1
|
Wilcox M, Rayner MLD, Guillemot‐Legris O, Platt I, Brown H, Quick T, Phillips JB. Serum neurofilament light chain measurements following nerve trauma. J Peripher Nerv Syst 2023; 28:500-507. [PMID: 37349878 PMCID: PMC10659102 DOI: 10.1111/jns.12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Optimal functional recovery following peripheral nerve injuries (PNIs) is dependent upon early recognition and prompt referral to specialist centres for appropriate surgical intervention. Technologies which facilitate the early detection of PNI would allow faster referral rates and encourage improvements in patient outcomes. Serum Neurofilament light chain (NfL) measurements are cheaper to perform, easier to access and interpret than many conventional methods used for nerve injury diagnosis, such as electromyography and/or magnetic resonance imaging assessments, but changes in serum NfL levels following traumatic PNI have not been investigated. This pre-clinical study aimed to determine whether serum NfL levels can: (1) detect the presence of a nerve trauma and (2) delineate between different severities of nerve trauma. METHODS A rat sciatic nerve crush and common peroneal nerve crush were implemented as controlled animal models of nerve injury. At 1-, 3-, 7- and 21-days post-injury, serum samples were retrieved for analysis using the SIMOA® NfL analyser kit. Nerve samples were also retrieved for histological analysis. Static sciatic index (SSI) was measured at regular time intervals following injury. RESULTS Significant 45-fold and 20-fold increases in NfL serum levels were seen 1-day post-injury following sciatic and common peroneal nerve injury, respectively. This corresponded with an eightfold higher volume of axons injured in the sciatic compared to the common peroneal nerve (p < .001). SSI measurements post-injury revealed greater reduction in function in the sciatic crush group compared with the common peroneal crush group. CONCLUSIONS NfL serum measurements represent a promising method for detecting traumatic PNI and stratifying their severity. Clinical translation of these findings could provide a powerful tool to improve the surgical management of nerve-injured patients.
Collapse
Affiliation(s)
- Matthew Wilcox
- UCL School of PharmacyUniversity College LondonLondonUK
- UCL Centre for Nerve EngineeringUniversity College LondonLondonUK
- Peripheral Nerve Injury Research UnitRoyal National Orthopaedic HospitalLondonUK
| | - Melissa L. D. Rayner
- UCL School of PharmacyUniversity College LondonLondonUK
- UCL Centre for Nerve EngineeringUniversity College LondonLondonUK
| | - Owein Guillemot‐Legris
- UCL School of PharmacyUniversity College LondonLondonUK
- UCL Centre for Nerve EngineeringUniversity College LondonLondonUK
| | - Isobel Platt
- UCL Medical SchoolUniversity College LondonLondonUK
| | - Hazel Brown
- UCL School of PharmacyUniversity College LondonLondonUK
- UCL Centre for Nerve EngineeringUniversity College LondonLondonUK
- Peripheral Nerve Injury Research UnitRoyal National Orthopaedic HospitalLondonUK
| | - Tom Quick
- UCL Centre for Nerve EngineeringUniversity College LondonLondonUK
- Peripheral Nerve Injury Research UnitRoyal National Orthopaedic HospitalLondonUK
- Institute of Orthopaedics and Musculoskeletal ScienceUniversity College LondonLondonUK
| | - James B. Phillips
- UCL School of PharmacyUniversity College LondonLondonUK
- UCL Centre for Nerve EngineeringUniversity College LondonLondonUK
| |
Collapse
|
2
|
Lv X, Mao Y, Cao S, Feng Y. Animal models of chemotherapy-induced peripheral neuropathy for hematological malignancies: A review. IBRAIN 2022; 9:72-89. [PMID: 37786517 PMCID: PMC10529012 DOI: 10.1002/ibra.12086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 10/04/2023]
Abstract
Chemotherapy is one of the main treatments for hematologic malignancies. However, chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common long-term toxic reactions in chemotherapy, and the occurrence of CIPN affects patients' quality of life and can cause interruption of chemotherapy in severe cases, thus reducing the efficacy of chemotherapy. We currently summarize the existing CIPN animal models, including the characteristics of several common animal models such as bortezomib-induced peripheral neuropathy, vincristine-induced peripheral neuropathy, and oxaliplatin-induced peripheral neuropathy. It was found that CIPN may lead to behavioral, histopathological, and neurophysiological changes inducing peripheral neuropathy. However, the mechanism of CIPN has not been fully elucidated, especially the prevention and treatment protocols need to be improved. Therefore, this review article summarizes the progress of research on CIPN animal models and the possible mechanisms and treatment of CIPN.
Collapse
Affiliation(s)
- Xiaoli Lv
- Department of HematologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yingwei Mao
- Department of BiologyPenn State UniversityUniversity ParkPennsylvaniaUSA
| | - Song Cao
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Department of Pain MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yonghuai Feng
- Department of HematologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
3
|
Tsai CH, Lin YH, Li YS, Ho TL, Hoai Thuong LH, Liu YH. Integrated Medicine for Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2021; 22:ijms22179257. [PMID: 34502166 PMCID: PMC8430591 DOI: 10.3390/ijms22179257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of typical chemotherapeutics among cancer survivors. Despite the recent progress, the effective prevention and treatment strategies for CIPN remain limited. Better understanding of the pathogenesis of CIPN may provide new niches for developing a new ideal therapeutic strategy. This review summarizes the current understanding of CIPN and current recommendations along with completed/active clinical trials and aims to foster translational research to improve the development of effective strategies for managing CIPN.
Collapse
Affiliation(s)
- Chih-Hung Tsai
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan; (C.-H.T.); (Y.-H.L.); (Y.-S.L.)
- Department of Neurology, National Taiwan University Hospital Yunlin Branch, Yunlin 64041, Taiwan
| | - Yuan-Ho Lin
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan; (C.-H.T.); (Y.-H.L.); (Y.-S.L.)
- Department of Chinese Medicine of E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - Yung-Sheng Li
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan; (C.-H.T.); (Y.-H.L.); (Y.-S.L.)
- Department of Chinese Medicine of Jiannren Hospital, Kaohsiung 811504, Taiwan
| | - Trung-Loc Ho
- International Master’s Program of Biomedical Sciences, China Medical University, Taichun 40402, Taiwan; (T.-L.H.); (L.H.H.T.)
| | - Le Huynh Hoai Thuong
- International Master’s Program of Biomedical Sciences, China Medical University, Taichun 40402, Taiwan; (T.-L.H.); (L.H.H.T.)
| | - Yu-Huei Liu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan; (C.-H.T.); (Y.-H.L.); (Y.-S.L.)
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Drug Development Center, China Medical University, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-4-22052121 (ext. 2044)
| |
Collapse
|
4
|
St. Germain DC, O’Mara AM, Robinson JL, Torres AD, Minasian LM. Chemotherapy‐induced peripheral neuropathy: Identifying the research gaps and associated changes to clinical trial design. Cancer 2020; 126:4602-4613. [DOI: 10.1002/cncr.33108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/25/2022]
Affiliation(s)
| | - Ann M. O’Mara
- Division of Cancer Prevention National Cancer Institute Bethesda Maryland
| | - Jennifer L. Robinson
- Department of Behavioral and Community Health University of Maryland College Park Maryland
| | | | - Lori M. Minasian
- Division of Cancer Prevention National Cancer Institute Bethesda Maryland
| |
Collapse
|
5
|
Soliman A, Wahid A, Wahby MM, Bassiouny A. Study of the possible synergistic protective effects of Melatonin and Pregabalin in Vincristine induced peripheral neuropathy Wistar Albino rats. Life Sci 2020; 244:117095. [DOI: 10.1016/j.lfs.2019.117095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 11/16/2022]
|
6
|
Boyette-Davis JA, Hou S, Abdi S, Dougherty PM. An updated understanding of the mechanisms involved in chemotherapy-induced neuropathy. Pain Manag 2018; 8:363-375. [PMID: 30212277 PMCID: PMC6462837 DOI: 10.2217/pmt-2018-0020] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/14/2018] [Indexed: 01/16/2023] Open
Abstract
The burdensome condition of chemotherapy-induced peripheral neuropathy occurs with various chemotherapeutics, including bortezomib, oxaliplatin, paclitaxel and vincristine. The symptoms, which include pain, numbness, tingling and loss of motor function, can result in therapy titrations that compromise therapy efficacy. Understanding the mechanisms of chemotherapy-induced peripheral neuropathy is therefore essential, yet incompletely understood. The literature presented here will address a multitude of molecular and cellular mechanisms, beginning with the most well-understood cellular and molecular-level changes. These modifications include alterations in voltage-gated ion channels, neurochemical transmission, organelle function and intracellular pathways. System-level alterations, including changes to glial cells and cytokine activation are also explored. Finally, we present research on the current understanding of genetic contributions to this condition. Suggestions for future research are provided.
Collapse
Affiliation(s)
- Jessica A Boyette-Davis
- Department of Psychology & Behavioral Neuroscience, St Edward's University, 3001 S Congress, Austin, TX 78704, USA
| | - Saiyun Hou
- Division of Anesthesiology, Critical Care & Pain Medicine, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0409, Houston, TX 77030, USA
| | - Salahadin Abdi
- Division of Anesthesiology, Critical Care & Pain Medicine, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0409, Houston, TX 77030, USA
| | - Patrick M Dougherty
- Division of Anesthesiology, Critical Care & Pain Medicine, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0409, Houston, TX 77030, USA
| |
Collapse
|
7
|
Paice JA, Mulvey M, Bennett M, Dougherty PM, Farrar JT, Mantyh PW, Miaskowski C, Schmidt B, Smith TJ. AAPT Diagnostic Criteria for Chronic Cancer Pain Conditions. THE JOURNAL OF PAIN 2017; 18:233-246. [PMID: 27884691 PMCID: PMC5439220 DOI: 10.1016/j.jpain.2016.10.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 10/11/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022]
Abstract
Chronic cancer pain is a serious complication of malignancy or its treatment. Currently, no comprehensive, universally accepted cancer pain classification system exists. Clarity in classification of common cancer pain syndromes would improve clinical assessment and management. Moreover, an evidence-based taxonomy would enhance cancer pain research efforts by providing consistent diagnostic criteria, ensuring comparability across clinical trials. As part of a collaborative effort between the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION) and the American Pain Society (APS), the ACTTION-APS Pain Taxonomy initiative worked to develop the characteristics of an optimal diagnostic system. After the establishment of these characteristics, a working group consisting of clinicians and clinical and basic scientists with expertise in cancer and cancer-related pain was convened to generate core diagnostic criteria for an illustrative sample of 3 chronic pain syndromes associated with cancer (ie, bone pain and pancreatic cancer pain as models of pain related to a tumor) or its treatment (ie, chemotherapy-induced peripheral neuropathy). A systematic review and synthesis was conducted to provide evidence for the dimensions that comprise this cancer pain taxonomy. Future efforts will subject these diagnostic categories and criteria to systematic empirical evaluation of their feasibility, reliability, and validity and extension to other cancer-related pain syndromes. PERSPECTIVE The ACTTION-APS chronic cancer pain taxonomy provides an evidence-based classification for 3 prevalent syndromes, namely malignant bone pain, pancreatic cancer pain, and chemotherapy-induced peripheral neuropathy. This taxonomy provides consistent diagnostic criteria, common features, comorbidities, consequences, and putative mechanisms for these potentially serious cancer pain conditions that can be extended and applied with other cancer-related pain syndromes.
Collapse
Affiliation(s)
- Judith A Paice
- Division of Hematology-Oncology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois.
| | - Matt Mulvey
- Academic Unit of Palliative Care, Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
| | - Michael Bennett
- Academic Unit of Palliative Care, Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
| | - Patrick M Dougherty
- The Division of Anesthesia and Critical Care Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - John T Farrar
- Department of Epidemiology, Neurology, and Anesthesia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick W Mantyh
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - Christine Miaskowski
- Department of Physiological Nursing, University of California, San Francisco, California
| | - Brian Schmidt
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York
| | - Thomas J Smith
- Department of Oncology, The Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
8
|
Kerckhove N, Collin A, Condé S, Chaleteix C, Pezet D, Balayssac D. Long-Term Effects, Pathophysiological Mechanisms, and Risk Factors of Chemotherapy-Induced Peripheral Neuropathies: A Comprehensive Literature Review. Front Pharmacol 2017; 8:86. [PMID: 28286483 PMCID: PMC5323411 DOI: 10.3389/fphar.2017.00086] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/09/2017] [Indexed: 12/29/2022] Open
Abstract
Neurotoxic anticancer drugs, such as platinum-based anticancer drugs, taxanes, vinca alkaloids, and proteasome/angiogenesis inhibitors are responsible for chemotherapy-induced peripheral neuropathy (CIPN). The health consequences of CIPN remain worrying as it is associated with several comorbidities and affects a specific population of patients already impacted by cancer, a strong driver for declines in older adults. The purpose of this review is to present a comprehensive overview of the long-term effects of CIPN in cancer patients and survivors. Pathophysiological mechanisms and risk factors are also presented. Neurotoxic mechanisms leading to CIPNs are not yet fully understood but involve neuronopathy and/or axonopathy, mainly associated with DNA damage, oxidative stress, mitochondria toxicity, and ion channel remodeling in the neurons of the peripheral nervous system. Classical symptoms of CIPNs are peripheral neuropathy with a “stocking and glove” distribution characterized by sensory loss, paresthesia, dysesthesia and numbness, sometimes associated with neuropathic pain in the most serious cases. Several risk factors can promote CIPN as a function of the anticancer drug considered, such as cumulative dose, treatment duration, history of neuropathy, combination of therapies and genetic polymorphisms. CIPNs are frequent in cancer patients with an overall incidence of approximately 38% (possibly up to 90% of patients treated with oxaliplatin). Finally, the long-term reversibility of these CIPNs remain questionable, notably in the case of platinum-based anticancer drugs and taxanes, for which CIPN may last several years after the end of anticancer chemotherapies. These long-term effects are associated with comorbidities such as depression, insomnia, falls and decreases of health-related quality of life in cancer patients and survivors. However, it is noteworthy that these long-term effects remain poorly studied, and only limited data are available such as in the case of bortezomib and thalidomide-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Nicolas Kerckhove
- INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Délégation à la Recherche Clinique et à l'Innovation, Université Clermont Auvergne Clermont-Ferrand, France
| | - Aurore Collin
- INSERM U1107, NEURO-DOL, Université Clermont Auvergne Clermont-Ferrand, France
| | - Sakahlé Condé
- INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Neurologie, Université Clermont Auvergne Clermont-Ferrand, France
| | - Carine Chaleteix
- CHU Clermont-Ferrand, Hématologie Clinique Adulte Clermont-Ferrand, France
| | - Denis Pezet
- INSERM U1071, CHU Clermont-Ferrand, Chirurgie et Oncologie Digestive, Université Clermont Auvergne Clermont-Ferrand, France
| | - David Balayssac
- INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Délégation à la Recherche Clinique et à l'Innovation, Université Clermont Auvergne Clermont-Ferrand, France
| |
Collapse
|
9
|
Abstract
Chemotherapy-induced peripheral neuropathy is a common side effect of selected chemotherapeutic agents. Previous work has suggested that patients often under report the symptoms of chemotherapy-induced peripheral neuropathy and physicians fail to recognize the presence of such symptoms in a timely fashion. The precise pathophysiology that underlies chemotherapy-induced peripheral neuropathy, in both the acute and the chronic phase, remains complex and appears to be medication specific. Recent work has begun to demonstrate and further clarify potential pathophysiological processes that predispose and, ultimately, lead to the development of chemotherapy-induced peripheral neuropathy. There is increasing evidence that the pathway to neuropathy varies with each agent. With a clearer understanding of how these agents affect the peripheral nervous system, more targeted treatments can be developed in order to optimize treatment and prevent long-term side effects.
Collapse
Affiliation(s)
- James Addington
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Miriam Freimer
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
11
|
Schloss J, Colosimo M, Vitetta L. New Insights into Potential Prevention and Management Options for Chemotherapy-Induced Peripheral Neuropathy. Asia Pac J Oncol Nurs 2016; 3:73-85. [PMID: 27981142 PMCID: PMC5123533 DOI: 10.4103/2347-5625.170977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Neurological complications such as chemotherapy-induced peripheral neuropathy (CIPN) and neuropathic pain are frequent side effects of neurotoxic chemotherapy agents. An increasing survival rate and frequent administration of adjuvant chemotherapy treatments involving neurotoxic agents makes it imperative that accurate diagnosis, prevention, and treatment of these neurological complications be implemented. METHODS A consideration was undertaken of the current options regarding protective and treatment interventions for patients undergoing chemotherapy with neurotoxic chemotherapy agent or experience with CIPN. Current knowledge on the mechanism of action has also been identified. The following databases PubMed, the Cochrane Library, Science Direct, Scopus, EMBASE, MEDLINE, CINAHL, CNKI, and Google Scholar were searched for relevant article retrieval. RESULTS A range of pharmaceutical, nutraceutical, and herbal medicine treatments were identified that either showed efficacy or had some evidence of efficacy. Duloxetine was the most effective pharmaceutical agent for the treatment of CIPN. Vitamin E demonstrated potential for the prevention of cisplatin-IPN. Intravenous glutathione for oxaliplatin, Vitamin B6 for both oxaliplatin and cisplatin, and omega 3 fatty acids for paclitaxel have shown protection for CIPN. Acetyl-L-carnitine may provide some relief as a treatment option. Acupuncture may be of benefit for some patients and Gosha-jinki-gan may be of benefit for protection from adverse effects of oxaliplatin induced peripheral neuropathy. CONCLUSIONS Clinicians and researchers acknowledge that there are numerous challenges involved in understanding, preventing, and treating peripheral neuropathy caused by chemotherapeutic agents. New insights into mechanisms of action from chemotherapy agents may facilitate the development of novel preventative and treatment options, thereby enabling medical staff to better support patients by reducing this debilitating side effect.
Collapse
Affiliation(s)
- Janet Schloss
- Mater Private Breast Cancer Centre, Mater Hospital, Brisbane, Australia
- Office of Research, Endeavour College of Natural Health, University of Technology, Brisbane, Australia
| | - Maree Colosimo
- Mater Private Breast Cancer Centre, Mater Hospital, Brisbane, Australia
- Medical Oncology Group of Australia, Clinical Oncology Society of Australia, Queensland Clinical Oncology Group, Brisbane, Australia
| | - Luis Vitetta
- Sydney Medical School, University of Sydney, Sydney 2006, Sydney, Australia
- Medlab Clinical, Sydney, Australia
| |
Collapse
|
12
|
Boyette-Davis JA, Walters ET, Dougherty PM. Mechanisms involved in the development of chemotherapy-induced neuropathy. Pain Manag 2015; 5:285-96. [PMID: 26087973 DOI: 10.2217/pmt.15.19] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating and painful condition seen in patients undergoing treatment with common agents such as vincristine, paclitaxel, oxaliplatin and bortezomib. The mechanisms of this condition are diverse, and include an array of molecular and cellular contributions. Current research implicates genetic predispositions to this condition, which then may influence cellular responses to chemotherapy. Processes found to be influenced during CIPN include increased expression of inflammatory mediators, primarily cytokines, which can create cascading effects in neurons and glia. Changes in ion channels and neurotransmission, as well as changes in intracellular signaling and structures have been implicated in CIPN. This review explores these issues and suggests considerations for future research.
Collapse
Affiliation(s)
- Jessica A Boyette-Davis
- Department of Psychology, York College of Pennsylvania, 441 Country Club Road, York, PA 17403, USA
| | - Edgar T Walters
- Department of Integrative Biology & Pharmacology, The University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| | - Patrick M Dougherty
- Department of Anesthesiology & Pain Medicine Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0409, Houston, TX 77030, USA
| |
Collapse
|
13
|
Carozzi VA, Canta A, Chiorazzi A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neurosci Lett 2014; 596:90-107. [PMID: 25459280 DOI: 10.1016/j.neulet.2014.10.014] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022]
Abstract
Cisplatin, oxaliplatin, paclitaxel, vincristine and bortezomib are some of the most effective drugs successfully employed (alone or in combinations) as first-line treatment for common cancers. However they often caused severe peripheral neurotoxicity and neuropathic pain. Structural deficits in Dorsal Root Ganglia and sensory nerves caused symptoms as sensory loss, paresthesia, dysaesthesia and numbness that result in patient' suffering and also limit the life-saving therapy. Several scientists have explored the various mechanisms involved in the onset of chemotherapy-related peripheral neurotoxicity identifying molecular targets useful for the development of selected neuroprotective strategies. Dorsal Root Ganglia sensory neurons, satellite cells, Schwann cells, as well as neuronal and glial cells in the spinal cord, are the preferential sites in which chemotherapy neurotoxicity occurs. DNA damage, alterations in cellular system repairs, mitochondria changes, increased intracellular reactive oxygen species, alterations in ion channels, glutamate signalling, MAP-kinases and nociceptors ectopic activation are among the events that trigger the onset of peripheral neurotoxicity and neuropathic pain. In the present work we review the role of the main players in determining the pathogenesis of anticancer drugs-induced peripheral neuropathy.
Collapse
Affiliation(s)
- V A Carozzi
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy.
| | - A Canta
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| | - A Chiorazzi
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| |
Collapse
|