1
|
Yang L, Wang J, Gong X, Fan Q, Yang X, Cui Y, Gao X, Li L, Sun X, Li Y, Wang Y. Emerging Roles for LGR4 in Organ Development, Energy Metabolism and Carcinogenesis. Front Genet 2022; 12:728827. [PMID: 35140734 PMCID: PMC8819683 DOI: 10.3389/fgene.2021.728827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022] Open
Abstract
The leucine-rich repeats containing G protein-coupled receptor 4 (LGR4) belonging to G protein-coupled receptors (GPCRs) family, had various regulatory roles at multiple cellular types and numerous targeting sites, and aberrant LGR4 signaling played crucial roles in diseases and carcinogenesis. On the basis of these facts, LGR4 may become an appealing therapeutic target for the treatment of diseases and tumors. However, a comprehensive investigation of its functions and applications was still lacking. Hence, this paper provided an overview of the molecular characteristics and signaling mechanisms of LGR4, its involvement in multiple organ development and participation in the modulation of immunology related diseases, metabolic diseases, and oxidative stress damage along with cancer progression. Given that GPCRs accounted for almost a third of current clinical drug targets, the in-depth understanding of the sophisticated connections of LGR4 and its ligands would not only enrich their regulatory networks, but also shed new light on designing novel molecular targeted drugs and small molecule blockers for revolutionizing the treatment of various diseases and tumors.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jing Wang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiaodi Gong
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Qiong Fan
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiaoming Yang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yunxia Cui
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiaoyan Gao
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Lijuan Li
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiao Sun
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yuhong Li
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
- *Correspondence: Yuhong Li, ; Yudong Wang,
| | - Yudong Wang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
- *Correspondence: Yuhong Li, ; Yudong Wang,
| |
Collapse
|
2
|
The Role of LGR4 (GPR48) in Normal and Cancer Processes. Int J Mol Sci 2021; 22:ijms22094690. [PMID: 33946652 PMCID: PMC8125670 DOI: 10.3390/ijms22094690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Leucine-rich repeats containing G protein-coupled receptor 4 (LGR4) is a receptor that belongs to the superfamily of G protein-coupled receptors that can be activated by R-spondins (RSPOs), Norrin, circLGR4, and the ligand of the receptor activator of nuclear factor kappa-B (RANKL) ligands to regulate signaling pathways in normal and pathological processes. LGR4 is widely expressed in different tissues where it has multiple functions such as tissue development and maintenance. LGR4 mainly acts through the Wnt/β-catenin pathway to regulate proliferation, survival, and differentiation. In cancer, LGR4 participates in tumor progression, invasion, and metastasis. Furthermore, recent evidence reveals that LGR4 is essential for the regulation of the cancer stem cell population by controlling self-renewal and regulating stem cell properties. This review summarizes the function of LGR4 and its ligands in normal and malignant processes.
Collapse
|
3
|
Vidal VP, Jian-Motamedi F, Rekima S, Gregoire EP, Szenker-Ravi E, Leushacke M, Reversade B, Chaboissier MC, Schedl A. R-spondin signalling is essential for the maintenance and differentiation of mouse nephron progenitors. eLife 2020; 9:53895. [PMID: 32324134 PMCID: PMC7228766 DOI: 10.7554/elife.53895] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
During kidney development, WNT/β-catenin signalling has to be tightly controlled to ensure proliferation and differentiation of nephron progenitor cells. Here, we show in mice that the signalling molecules RSPO1 and RSPO3 act in a functionally redundant manner to permit WNT/β-catenin signalling and their genetic deletion leads to a rapid decline of nephron progenitors. By contrast, tissue specific deletion in cap mesenchymal cells abolishes mesenchyme to epithelial transition (MET) that is linked to a loss of Bmp7 expression, absence of SMAD1/5 phosphorylation and a concomitant failure to activate Lef1, Fgf8 and Wnt4, thus explaining the observed phenotype on a molecular level. Surprisingly, the full knockout of LGR4/5/6, the cognate receptors of R-spondins, only mildly affects progenitor numbers, but does not interfere with MET. Taken together our data demonstrate key roles for R-spondins in permitting stem cell maintenance and differentiation and reveal Lgr-dependent and independent functions for these ligands during kidney formation.
Collapse
Affiliation(s)
- Valerie Pi Vidal
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, Nice, France
| | - Fariba Jian-Motamedi
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, Nice, France
| | - Samah Rekima
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, Nice, France
| | - Elodie P Gregoire
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, Nice, France
| | | | - Marc Leushacke
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | | | | | - Andreas Schedl
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, Nice, France
| |
Collapse
|
4
|
Xue C, Mei CL. Polycystic Kidney Disease and Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:81-100. [PMID: 31399962 DOI: 10.1007/978-981-13-8871-2_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polycystic kidney disease (PKD) is a common genetic disorder characterized by formations of numerous cysts in kidneys and most caused by PKD1 or PKD2 mutations in autosomal dominant polycystic kidney disease (ADPKD). The interstitial inflammation and fibrosis is one of the major pathological changes in polycystic kidney tissues with an accumulation of inflammatory cells, chemokines, and cytokines. The immune response is observed across different stages and occurs prior to or coincident with cyst formation in ADPKD. Evidence for inflammation as an important contributor to cyst growth and fibrosis includes increased interstitial macrophages, upregulated expressions of pro-inflammatory cytokines, activated complement system, and activated pathways including NF-κB and JAK-STAT signaling in polycystic kidney tissues. Inflammatory cells are responsible for overproduction of several pro-fibrotic growth factors which promote renal fibrosis in ADPKD. These growth factors trigger epithelial mesenchymal transition and myofibroblast/fibrocyte activation, which stimulate the expansion of extracellular matrix (ECM) including collagen I, III, IV, V, and fibronectin, leading to renal fibrosis and reduced renal function. Besides, there are imbalanced ECM turnover regulators which lead to the increased ECM production and inadequate degradation in polycystic kidney tissues. Several fibrosis associated signaling pathways, such as TGFβ-SMAD, Wnt, and periostin-integrin-linked kinase are also activated in polycystic kidney tissues. Although the effective anti-fibrotic treatments are limited at the present time, slowing the cyst expansion and fibrosis development is very important for prolonging life span and improving the palliative care of ADPKD patients. The inhibition of pro-fibrotic cytokines involved in fibrosis might be a new therapeutic strategy for ADPKD in the future.
Collapse
Affiliation(s)
- Cheng Xue
- Division of Nephrology, Kidney Institute of PLA, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chang-Lin Mei
- Division of Nephrology, Kidney Institute of PLA, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
5
|
Rajkumar P, Cha B, Yin J, Arend LJ, Păunescu TG, Hirabayashi Y, Donowitz M, Pluznick JL. Identifying the localization and exploring a functional role for Gprc5c in the kidney. FASEB J 2018; 32:2046-2059. [PMID: 29196502 DOI: 10.1096/fj.201700610rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The investigation of orphan GPCRs (GPRs) has the potential to uncover novel insights into whole animal physiology. In this study, our goal was to determine the renal localization of Gprc5c, a receptor that we previously reported to be highly expressed in murine whole kidney, and to examine physiologic parameters in Gprc5c knockout (KO) mice to gain insight into function. Gprc5c localized to the apical membrane of renal proximal tubules (PTs) in mice, rats, and humans. With the comparison of Gprc5c wild-type (WT) and KO mice, we found that Gprc5c KO mice have altered acid-base homeostasis. Specifically, Gprc5c KO mice have lower blood pH and higher urine pH compared with WT mice, with a reduced level of titratable acids in their urine. In an in vitro GPCR internalization assay, we observed that Gprc5c internalization (an index of activation) was triggered by alkaline extracellular pH. Furthermore, with the use of an in vitro BCECF assay, we observed that Gprc5c increases Na+/H+ exchanger 3 (NHE3) activity at alkaline pH. We also find that the NHE3 activity is reduced in Gprc5c KO mice by 2 photon imaging in seminaphthorhodafluors (SNARF)-4F-loaded kidney sections. NHE3 is a primary contributor to apical transport of H+ in the renal PT. Together, these data imply that Gprc5c modulates the renal contribution to systemic pH homeostasis, at least in part, by taking part in the regulation of NHE3.-Rajkumar, P., Cha, B., Yin, J., Arend, L. J., Păunescu, T. G., Hirabayashi, Y., Donowitz, M., Pluznick, J. L. Identifying the localization and exploring a functional role for Gprc5c in the kidney.
Collapse
Affiliation(s)
- Premraj Rajkumar
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Boyoung Cha
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jianyi Yin
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lois J Arend
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Teodor G Păunescu
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yoshio Hirabayashi
- Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Mark Donowitz
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer L Pluznick
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Yue Z, Yuan Z, Zeng L, Wang Y, Lai L, Li J, Sun P, Xue X, Qi J, Yang Z, Zheng Y, Fang Y, Li D, Siwko S, Li Y, Luo J, Liu M. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells. FASEB J 2017; 32:2422-2437. [PMID: 29269400 DOI: 10.1096/fj.201700897r] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The fourth member of the leucine-rich repeat-containing GPCR family (LGR4, frequently referred to as GPR48) and its cognate ligands, R-spondins (RSPOs) play crucial roles in the development of multiple organs as well as the survival of adult stem cells by activation of canonical Wnt signaling. Wnt/β-catenin signaling acts to regulate breast cancer; however, the molecular mechanisms determining its spatiotemporal regulation are largely unknown. In this study, we identified LGR4 as a master controller of Wnt/β-catenin signaling-mediated breast cancer tumorigenesis, metastasis, and cancer stem cell (CSC) maintenance. LGR4 expression in breast tumors correlated with poor prognosis. Either Lgr4 haploinsufficiency or mammary-specific deletion inhibited mouse mammary tumor virus (MMTV)- PyMT- and MMTV- Wnt1-driven mammary tumorigenesis and metastasis. Moreover, LGR4 down-regulation decreased in vitro migration and in vivo xenograft tumor growth and lung metastasis. Furthermore, Lgr4 deletion in MMTV- Wnt1 tumor cells or knockdown in human breast cancer cells decreased the number of functional CSCs by ∼90%. Canonical Wnt signaling was impaired in LGR4-deficient breast cancer cells, and LGR4 knockdown resulted in increased E-cadherin and decreased expression of N-cadherin and snail transcription factor -2 ( SNAI2) (also called SLUG), implicating LGR4 in regulation of epithelial-mesenchymal transition. Our findings support a crucial role of the Wnt signaling component LGR4 in breast cancer initiation, metastasis, and breast CSCs.-Yue, Z., Yuan, Z., Zeng, L., Wang, Y., Lai, L., Li, J., Sun, P., Xue, X., Qi, J., Yang, Z., Zheng, Y., Fang, Y., Li, D., Siwko, S., Li, Y., Luo, J., Liu, M. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells.
Collapse
Affiliation(s)
- Zhiying Yue
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zengjin Yuan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Li Zeng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Ying Wang
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Li Lai
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Jing Li
- East China Normal University Joint Center for Translational Medicine, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Peng Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiwen Xue
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Junyi Qi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhengfeng Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yansen Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuanzhang Fang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Stefan Siwko
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| |
Collapse
|
7
|
Guo F, Yi X, Li M, Fu J, Li S. Snail1 is positively correlated with atrial fibrosis in patients with atrial fibrillation and rheumatic heart disease. Exp Ther Med 2017; 14:4231-4237. [PMID: 29104639 PMCID: PMC5658748 DOI: 10.3892/etm.2017.5084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/05/2017] [Indexed: 02/07/2023] Open
Abstract
The present study investigated the association between Snail1 and atrial fibrosis in patients with atrial fibrillation (AF) and rheumatic heart disease (RHD) and to determine the possible mechanism underlying this interrelation. A total of 19 patients were included in the current study and were divided into two groups: A sinus rhythm (SR) group (n=9) and an AF group (n=10). All patients underwent heart valve replacement surgery, during which ~200 mg right atrium tissue was obtained. Hematoxylin and eosin and Masson's trichrome-stained sections were used to evaluate the morphological changes of cardiomyocytes and the level of fibrosis. Immunohistochemistry was applied to observe the location and expression of Snail1. Reverse transcription-quantitative polymerase chain reaction was used to measure Snail1 mRNA levels. Western blotting was used to determine changes in the expression of Snail1, as well as in the expression of proteins involved in the Wnt pathway, including Wnt1, Wnt 3a, Wnt8a, Wnt5a and Wnt11. Compared with the SR group, expanded cardiomyocytes and higher collagen deposition was detected in the atrial tissue of the AF group. The expression of Snail1 mRNA and protein was significantly higher in the AF group than in the SR group (P<0.05). Additionally, the expression of Wnt1, 3a and 8a in the canonical Wnt signaling pathway, and Wnt5a and 11 in the noncanonical Wnt signaling pathway were significantly increased in the AF group. Furthermore, the phosphorylation level of glycogen synthase kinase 3β (GSK3β) and the levels of β-catenin and GSK3β were significantly increased in the AF group compared with the SR group (P<0.05). Snail1 may be involved in the development and maintenance of atrial fibrosis in patients with atrial fibrillation and rheumatic heart disease and may be developed as a novel biomarker to evaluate myocardial fibrosis in the future. Additionally, the current study suggests that the Wnt signaling pathway may participate in the process of increased Snail1 expression and atrial fibrosis in patients with AF and RHD.
Collapse
Affiliation(s)
- Furong Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Cardiovascular Research Institute, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Cardiovascular Research Institute, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mingjiang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Cardiovascular Research Institute, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jinrong Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Cardiovascular Research Institute, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sha Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Cardiovascular Research Institute, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
8
|
Rajkumar P, Pluznick JL. Unsung renal receptors: orphan G-protein-coupled receptors play essential roles in renal development and homeostasis. Acta Physiol (Oxf) 2017; 220:189-200. [PMID: 27699982 DOI: 10.1111/apha.12813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022]
Abstract
Recent studies have shown that orphan GPCRs of the GPR family are utilized as specialized chemosensors in various tissues to detect metabolites, and in turn to activate downstream pathways which regulate systemic homeostasis. These studies often find that such metabolites are generated by well-known metabolic pathways, implying that known metabolites and chemicals may perform novel functions. In this review, we summarize recent findings highlighting the role of deorphanized GPRs in renal development and function. Understanding the role of these receptors is critical in gaining insights into mechanisms that regulate renal function both in health and in disease.
Collapse
Affiliation(s)
- P. Rajkumar
- Department of Physiology; Johns Hopkins School of Medicine; Baltimore; MD USA
| | - J. L. Pluznick
- Department of Physiology; Johns Hopkins School of Medicine; Baltimore; MD USA
| |
Collapse
|
9
|
Li Y, Qiu SS, Shao Y, Song HH, Li GL, Lu W, Zhu LM. Dickkopf-1 has an Inhibitory Effect on Mesenchymal Stem Cells to Fibroblast Differentiation. Chin Med J (Engl) 2017; 129:1200-7. [PMID: 27174329 PMCID: PMC4878166 DOI: 10.4103/0366-6999.181974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) are bone marrow stem cells which play an important role in tissue repair. The treatment with MSCs will be likely to aggravate the degree of fibrosis. The Wnt/β-catenin signaling pathway is involved in developmental and physiological processes, such as fibrosis. Dickkopfs (DKKs) are considered as an antagonist to block Wnt/β-catenin signaling pathway by binding the receptor of receptor-related protein (LRP5/6). DKK1 was chosen in attempt to inhibit fibrosis of MSCs by lowering activity of Wnt/β-catenin signaling pathway. Methods: Stable MSCs were randomly divided into four groups: MSCs control, MSCs + transforming growth factor-β (TGF-β), MSCs + DKK1, and MSCs + TGF-β + DKK1. Flow cytometry was used to identify MSCs. Cell viability was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide test. Immunofluorescence was used to detect protein expression in the Wnt/β-catenin signaling pathways. Western blotting analysis was employed to test expression of fibroblast surface markers and, finally, real-time reverse transcription polymerase chain reaction was employed to test mRNA expression of fibroblast surface markers and Wnt/β-catenin signaling proteins. Results: Cultivated MSCs were found to conform to the characteristics of standard MSCs: expression of cluster of differentiation (CD) 73, 90, and 105, not expression of 34, 45, and 79. We found that DKK1 could maintain the normal cell morphology of MSCs. Western blotting analysis showed that fibroblast surface markers were expressed in high quantities in the group MSCs + TGF-β. However, the expression was lower in the MSCs + TGF-β + DKK1. Immunofluorescence showed high expression of all Wnt/β-catnin molecules in the MSCs + TGF-β group but expressed in lower quantities in MSCs + TGF-β + DKK1 group. Finally, mRNA expression of fibroblast markers vimentin, α-smooth muscle actin and Wnt/β-catenin signaling proteins β-catenin, T-cell factor, and glycogen synthase kinase-3β was significantly increased in MSCs + TGF-β group compared to control (P < 0.05). Expression of the same fibroblast markers and Wnt/β-catenin was decreased to regular quantities in the MSCs + TGF-β + DKK1 group. Conclusions: DKK1, Wnt/β-catenin inhibitors, blocks the Wnt/β-catenin signaling pathway to inhibit the process of MSCs fibrosis. It might provide some new ways for clinical treatment of certain diseases.
Collapse
Affiliation(s)
- Yan Li
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210009, China
| | - Sang-Sang Qiu
- Department of Infection Management, Affiliated Wuxi People's Hospital to Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Yan Shao
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210009, China
| | - Hong-Huan Song
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210009, China
| | - Gu-Li Li
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210009, China
| | - Wei Lu
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210009, China
| | - Li-Mei Zhu
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210009, China
| |
Collapse
|
10
|
Abstract
Diverse signaling pathways have been reported to be associated with polycystic kidney disease (PKD). Cell proliferation is widely known to be an important pathway related to this disease. However, studies on the interactions of inflammation and fibrosis with polycystic kidney disease have been limited. Inflammation is one of the protective systems involved in the response to foreign molecules. In PKD, it was reported that the activity of signaling pathways associated with inflammation is increased. Also, fibrosis is the development of excess fibrous tissue in organ or tissue. It is an abnormal phenomenon in which the extent of fibrous connective tissues is increased. In PKD, increases in the activity of molecules such as growth factor and TGF-β have been reported to occur and promote fibrosis. Therefore, the inflammation and fibrosis responses have been suggested as therapeutic targets for PKD. In order to guide further studies, this review indicates the roles of inflammatory and fibrosis signaling in PKD.
Collapse
Affiliation(s)
- Hyowon Mun
- Molecular Medicine Laboratory, Department of Life systems, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, South Korea
| | - Jong Hoon Park
- Department of Life systems, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, South Korea.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW This review will summarize recent literature highlighting the roles of sensory Gpr receptors and their roles in renal function. RECENT FINDINGS Chemoreceptors play important roles in renal physiology wherein they modulate renal function in response to ligands from a variety of sources. SUMMARY As specialized chemical detectors, chemoreceptors in the kidney monitor the level of a variety of chemical ligands in the body and adjust renal function accordingly. In addition to olfactory receptors and taste receptors, G-protein coupled receptors of the orphan Gpr family are now being found to play a 'sensory' role in renal physiology. Identifying the physiological roles of these receptors and elucidating the cell biology underlying these signaling pathways can give us novel insights into renal function.
Collapse
|
12
|
Rajkumar P, Aisenberg WH, Acres OW, Protzko RJ, Pluznick JL. Identification and characterization of novel renal sensory receptors. PLoS One 2014; 9:e111053. [PMID: 25340336 PMCID: PMC4207771 DOI: 10.1371/journal.pone.0111053] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/26/2014] [Indexed: 01/15/2023] Open
Abstract
Recent studies have highlighted the important roles that “sensory” receptors (olfactory receptors, taste receptors, and orphan “GPR” receptors) play in a variety of tissues, including the kidney. Although several studies have identified important roles that individual sensory receptors play in the kidney, there has not been a systematic analysis of the renal repertoire of sensory receptors. In this study, we identify novel renal sensory receptors belonging to the GPR (n = 76), olfactory receptor (n = 6), and taste receptor (n = 11) gene families. A variety of reverse transcriptase (RT)- PCR screening strategies were used to identify novel renal sensory receptors, which were subsequently confirmed using gene-specific primers. The tissue-specific distribution of these receptors was determined, and the novel renal ORs were cloned from whole mouse kidney. Renal ORs that trafficked properly in vitro were screened for potential ligands using a dual-luciferase ligand screen, and novel ligands were identified for Olfr691. These studies demonstrate that multiple sensory receptors are expressed in the kidney beyond those previously identified. These results greatly expand the known repertoire of renal sensory receptors. Importantly, the mRNA of many of the receptors identified in this study are expressed highly in the kidney (comparable to well-known and extensively studied renal GPCRs), and in future studies it will be important to elucidate the roles that these novel renal receptors play in renal physiology.
Collapse
Affiliation(s)
- Premraj Rajkumar
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William H. Aisenberg
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Omar W. Acres
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ryan J. Protzko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer L. Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
13
|
Mariappan MM, Prasad S, D'Silva K, Cedillo E, Sataranatarajan K, Barnes JL, Choudhury GG, Kasinath BS. Activation of glycogen synthase kinase 3β ameliorates diabetes-induced kidney injury. J Biol Chem 2014; 289:35363-75. [PMID: 25339176 DOI: 10.1074/jbc.m114.587840] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increase in protein synthesis contributes to kidney hypertrophy and matrix protein accumulation in diabetes. We have previously shown that high glucose-induced matrix protein synthesis is associated with inactivation of glycogen synthase kinase 3β (GSK3β) in renal cells and in the kidneys of diabetic mice. We tested whether activation of GSK3β by sodium nitroprusside (SNP) mitigates kidney injury in diabetes. Studies in kidney-proximal tubular epithelial cells showed that SNP abrogated high glucose-induced laminin increment by stimulating GSK3β and inhibiting Akt, mTORC1, and events in mRNA translation regulated by mTORC1 and ERK. NONOate, an NO donor, also activated GSK3β, indicating that NO may mediate SNP stimulation of GSK3β. SNP administered for 3 weeks to mice with streptozotocin-induced type 1 diabetes ameliorated kidney hypertrophy, accumulation of matrix proteins, and albuminuria without changing blood glucose levels. Signaling studies showed that diabetes caused inactivation of GSK3β by activation of Src, Pyk2, Akt, and ERK; GSK3β inhibition activated mTORC1 and downstream events in mRNA translation in the kidney cortex. These reactions were abrogated by SNP. We conclude that activation of GSK3β by SNP ameliorates kidney injury induced by diabetes.
Collapse
Affiliation(s)
- Meenalakshmi M Mariappan
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and Medical Service, South Texas Veterans Health Care System, San Antonio, Texas 78229
| | - Sanjay Prasad
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and
| | - Kristin D'Silva
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and
| | - Esteban Cedillo
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and
| | | | - Jeffrey L Barnes
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and
| | - Goutam Ghosh Choudhury
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and Medical Service, South Texas Veterans Health Care System, San Antonio, Texas 78229 the Geriatric Research, Education, and Clinical Center and
| | - Balakuntalam S Kasinath
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78245 and Medical Service, South Texas Veterans Health Care System, San Antonio, Texas 78229
| |
Collapse
|