Collapse
|
29
|
Wu T, Zhang W, Yang G, Li H, Chen Q, Song R, Zhao L. HMGB1 overexpression as a prognostic factor for survival in cancer: a meta-analysis and systematic review. Oncotarget 2016; 7:50417-50427. [PMID: 27391431 PMCID: PMC5226592 DOI: 10.18632/oncotarget.10413] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 06/12/2016] [Indexed: 12/16/2022] Open
Abstract
As there are millions of cancer deaths every year, it is of great value to identify applicable prognostic biomarkers. As an important alarm, the prognostic role of high mobility group box 1 (HMGB1) in cancer remains controversial. We aim to assess the association of HMGB1 expression with prognosis in cancer patients. Systematic literature searches of PubMed, Embase and Web of Science databases were performed for eligible studies of HMGB1 as prognostic factor in cancer. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to evaluate the influence of HMGB1 expression on overall survival (OS) and progression-free survival (PFS) in cancer patients. 18 studies involving 11 different tumor types were included in meta-analysis. HMGB1 overexpression was significantly associated with poorer OS (HR: 1.99; 95% CI, 1.71-2.31) and PFS (HR: 2.26; 95% CI, 1.65-3.10) irrespective of cancer types including gastric cancer, colorectal cancer, hepatocellular carcinoma, pancreatic cancer, nasopharyngeal carcinoma, head and neck squamous-cell carcinoma, esophageal cancer, malignant pleural mesothelioma, bladder cancer, prostate cancer, and cervical carcinoma. Subgroup analyses indicated geographical area and size of studies did not affect the prognostic effects of HMGB1 for OS. Morever, HMGB1 overexpression had a consistent correlation with poorer OS when detected by immunohistochemistry in tissues and enzyme-linked immunosorbent assay in serum, whereas the correlation did not exist by quantitative real-time reverse-transcription polymerase chain reaction in tissues. HMGB1 overexpression is associated with poorer prognosis in patients with various types of cancer, suggesting that it is a prognostic factor and potential biomarker for survival in cancer.
Collapse
Affiliation(s)
- Tengyun Wu
- Air Force General Hospital of Chinese People's Liberation Army, Beijing 100142, China
| | - Wei Zhang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Geliang Yang
- Department of Integrated Oncology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Huijun Li
- The Wright Center, Scranton, Pennsylvania 18510, USA
| | - Qi Chen
- Department of Health Statistics, Faculty of Health Service, Second Military Medical University, Shanghai 200433, China
| | - Ruixiang Song
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Lin Zhao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
30
|
Chen Y, Lin C, Liu Y, Jiang Y. HMGB1 promotes HCC progression partly by downregulating p21 via ERK/c-Myc pathway and upregulating MMP-2. Tumour Biol 2016; 37:4399-408. [PMID: 26499944 PMCID: PMC4844642 DOI: 10.1007/s13277-015-4049-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
High-mobility group box 1 (HMGB1) was found to be over-expressed in many kinds of human cancer, which binds with several receptors and activates RAGE-Ras-MAPK, Toll-like receptors, NF-κB, and Src family kinase signaling pathways and plays a crucial role in tumorigenesis and cancer progression. However, the function and mechanism of HMGB1 in hepatocellular carcinoma (HCC) remain unclear. The aim of this study was to investigate the effect of HMGB1 on HCC progression and explore new molecular mechanism. HMGB1 transient knockdown, stable knockdown, and re-expression were performed by transfection with specific siRNA, shRNA, or expression vector in HCCLM3 cells. Results showed that transient knockdown HMGB1 prevented cell proliferation, promoted apoptosis, induced S phase arrest, and inhibited migration and invasion in vitro, and stable knockdown HMGB1 inhibited xenograft growth in Balb/c athymic mice in vivo. Molecular mechanism investigation revealed that knockdown HMGB1 significantly reduced the activation of MAPKs, including ERK1/2, p38, SAPK/JNK, as well as MAPKKs (MEK1/2, SEK1) and its substrates (c-Jun, c-Myc); downregulated NF-κB/p65 expression and phosphorylation level; decreased MMP-2 expression and activity; and upregulated p21 expression. Interestingly, c-Myc was firstly found to be involved in the promoting function of HMGB1 on HCC progression, which provided a novel clue for the inhibitory effect of HMGB1 on p21 expression by a p53-independent pathway. Collectively, these findings indicated that HMGB1 promoted HCC progression partly by enhancing the ERK1/2 and NF-κB pathways, upregulating MMP-2, and downregulating p21 via an ERK/c-Myc pathway.
Collapse
Affiliation(s)
- Yanmei Chen
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Yixueyuan Rd 138, Shanghai, 200032, China
| | - Chengzhao Lin
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Yixueyuan Rd 138, Shanghai, 200032, China
| | - Yang Liu
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Yixueyuan Rd 138, Shanghai, 200032, China
| | - Yan Jiang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Yixueyuan Rd 138, Shanghai, 200032, China.
- Department of Chemistry, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
He J, Zhang P, Li Q, Zhou D, Liu P. Expression of high mobility group box 1 protein predicts a poorer prognosis for patients with osteosarcoma. Oncol Lett 2015; 11:293-298. [PMID: 26870206 DOI: 10.3892/ol.2015.3907] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 10/21/2015] [Indexed: 12/28/2022] Open
Abstract
The high mobility group box 1 (HMGB1) protein functions as an extracellular signaling molecule that is critical in inflammation and carcinogenesis. The HMGB1 protein is actively secreted by natural killer cells, monocytes and macrophages, and acts as an inflammatory cytokine. The present study enrolled 174 patients that underwent a tumorectomy between 2006 and 2013 in Shandong Provincial Hospital. The age of the patients ranged between 13 and 74 years, with a median age of 27 years. The tumors of the patients were staged according to the Union for International Cancer Control 2009 tumor-node-metastasis tumor staging system. Nuclear grading was based on the Fuhrman grading system. In the osteosarcoma tissue samples, HMGB1 expression was detected in 84 samples (48.3%) with a low immunoreactivity and in 90 samples (51.7%) with a high immunoreactivity. The association between clinicopathological characteristics and tumor cell HMGB1 expression (low vs. high) was summarized. The association between HMGB1 expression and tumor size, tumor stage and nuclear grade was statistically significant (P=0.034, 0.008 and 0.019, respectively). There was no significant association between HMGB1 expression and the age of the patients (P=0.335; Table I). The current study demonstrated that patients with a high HMGB1 expression (>50% cells expressing HMGB1) had poorer survival rates, and therefore a poorer prognosis, compared with patients with low HMGB1 immunostaining (10-50% cells expressing HMGB1). The results of the present study suggest that higher expression levels of HMGB1 are significantly associated with a poorer prognosis and may act as a marker for prognosis in osteosarcoma, particularly osteosarcoma recurrence. Additional studies investigating the biological features of HMGB1 may confirm the potential role of HMGB1 as a novel target for anticancer therapy in osteosarcoma.
Collapse
Affiliation(s)
- Jiliang He
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Peng Zhang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Qinghu Li
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Dongsheng Zhou
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ping Liu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
32
|
Zhou RR, Kuang XY, Huang Y, Li N, Zou MX, Tang DL, Fan XG. Potential role of High mobility group box 1 in hepatocellular carcinoma. Cell Adh Migr 2015; 8:493-8. [PMID: 25482616 DOI: 10.4161/19336918.2014.969139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and is characterized as a typical inflammation-related carcinoma. High mobility group box protein 1 (HMGB1), a non-histone DNA-binding protein, is identified as a potent proinflammatory mediator when presents extracellularly. Recently, a growing body of evidence indicates that HMGB1 plays a potential role in HCC, but many questions remain unanswered about the relationship between HMGB1 and HCC formation and development. This review focuses on the biological effect of HMGB1, and discusses the association of HMGB1 with HCC and potential use of strategies targeting HMGB1 in HCC treatment.
Collapse
Affiliation(s)
- Rong-Rong Zhou
- a Department of infectious diseases and Key laboratory of liver hepatitis in Hunan ; Xiangya Hospital ; Central South University ; Changsha , PR China
| | | | | | | | | | | | | |
Collapse
|
33
|
Wang X, Xiang L, Li H, Chen P, Feng Y, Zhang J, Yang N, Li F, Wang Y, Zhang Q, Li F, Cao F. The Role of HMGB1 Signaling Pathway in the Development and Progression of Hepatocellular Carcinoma: A Review. Int J Mol Sci 2015; 16:22527-40. [PMID: 26393575 PMCID: PMC4613322 DOI: 10.3390/ijms160922527] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 12/15/2022] Open
Abstract
The story of high mobility group protein B1 (HMGB1) in cancer is complicated and the function of HMGB1 in different cancers is uncertain. This review aims to retrieve literature regarding HMGB1 from English electronic resources, analyze and summarize the role of the HMGB1 signaling pathway in hepatocellular carcinoma (HCC), and provide useful information for carcinogenesis and progression of HCC. Results showed that HMGB1 could induce cell proliferation, differentiation, cell death, angiogenesis, metastasis, inflammation, and enhance immunofunction in in vitro and in vivo HCC models. HMGB1 and its downstream receptors RAGE, TLRs and TREM-1 may be potential anticancer targets. In conclusion, HMGB1 plays an important role in oncogenesis and represents a novel therapeutic target, which deserves further study.
Collapse
Affiliation(s)
- Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Longchao Xiang
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Hongliang Li
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Ping Chen
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Yibin Feng
- School of Chinese Medicine, the University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Jingxuan Zhang
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Nian Yang
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Fei Li
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Ye Wang
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Quifang Zhang
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Fang Li
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| | - Fengjun Cao
- Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, 30 South Renmin Road, Shiyan 442000, Hubei, China.
| |
Collapse
|
34
|
Fucikova J, Moserova I, Urbanova L, Bezu L, Kepp O, Cremer I, Salek C, Strnad P, Kroemer G, Galluzzi L, Spisek R. Prognostic and Predictive Value of DAMPs and DAMP-Associated Processes in Cancer. Front Immunol 2015; 6:402. [PMID: 26300886 PMCID: PMC4528281 DOI: 10.3389/fimmu.2015.00402] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/22/2015] [Indexed: 01/04/2023] Open
Abstract
It is now clear that human neoplasms form, progress, and respond to therapy in the context of an intimate crosstalk with the host immune system. In particular, accumulating evidence demonstrates that the efficacy of most, if not all, chemo- and radiotherapeutic agents commonly employed in the clinic critically depends on the (re)activation of tumor-targeting immune responses. One of the mechanisms whereby conventional chemotherapeutics, targeted anticancer agents, and radiotherapy can provoke a therapeutically relevant, adaptive immune response against malignant cells is commonly known as “immunogenic cell death.” Importantly, dying cancer cells are perceived as immunogenic only when they emit a set of immunostimulatory signals upon the activation of intracellular stress response pathways. The emission of these signals, which are generally referred to as “damage-associated molecular patterns” (DAMPs), may therefore predict whether patients will respond to chemotherapy or not, at least in some settings. Here, we review clinical data indicating that DAMPs and DAMP-associated stress responses might have prognostic or predictive value for cancer patients.
Collapse
Affiliation(s)
- Jitka Fucikova
- Sotio , Prague , Czech Republic ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic
| | - Irena Moserova
- Sotio , Prague , Czech Republic ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic
| | - Linda Urbanova
- Sotio , Prague , Czech Republic ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic
| | - Lucillia Bezu
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute , Villejuif , France
| | - Oliver Kepp
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute , Villejuif , France
| | - Isabelle Cremer
- Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Equipe 13, Centre de Recherche des Cordeliers , Paris , France
| | - Cyril Salek
- Institute of Hematology and Blood Transfusion , Prague , Czech Republic
| | - Pavel Strnad
- Department of Gynecology and Obsterics, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute , Villejuif , France ; Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP , Paris , France
| | - Lorenzo Galluzzi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Gustave Roussy Comprehensive Cancer Institute , Villejuif , France
| | - Radek Spisek
- Sotio , Prague , Czech Republic ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic
| |
Collapse
|
35
|
Abstract
Liver cancer is an extraordinarily heterogeneous malignant disease among the tumors that have so far been identified. Hepatocellular carcinoma (HCC) arises most frequently in the setting of chronic liver inflammation and fibrosis, and takes a variety of course in individual patients to process to tumor. The risk factors such as HBV and/or HCV infections, aflatoxin infection, abuse alcohol intake, metabolic syndrome, obesity and diabetes are closely related to the environmental and genetic susceptibilities to HCC. The consequent resulting genomic instability, molecular and signal transduction network disorders and microenvironmental discrepancies are characterized by the extraordinary heterogeneity of liver cancer. The histology-based definition of the morphological heterogeneity of liver cancer has been modified and refined to treat patients with targeted therapies, but this still cannot solve all the problems. Lack of consistent outcome for anticancer agents and conventional therapies in liver cancer treatment calls for assessing the benefits of new molecularly targeted drugs and combined therapy, under the heterogeneity condition of tumor. The present review article will provide the complex mechanism and phenotype of liver cancer heterogeneity, and help us to execute precision medicine in a really personalized manner.
Collapse
Affiliation(s)
- Liang Li
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Shanghai, China
| | - Hongyang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer, Shanghai, China; National Laboratory for Oncogenes and Related Genes, Cancer Institute, RenJi Hospital, Shanghai Jiao Tong University, Shanghai 200441, China.
| |
Collapse
|
36
|
Gay S, Foiani M. Nuclear envelope and chromatin, lock and key of genome integrity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:267-330. [PMID: 26008788 DOI: 10.1016/bs.ircmb.2015.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
More than as an inert separation between the inside and outside of the nucleus, the nuclear envelope (NE) constitutes an active toll, which controls the import and export of molecules, and also a hub for a diversity of genomic processes, such as transcription, DNA repair, and chromatin dynamics. Proteins localized at the inner surface of the NE (such as lamins, nuclear pore proteins, lamin-associated proteins) interact with chromatin in a dynamic manner, contributing to the establishment of topological domains. In this review, we address the complex interplay between chromatin and NE. We discuss the divergence of this cross talk during evolution and comment both on the current established models and the most recent findings. In particular, we focus our attention on how the NE cooperates with chromatin in protecting the genome integrity.
Collapse
Affiliation(s)
- Sophie Gay
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy; Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
37
|
Zhang J, Zhang R, Lu WW, Zhu JS, Xia LQ, Lu YM, Chen NW. Clinical significance of hmgb1 expression in human gastric cancer. Int J Immunopathol Pharmacol 2015; 27:543-51. [PMID: 25572734 DOI: 10.1177/039463201402700410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
High mobility group box 1 (HMGB1) has been proved to be implicated in a variety of cell physiological and pathological behaviors including immune response, inflammation and cancer. Accumulating evidence suggests that HMGB1 plays a critical role in the development and progression of multiple malignancies. However, the clinical significance and prognosis of HMGB1 expression in some cancers remain controversial. The present study aimed to investigate whether overexpression of HMGB1 is an independent prognostic factor in patients with gastric cancer. The correlation of HMGB1 expression with clinicopathologic characteristics and prognosis was assessed by immunohistochemical assay through tissue microarray procedure in 50 primary gastric cancer cases. Our results indicated that the positive expression of HMGB1 was significantly increased in the nucleus of gastric cancer tissues compared with the adjacent non-cancerous tissues (ANCT) (64.0% vs 44.0%, P=0.025), but was not linked to the clinicopathologic features, including the TNM stage (P=0.533) and metastatic lymph node (P=0.771), in patients with gastric cancer. Kapalan-Meier and log-rank analysis demonstrated that overexpression of HMGB1 did not exert significant impact on the overall survival of patients with gastric cancer (P=0.805). Furthermore, Cox regression analysis showed that high HMGB1 protein expression did not represent an independent risk factor for patients with gastric cancer (P=0.677). Taken together, our findings suggest that high expression of HMGB1 is not correlated with the clinicopathologic characteristics of gastric cancer, and cannot serve as an independent prognostic biomarker for patients with gastric cancer.
Collapse
Affiliation(s)
- J Zhang
- Department of Gastroenterology, Shanghai Sixth Peoples Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - R Zhang
- Department of Gastroenterology, Shanghai Sixth Peoples Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - W W Lu
- Department of Gastroenterology, Shanghai Sixth Peoples Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - J S Zhu
- Department of Gastroenterology, Shanghai Sixth Peoples Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - L Q Xia
- Department of Gastroenterology, Shanghai Sixth Peoples Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Y M Lu
- Department of Gastroenterology, Shanghai Sixth Peoples Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - N W Chen
- Department of Gastroenterology, Shanghai Sixth Peoples Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Niu ZS, Niu XJ, Wang M. Management of hepatocellular carcinoma: Predictive value of immunohistochemical markers for postoperative survival. World J Hepatol 2015; 7:7-27. [PMID: 25624992 PMCID: PMC4295195 DOI: 10.4254/wjh.v7.i1.7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/02/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for over 90% of all primary liver cancers. With an ever increasing incidence trend year by year, it has become the third most common cause of death from cancer worldwide. Hepatic resection is generally considered to be one of the most effective therapies for HCC patients, however, there is a high risk of recurrence in postoperative HCC. In clinical practice, there exists an urgent need for valid prognostic markers to identify patients with prognosis, hence the importance of studies on prognostic markers in improving the prediction of HCC prognosis. This review focuses on the most promising immunohistochemical prognostic markers in predicting the postoperative survival of HCC patients.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Zhao-Shan Niu, Lab of Micromorphology, Medical College of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Zhao-Shan Niu, Lab of Micromorphology, Medical College of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Mei Wang
- Zhao-Shan Niu, Lab of Micromorphology, Medical College of Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
39
|
Expression of MicroRNA-325-3p and its potential functions by targeting HMGB1 in non-small cell lung cancer. Biomed Pharmacother 2015; 70:72-9. [PMID: 25776482 DOI: 10.1016/j.biopha.2015.01.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/04/2015] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) can function as tumor suppressors and might provide an efficient strategy for annihilating cancer. Nevertheless, the potential role of miR-325-3p in NSCLC is still unknown. Here, we showed that miR-325-3p was decreased and HMGB1 was increased in 107 NSCLC patients. MiR-325-3p inhibition promoted cell invasion and proliferation, while miR-325-3p upregulation inhibited cell invasion and proliferation by using transwell and CCK8 assays. Using a bioinformatics method, we further showed that HMGB1 might be a direct target of miR-325-3p and is negatively regulated by miR-325-3p. Down-regulation of miR-325-3p predicts poor prognosis for NSCLC patients. These findings implied that miR-325-3p regulates cell invasion and proliferation via targeting HMGB1 and may be a potential prognostic marker for NSCLC.
Collapse
|
40
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 740] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
41
|
Zhang J, Liu C, Hou R. Knockdown of HMGB1 improves apoptosis and suppresses proliferation and invasion of glioma cells. Chin J Cancer Res 2014; 26:658-68. [PMID: 25561763 PMCID: PMC4279198 DOI: 10.3978/j.issn.1000-9604.2014.12.05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/30/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The purposes of this study were to explore the effects of high mobility group protein box 1 (HMGB1) gene on the growth, proliferation, apoptosis, invasion, and metastasis of glioma cells, with an attempt to provide potential therapeutic targets for the treatment of glioma. METHODS The expressions of HMGB1 in glioma cells (U251, U-87MG and LN-18) and one control cell line (SVG p12) were detected by real time PCR and Western blotting, respectively. Then, the effects of HMGB1 on the biological behaviors of glioma cells were detected: the expression of HMGB1 in human glioma cell lines U251 and U-87MG were suppressed using RNAi technique, then the influences of HMGB1 on the viability, cycle, apoptosis, and invasion abilities of U251 and U-87MG cells were analyzed using in a Transwell invasion chamber. Also, the effects of HMGB1 on the expressions of cyclin D1, Bax, Bcl-2, and MMP 9 were detected. RESULTS As shown by real-time PCR and Western blotting, the expression of HMGB1 significantly increased in glioma cells (U251, U-87MG, and LN-18) in comparison with the control cell line (SVG p12); the vitality, proliferation and invasive capabilities of U251 and U-87MG cells in the HMGB1 siRNA-transfected group were significantly lower than those in the blank control group and negative control (NC) siRNA group (P<0.05) but showed no significant difference between the blank control group and NC siRNA group. The percentage of apoptotic U251 and U-87MG cells was significantly higher in the HMGB1 siRNA-transfected group than in the blank control group and NC siRNA group (P<0.05) but was similar between the latter two groups. The HMGB1 siRNA-transfected group had significantly lower expression levels of Cyclin D1, Bcl-2, and MMP-9 protein in U251 and U-87MG cells and significantly higher expression of Bax protein than in the blank control group and NC siRNA group (P<0.05); the expression profiles of cyclin D1, Bax, Bcl-2, and MMP 9 showed no significant change in both blank control group and NC siRNA group. CONCLUSIONS HMGB1 gene may promote the proliferation and migration of glioma cells and suppress its effects of apoptosis. Inhibition of the expression of HMGB1 gene can suppress the proliferation and migration of glioma cells and promote their apoptosis. Our observations provided a new target for intervention and treatment of glioma.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Cang Liu
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ruiguang Hou
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
42
|
Zhang L, Han J, Wu H, Liang X, Zhang J, Li J, Xie L, Xie Y, Sheng X, Yu J. The association of HMGB1 expression with clinicopathological significance and prognosis in hepatocellular carcinoma: a meta-analysis and literature review. PLoS One 2014; 9:e110626. [PMID: 25356587 PMCID: PMC4214718 DOI: 10.1371/journal.pone.0110626] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/14/2014] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the fifth most common cancer, and it is the second most common cancer-related mortality globally. The prognostic value of high mobility group box 1 (HMGB1) remains controversial. The purpose of this study is to conduct a meta-analysis and literature review to evaluate the association of HMGB1 expression with the prognosis of patients with HCC. Methods A detailed literature search was made in Medline, Google Scholar and others for related research publications. The data were extracted and assessed by two reviewers independently. Analysis of pooled data were performed, Hazard Ratio (HR) and mean difference with corresponding confidence intervals (CIs) were calculated and summarized respectively. Results 10 relevant articles were included for this meta-analysis study. HMGB1 mRNA levels in HCC were significantly higher than those in normal (p<0.00001) and para-tumor tissues (p = 0.002) respectively. The protein levels of HMGB1 in HCC were significantly higher than those in para-tumor tissues (p = 0.005). Two studies reported the serum HMGB1 levels in patients with HCC of TNM stages, and indicating significantly different between stage I and II, stage II and III, as well as stage III and IV (two studies showed p<0.01 and p<0.001 respectively). The overall survival (OS) was significantly shorter in HCC patients with high HMGB1 expression compared those with low HMGB1 expression and the pooled HR was 1.31 with 95% CI 1.20–1.44, Z = 5.82, p<0.0001. Two additional studies showed that there were higher serum HMGB1 levels in patients with chronic hepatitis than those in healthy people (p<0.05). Conclusions The results of this meta-analysis suggest that HMGB1 mRNA and protein tissue levels in the patients with HCC are significantly higher than those in para-tumor and normal liver tissues respectively. Tissue HMGB1 overexpression is a potential biomarker for HCC diagnosis, and it is significantly associated with the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, School of Medicine and life Science, University of Jinan-Shandong Academy of Medical Science, Jinan, Shandong, P.R. China
| | - Jianjun Han
- Department of Cancer Interventional Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, P.R. China
| | - Huiyong Wu
- Department of Cancer Interventional Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, P.R. China
| | - Xiaohong Liang
- Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Jianxin Zhang
- Department of Cancer Interventional Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, P.R. China
| | - Jian Li
- Department of Cancer Interventional Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, P.R. China
| | - Li Xie
- Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, P.R. China
| | - Yinfa Xie
- Department of Cancer Interventional Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, P.R. China
| | - Xiugui Sheng
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, P.R. China
- * E-mail: (XS); (JY)
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, P.R. China
- * E-mail: (XS); (JY)
| |
Collapse
|
43
|
HMGB1 promotes cellular proliferation and invasion, suppresses cellular apoptosis in osteosarcoma. Tumour Biol 2014; 35:12265-74. [PMID: 25168370 DOI: 10.1007/s13277-014-2535-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/20/2014] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. Unfortunately, treatment failures are common due to the metastasis and chemoresistance, but the underlying molecular mechanism remains unclear. Accumulating evidence indicated that the deregulation of DNA-binding protein high-mobility group box 1 (HMGB1) was associated with the development of cancer. This study aimed to explore the expression of HMGB1 in osteosarcoma tissues and its correlation to the clinical pathology of osteosarcoma and to discuss the role of HMGB1 in the development of osteosarcoma. The results from RT-PCR and Western blot showed that the expression rate of HMGB1 messenger RNA (mRNA) and the expression of HMGB1 in the osteosarcoma tissues were significantly higher than those in normal bone tissue (p < 0.05), the expression rate of HMGB1 mRNA and the expression of HMGB1 in the carcinoma tissues with positive lung metastasis were significantly higher than those without lung metastasis (p < 0.05), and with increasing Enneking stage, the expression rate of HMGB1 mRNA and the expression of HMGB1 also increased (p < 0.05). In order to explore the role of HMGB1 in osteosarcoma, the expression of HMGB1 in the human osteosarcoma MG-63 cell line was downregulated by the technique of RNA interference. Western blot results showed that the protein expression of HMGB1 was significantly decreased in the MG-63 cells from HMGB1-siRNA transfection group (p < 0.05), which suggested that HMGB1 was successfully downregulated in the MG-63 cells. Then the changes in proliferation, apoptosis, and invasion of MG-63 cells were examined by MTT test, PI staining, annexin V staining, and transwell chamber assay. Results showed that the abilities of proliferation and invasion were suppressed in HMGB1 knockdown MG-63 cells, and the abilities of apoptosis were enhanced in HMGB1 knockdown MG-63 cells. The expression of cyclin D1, MMP-9 was downregulated in HMGB1 knockdown MG-63 cells, and the expression of caspase-3 was upregulated in HMGB1 knockdown MG-63 cells. Taken together, the overexpression of HMGB1 in osteosarcoma might be related to the tumorigenesis, invasion, and metastasis of osteosarcoma, which might be a potential target for the treatment of osteosarcoma.
Collapse
|