1
|
Wang Y, Zhang Y, Ma M, Zhuang X, Lu Y, Miao L, Lu X, Cui Y, Cui W. Mechanisms underlying the involvement of peritoneal macrophages in the pathogenesis and novel therapeutic strategies for dialysis-induced peritoneal fibrosis. Front Immunol 2024; 15:1507265. [PMID: 39749340 PMCID: PMC11693514 DOI: 10.3389/fimmu.2024.1507265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Long-term exposure of the peritoneum to peritoneal dialysate results in pathophysiological changes in the anatomical organization of the peritoneum and progressive development of peritoneal fibrosis. This leads to a decline in peritoneal function and ultrafiltration failure, ultimately necessitating the discontinuation of peritoneal dialysis, severely limiting the potential for long-term maintenance. Additionally, encapsulating peritoneal sclerosis, a serious consequence of peritoneal fibrosis, resulting in patients discontinuing PD and significant mortality. The causes and mechanisms underlying peritoneal fibrosis in patients undergoing peritoneal dialysis remain unknown, with no definitive treatment available. However, abnormal activation of the immune system appears to be involved in altering the structure of the peritoneum and promoting fibrotic changes. Macrophage infiltration and polarization are key contributors to pathological injury within the peritoneum, showing a strong correlation with the epithelial-to-mesenchymal transition of mesothelial cells and driving the process of fibrosis. This article discusses the role and mechanisms underlying macrophage activation-induced peritoneal fibrosis resulting from PD by analyzing relevant literature from the past decade and provides an overview of recent therapeutic approaches targeting macrophages to treat this condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yingchun Cui
- Department of Nephrology, Second Hospital of Jilin University,
Changchun, China
| | - Wenpeng Cui
- Department of Nephrology, Second Hospital of Jilin University,
Changchun, China
| |
Collapse
|
2
|
Trionfetti F, Marchant V, González-Mateo GT, Kawka E, Márquez-Expósito L, Ortiz A, López-Cabrera M, Ruiz-Ortega M, Strippoli R. Novel Aspects of the Immune Response Involved in the Peritoneal Damage in Chronic Kidney Disease Patients under Dialysis. Int J Mol Sci 2023; 24:5763. [PMID: 36982834 PMCID: PMC10059714 DOI: 10.3390/ijms24065763] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic kidney disease (CKD) incidence is growing worldwide, with a significant percentage of CKD patients reaching end-stage renal disease (ESRD) and requiring kidney replacement therapies (KRT). Peritoneal dialysis (PD) is a convenient KRT presenting benefices as home therapy. In PD patients, the peritoneum is chronically exposed to PD fluids containing supraphysiologic concentrations of glucose or other osmotic agents, leading to the activation of cellular and molecular processes of damage, including inflammation and fibrosis. Importantly, peritonitis episodes enhance peritoneum inflammation status and accelerate peritoneal injury. Here, we review the role of immune cells in the damage of the peritoneal membrane (PM) by repeated exposure to PD fluids during KRT as well as by bacterial or viral infections. We also discuss the anti-inflammatory properties of current clinical treatments of CKD patients in KRT and their potential effect on preserving PM integrity. Finally, given the current importance of coronavirus disease 2019 (COVID-19) disease, we also analyze here the implications of this disease in CKD and KRT.
Collapse
Affiliation(s)
- Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Guadalupe T. González-Mateo
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
- Premium Research, S.L., 19005 Guadalajara, Spain
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, 10 Fredry St., 61-701 Poznan, Poland
| | - Laura Márquez-Expósito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Manuel López-Cabrera
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| |
Collapse
|
3
|
Branco P, Calça R, Martins AR, Mateus C, Jervis MJ, Gomes DP, Azeredo-Lopes S, De Melo Junior AF, Sousa C, Civantos E, Mas-Fontao S, Gaspar A, Ramos S, Morello J, Nolasco F, Rodrigues A, Pereira SA. Fibrosis of Peritoneal Membrane, Molecular Indicators of Aging and Frailty Unveil Vulnerable Patients in Long-Term Peritoneal Dialysis. Int J Mol Sci 2023; 24:5020. [PMID: 36902451 PMCID: PMC10002940 DOI: 10.3390/ijms24055020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Peritoneal membrane status, clinical data and aging-related molecules were investigated as predictors of long-term peritoneal dialysis (PD) outcomes. A 5-year prospective study was conducted with the following endpoints: (a) PD failure and time until PD failure, (b) major cardiovascular event (MACE) and time until MACE. A total of 58 incident patients with peritoneal biopsy at study baseline were included. Peritoneal membrane histomorphology and aging-related indicators were assessed before the start of PD and investigated as predictors of study endpoints. Fibrosis of the peritoneal membrane was associated with MACE occurrence and earlier MACE, but not with the patient or membrane survival. Serum α-Klotho bellow 742 pg/mL was related to the submesothelial thickness of the peritoneal membrane. This cutoff stratified the patients according to the risk of MACE and time until MACE. Uremic levels of galectin-3 were associated with PD failure and time until PD failure. This work unveils peritoneal membrane fibrosis as a window to the vulnerability of the cardiovascular system, whose mechanisms and links to biological aging need to be better investigated. Galectin-3 and α-Klotho are putative tools to tailor patient management in this home-based renal replacement therapy.
Collapse
Affiliation(s)
- Patrícia Branco
- Nephrology Department, Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental (CHLO), 2790-134 Lisboa, Portugal
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Rita Calça
- Nephrology Department, Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental (CHLO), 2790-134 Lisboa, Portugal
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Ana Rita Martins
- Nephrology Department, Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental (CHLO), 2790-134 Lisboa, Portugal
| | - Catarina Mateus
- Nephrology Department, Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental (CHLO), 2790-134 Lisboa, Portugal
| | - Maria João Jervis
- Surgery Department, Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental (CHLO), 2740-134 Lisboa, Portugal
| | - Daniel Pinto Gomes
- Pathology Department, Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental (CHLO), 2740-134 Lisboa, Portugal
| | - Sofia Azeredo-Lopes
- CHRC, NMS|FCM, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
- Department of Statistics and Operational Research, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Antonio Ferreira De Melo Junior
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Cátia Sousa
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Ester Civantos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Sebastian Mas-Fontao
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Augusta Gaspar
- Nephrology Department, Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental (CHLO), 2790-134 Lisboa, Portugal
| | - Sância Ramos
- Pathology Department, Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental (CHLO), 2740-134 Lisboa, Portugal
| | - Judit Morello
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Fernando Nolasco
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Anabela Rodrigues
- UMIB—Unidade Multidisciplinar de Investigação Biomédica, ITR—Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal
- Departamento de Nefrologia, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Centro Hospitalar Universitário do Porto (CHUdsA), 4050-345 Porto, Portugal
| | - Sofia Azeredo Pereira
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| |
Collapse
|
4
|
Carney CP, Kapur A, Anastasiadis P, Ritzel RM, Chen C, Woodworth GF, Winkles JA, Kim AJ. Fn14-Directed DART Nanoparticles Selectively Target Neoplastic Cells in Preclinical Models of Triple-Negative Breast Cancer Brain Metastasis. Mol Pharm 2023; 20:314-330. [PMID: 36374573 PMCID: PMC11056964 DOI: 10.1021/acs.molpharmaceut.2c00663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) patients with brain metastasis (BM) face dismal prognosis due to the limited therapeutic efficacy of the currently available treatment options. We previously demonstrated that paclitaxel-loaded PLGA-PEG nanoparticles (NPs) directed to the Fn14 receptor, termed "DARTs", are more efficacious than Abraxane─an FDA-approved paclitaxel nanoformulation─following intravenous delivery in a mouse model of TNBC BM. However, the precise basis for this difference was not investigated. Here, we further examine the utility of the DART drug delivery platform in complementary xenograft and syngeneic TNBC BM models. First, we demonstrated that, in comparison to nontargeted NPs, DART NPs exhibit preferential association with Fn14-positive human and murine TNBC cell lines cultured in vitro. We next identified tumor cells as the predominant source of Fn14 expression in the TNBC BM-immune microenvironment with minimal expression by microglia, infiltrating macrophages, monocytes, or lymphocytes. We then show that despite similar accumulation in brains harboring TNBC tumors, Fn14-targeted DARTs exhibit significant and specific association with Fn14-positive TNBC cells compared to nontargeted NPs or Abraxane. Together, these results indicate that Fn14 expression primarily by tumor cells in TNBC BMs enables selective DART NP delivery to these cells, likely driving the significantly improved therapeutic efficacy observed in our prior work.
Collapse
Affiliation(s)
- Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Anshika Kapur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Chixiang Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
5
|
Poveda J, Vázquez-Sánchez S, Sanz AB, Ortiz A, Ruilope LM, Ruiz-Hurtado G. TWEAK-Fn14 as a common pathway in the heart and the kidneys in cardiorenal syndrome. J Pathol 2021; 254:5-19. [PMID: 33512736 DOI: 10.1002/path.5631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
There is a complex relationship between cardiac and renal disease, often referred to as the cardiorenal syndrome. Heart failure adversely affects kidney function, and both acute and chronic kidney disease are associated with structural and functional changes to the myocardium. The pathological mechanisms and contributing interactions that surround this relationship remain poorly understood, limiting the opportunities for therapeutic intervention. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor, fibroblast growth factor-inducible 14 (Fn14), are abundantly expressed in injured kidneys and heart. The TWEAK-Fn14 axis promotes responses that drive tissue injury such as inflammation, proliferation, fibrosis, and apoptosis, while restraining the expression of tissue protective factors such as the anti-aging factor Klotho and the master regulator of mitochondrial biogenesis peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). High levels of TWEAK induce cardiac remodeling, and promote inflammation, tubular and podocyte injury and death, fibroblast proliferation, and, ultimately, renal fibrosis. Accordingly, targeting the TWEAK-Fn14 axis is protective in experimental kidney and heart disease. TWEAK has also emerged as a biomarker of kidney damage and cardiovascular outcomes and has been successfully targeted in clinical trials. In this review, we update our current knowledge of the roles of the TWEAK-Fn14 axis in cardiovascular and kidney disease and its potential contribution to the cardiorenal syndrome. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jonay Poveda
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Sara Vázquez-Sánchez
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana B Sanz
- Research Institute - Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Research Institute - Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Luis M Ruilope
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,School of Doctoral Studies and Research, European University of Madrid, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
6
|
IL-17A as a Potential Therapeutic Target for Patients on Peritoneal Dialysis. Biomolecules 2020; 10:biom10101361. [PMID: 32987705 PMCID: PMC7598617 DOI: 10.3390/biom10101361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a health problem reaching epidemic proportions. There is no cure for CKD, and patients may progress to end-stage renal disease (ESRD). Peritoneal dialysis (PD) is a current replacement therapy option for ESRD patients until renal transplantation can be achieved. One important problem in long-term PD patients is peritoneal membrane failure. The mechanisms involved in peritoneal damage include activation of the inflammatory and immune responses, associated with submesothelial immune infiltrates, angiogenesis, loss of the mesothelial layer due to cell death and mesothelial to mesenchymal transition, and collagen accumulation in the submesothelial compact zone. These processes lead to fibrosis and loss of peritoneal membrane function. Peritoneal inflammation and membrane failure are strongly associated with additional problems in PD patients, mainly with a very high risk of cardiovascular disease. Among the inflammatory mediators involved in peritoneal damage, cytokine IL-17A has recently been proposed as a potential therapeutic target for chronic inflammatory diseases, including CKD. Although IL-17A is the hallmark cytokine of Th17 immune cells, many other cells can also produce or secrete IL-17A. In the peritoneum of PD patients, IL-17A-secreting cells comprise Th17 cells, γδ T cells, mast cells, and neutrophils. Experimental studies demonstrated that IL-17A blockade ameliorated peritoneal damage caused by exposure to PD fluids. This article provides a comprehensive review of recent advances on the role of IL-17A in peritoneal membrane injury during PD and other PD-associated complications.
Collapse
|
7
|
FN14 Blockade on Pulmonary Microvascular Endothelial Cells Improves the Outcome of Sepsis-Induced Acute Lung Injury. Shock 2018; 49:213-220. [DOI: 10.1097/shk.0000000000000915] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Doerner J, Chalmers SA, Friedman A, Putterman C. Fn14 deficiency protects lupus-prone mice from histological lupus erythematosus-like skin inflammation induced by ultraviolet light. Exp Dermatol 2018; 25:969-976. [PMID: 27305603 DOI: 10.1111/exd.13108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
The cytokine TNF-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 are involved in cell survival and cytokine production. The TWEAK/Fn14 pathway plays a role in the pathogenesis of spontaneous cutaneous lesions in the MRL/lpr lupus strain; however, the role of TWEAK/Fn14 in disease induced by ultraviolet B (UVB) irradiation has not been explored. MRL/lpr Fn14 knockout (KO) was compared to MRL/lpr Fn14 wild-type (WT) mice following exposure to UVB. We found that irradiated MRL/lpr KO mice had significantly attenuated cutaneous disease when compared to their WT counterparts. There were also fewer infiltrating immune cells (CD3+ , IBA-1+ and NGAL+ ) in the UVB-exposed skin of MRL/lpr Fn14KO mice, as compared to Fn14WT. Furthermore, we identified several macrophage-derived proinflammatory chemokines with elevated expression in MRL/lpr mice after UV exposure. Depletion of macrophages, using a CSF-1R inhibitor, was found to be protective against the development of skin lesions after UVB exposure. In combination with the phenotype of the MRL/lpr Fn14KO mice, these findings indicate a critical role for Fn14 and recruited macrophages in UVB-triggered cutaneous lupus. Our data strongly suggest that TWEAK/Fn14 signalling is important in the pathogenesis of UVB-induced cutaneous disease manifestations in the MRL/lpr model of lupus and further support this pathway as a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- Jessica Doerner
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Samantha A Chalmers
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adam Friedman
- Department of Dermatology, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Chaim Putterman
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
9
|
Liu Q, Xiao S, Xia Y. TWEAK/Fn14 Activation Participates in Skin Inflammation. Mediators Inflamm 2017; 2017:6746870. [PMID: 29038621 PMCID: PMC5606047 DOI: 10.1155/2017/6746870] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor- (TNF-) like weak inducer of apoptosis (TWEAK) participates in multiple biological activities via binding to its sole receptor-fibroblast growth factor-inducible 14 (Fn14). The TWEAK/Fn14 signaling pathway is activated in skin inflammation and modulates the inflammatory responses of keratinocytes by activating nuclear factor-κB signals and enhancing the production of several cytokines, including interleukins, monocyte chemotactic protein-1, RANTES (regulated on activation, normal T cell expressed and secreted), and interferon gamma-induced protein 10. Mild or transient TWEAK/Fn14 activation contributes to tissular repair and regeneration while excessive or persistent TWEAK/Fn14 signals may lead to severe inflammatory infiltration and tissue damage. TWEAK also regulates cell fate of keratinocytes, involving the function of Fn14-TNF receptor-associated factor-TNF receptor axis. By recruiting inflammatory cells, promoting cytokine production, and regulating cell fate, TWEAK/Fn14 activation plays a pivotal role in the pathogenesis of various skin disorders, such as psoriasis, atopic dermatitis, cutaneous vasculitis, human papillomavirus infection and related skin tumors, and cutaneous autoimmune diseases. Therefore, the TWEAK/Fn14 pathway may be a potential target for the development of novel therapeutics for skin inflammatory diseases.
Collapse
Affiliation(s)
- Qilu Liu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Shengxiang Xiao
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Poveda J, Sanz AB, Carrasco S, Ruiz-Ortega M, Cannata-Ortiz P, Sanchez-Niño MD, Ortiz A. Bcl3: a regulator of NF-κB inducible by TWEAK in acute kidney injury with anti-inflammatory and antiapoptotic properties in tubular cells. Exp Mol Med 2017; 49:e352. [PMID: 28684863 PMCID: PMC5565957 DOI: 10.1038/emm.2017.89] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/21/2016] [Accepted: 01/12/2017] [Indexed: 01/09/2023] Open
Abstract
Acute kidney injury (AKI) is characterized by tubular cell death and interstitial inflammation. TWEAK promotes experimental kidney injury and activates the transcription factor NF-κB, a key regulator of genes involved in cell survival and inflammatory response. In search of potential therapeutic targets for AKI, we compared a transcriptomics database of NF-κB-related genes from murine AKI-kidneys with a transcriptomics database of TWEAK-stimulated cultured tubular cells. Four out of twenty-four (17%) genes were significantly upregulated (false discovery rate, FDR<0.05), while nine out of twenty-four (37%) genes were significantly upregulated at FDR <0.1 in both databases. Bcl3 was the top upregulated NF-κB-related gene in experimental AKI and one of the most upregulated genes in TWEAK-stimulated tubular cells. Quantitative reverse transcription PCR (qRT-PCR), western blot and immunohistochemistry confirmed Bcl3 upregulation in both experimental conditions and localized increased Bcl3 expression to tubular cells in AKI. Transcriptomics database analysis revealed increased Bcl3 expression in numerous experimental and human kidney conditions. Furthermore, systemic TWEAK administration increased kidney Bcl3 expression. In cultured tubular cells, targeting Bcl3 by siRNA resulted in the magnification of TWEAK-induced NF-κB transcriptional activity, chemokine upregulation and Klotho downregulation, and in the sensitization to cell death induced by TWEAK/TNFα/interferon-γ. In contrast, Bcl3 overexpression decreased NF-κB transcriptional activity, inflammatory response and cell death while dampening the decrease in Klotho expression. In conclusion, Bcl3 expressed in response to TWEAK stimulation decreases TWEAK-induced inflammatory and lethal responses. Therefore, therapeutic upregulation of Bcl3 activity should be explored in kidney disease because it has advantages over chemical inhibitors of NF-κB that are known to prevent inflammatory responses but can also sensitize the cells to apoptosis.
Collapse
Affiliation(s)
- Jonay Poveda
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Ana B Sanz
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Susana Carrasco
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Marta Ruiz-Ortega
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Pablo Cannata-Ortiz
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Maria D Sanchez-Niño
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| |
Collapse
|
11
|
Kawanishi K, Honda K, Hamada C. Recommendations for pathological diagnosis on biopsy samples from peritoneal dialysis patients. Pleura Peritoneum 2017; 2:3-15. [PMID: 30911628 PMCID: PMC6386291 DOI: 10.1515/pp-2016-0028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
Peritoneal dialysis (PD) has been established as an essential renal replacement therapy for patients with end stage renal disease during the past half century. Histological evaluation of the peritoneal membrane has contributed to the pathophysiological understanding of PD-related peritoneal injury such as peritonitis, fibrosis, and encapsulating peritoneal sclerosis (EPS). Hyalinizing peritoneal sclerosis (HPS), also known as simple sclerosis, is observed in almost all of PD patients. HPS is morphologically characterized by fibrosis of the submesothelial interstitium and hyalinizing vascular wall, particularly of the post-capillary venule (PCV). Two histological factors, the thickness of submesothelial compact zone (SMC) and the lumen/vessel ratio (L/V) at the PCV, have been used for the quantitative evaluation of HPS. The measuring system on SMC thickness and L/V ratio is easy and useful for evaluating the severity of HPS. On the other hand, EPS is characterized by unique encapsulation of the intestines by an "encapsulating membrane". This newly formed membranous structure covers the visceral peritoneum of the intestines, which contains fibrin deposition, angiogenesis, and proliferation of fibroblast-like cells and other inflammatory cells. This review will cover the common understandings of PD-related peritoneal alterations and provide a basic platform for clinical applications and future studies in this field.
Collapse
Affiliation(s)
- Kunio Kawanishi
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0687, USA
- Department of Surgical Pathology, Tokyo Women’s Medical University, 8-1, Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan
| | - Kazuho Honda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Chieko Hamada
- Division of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Armstrong CL, Galisteo R, Brown SA, Winkles JA. TWEAK activation of the non-canonical NF-κB signaling pathway differentially regulates melanoma and prostate cancer cell invasion. Oncotarget 2016; 7:81474-81492. [PMID: 27821799 PMCID: PMC5348407 DOI: 10.18632/oncotarget.13034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/14/2016] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a multifunctional cytokine that binds with high affinity to a plasma membrane-anchored receptor named Fn14. Both TWEAK and Fn14 expression has been detected in human cancer tissue, and studies have shown that TWEAK/Fn14 signaling can promote either "pro-cancer" or "anti-cancer" cellular effects in vitro, depending on the cancer cell line under investigation. In this study, we engineered murine B16 melanoma cells to secrete high levels of soluble TWEAK and examined their properties. TWEAK production by B16 cells preferentially activated the non-canonical NF-κB signaling pathway and increased the expression of several previously described TWEAK-inducible genes, including Fn14. TWEAK overexpression in B16 cells inhibited both cell growth and invasion in vitro. The TWEAK-mediated reduction in B16 cell invasive capacity was dependent on activation of the non-canonical NF-κB signaling pathway. Finally, we found that this same signaling pathway was also important for TWEAK-stimulated human DU145 prostate cancer cell invasion. Therefore, even though TWEAK:Fn14 binding activates non-canonical NF-κB signaling in both melanoma and prostate cancer cells, this shared cellular response can trigger a very different downstream outcome (inhibition or stimulation of cell invasiveness, respectively).
Collapse
Affiliation(s)
- Cheryl L. Armstrong
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebeca Galisteo
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sharron A.N. Brown
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffrey A. Winkles
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Zhou Q, Bajo MA, Del Peso G, Yu X, Selgas R. Preventing peritoneal membrane fibrosis in peritoneal dialysis patients. Kidney Int 2016; 90:515-24. [PMID: 27282936 DOI: 10.1016/j.kint.2016.03.040] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/13/2016] [Accepted: 03/24/2016] [Indexed: 12/11/2022]
Abstract
Long-term peritoneal dialysis causes morphologic and functional changes in the peritoneal membrane. Although mesothelial-mesenchymal transition of peritoneal mesothelial cells is a key process leading to peritoneal fibrosis, and bioincompatible peritoneal dialysis solutions (glucose, glucose degradation products, and advanced glycation end products or a combination) are responsible for altering mesothelial cell function and proliferation, mechanisms underlying these processes remain largely unclear. Peritoneal fibrosis has 2 cooperative parts, the fibrosis process itself and the inflammation. The link between these 2 processes is frequently bidirectional, with each one inducing the other. This review outlines our current understanding about the definition and pathophysiology of peritoneal fibrosis, recent studies on key fibrogenic molecular machinery in peritoneal fibrosis, such as the role of transforming growth factor-β/Smads, transforming growth factor-β β/Smad independent pathways, and noncoding RNAs. The diagnosis of peritoneal fibrosis, including effluent biomarkers and the histopathology of a peritoneal biopsy, which is the gold standard for demonstrating peritoneal fibrosis, is introduced in detail. Several interventions for peritoneal fibrosis based on biomarkers, cytology, histology, functional studies, and antagonists are presented in this review. Recent experimental trials in animal models, including pharmacology and gene therapy, which could offer novel insights into the treatment of peritoneal fibrosis in the near future, are also discussed in depth.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - M-Auxiliadora Bajo
- Nephrology Service, Hospital Universitario La Paz, IdiPAZ, REDinREN, Fibroteam, IRSIN, Madrid, Spain
| | - Gloria Del Peso
- Nephrology Service, Hospital Universitario La Paz, IdiPAZ, REDinREN, Fibroteam, IRSIN, Madrid, Spain
| | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rafael Selgas
- Nephrology Service, Hospital Universitario La Paz, IdiPAZ, REDinREN, Fibroteam, IRSIN, Madrid, Spain
| |
Collapse
|
14
|
Sanz AB, Ruiz-Andres O, Sanchez-Niño MD, Ruiz-Ortega M, Ramos AM, Ortiz A. Out of the TWEAKlight: Elucidating the Role of Fn14 and TWEAK in Acute Kidney Injury. Semin Nephrol 2016; 36:189-98. [DOI: 10.1016/j.semnephrol.2016.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Fan WC, Huang CC, Yang YY, Lin A, Lee KC, Hsieh YC, Fung CP, Hsu HC, Hou MC, Lin HC. Serum pentraxin-3 and tumor necrosis factor-like weak inducer of apoptosis (TWEAK) predict severity of infections in acute decompensated cirrhotic patients. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 50:905-914. [PMID: 26872435 DOI: 10.1016/j.jmii.2015.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 12/20/2015] [Accepted: 12/29/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pentraxin-3 (PTX3) and soluble tumor necrosis factor (TNF)-like weak inducer of apoptosis (sTWEAK) are new candidate prognostic markers for comorbidities and mortality in various inflammatory diseases. Acute decompensation of cirrhosis is characterized by acute exacerbation of chronic systemic inflammation. Recently, increased circulating PTX3 levels have been reported in nonalcoholic steatohepatitis patients and positively correlated with disease severity. This study aims to explore serum PTX3/sTWEAK levels and their relationship with clinical outcomes in cirrhotic patients with acute decompensation. METHODS We analyzed serum PTX3/sTWEAK levels in relation to inhospital and 3-month new clinical events and survivals in cirrhotic patients with acute decompensation. RESULTS During admission, serum PTX3/sTWEAK levels were significantly higher in acute decompensated cirrhotic patients than controls and positively correlated with protein-energy wasting (PEW), new infections, long hospital stays, high medical costs, and high mortality. During a 3-month follow-up, acute decompensated cirrhotic patients with high serum PTX3/sTWEAK levels had more episodes of unplanned readmission and high 3-month mortality. On multivariate analysis, high PTX3/sTWEAK levels and PEW were independent risk factors for high mortality. CONCLUSION High serum PTX3/sTWEAK levels and PEW are common in cirrhotic patients with acute decompensation. As compared with low serum PTX3 and sTWEAK cases, cirrhotic patients with high serum PTX3/sTWEAK levels a have higher probability of new severe infections, severe sepsis, septic shock, type 1 hepatorenal syndrome, in-hospital, and 3-month follow-up mortalities. Therefore, high serum PTX3/sTWEAK levels on hospital admission predict disease severity and case fatality in cirrhotic patients with acute decompensation.
Collapse
Affiliation(s)
- Wen-Chien Fan
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chia-Chang Huang
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ying-Ying Yang
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| | - Alan Lin
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Institute of Oral Biology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Kuei-Chuan Lee
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yun-Cheng Hsieh
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chang-Phone Fung
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Hui-Chi Hsu
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chih Hou
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
16
|
Nikeghbalian S, Vafaei H, Moradian F, Kazemi K, Tanideh N, Shayan L, Nikeghbalian Z. Administration of Intravenous Inf liximab for Prevention of Peritoneal Adhesions Formation in Rats. Bull Emerg Trauma 2015; 3:97-103. [PMID: 27162911 PMCID: PMC4771249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/18/2015] [Accepted: 06/03/2015] [Indexed: 06/05/2023] Open
Abstract
OBJECTIVES To investigate the effects of intravenous infliximab in preventing the formation of peritoneal adhesions in an animal model of rat. METHODS This was an experimental study being performed in animal laboratory of Shiraz University of Medical Sciences during 2012. Sixty albino rats were randomly assigned in to three groups by Random Design Method. The first group received single infliximab injection (n=20), the second one received double infliximab injection (n=20) and the third received nothing (n=20), after receiving intra-peritoneal injection of talc for induction of peritoneal adhesions. All the animals were sacrificed after 6 weeks and the peritoneal adhesions were evaluated according to Nair classification. RESULTS We observed that the mean adhesion grade was lower in those who received double dose of infliximib when compared to single dose and controls. However the difference did not reach a significant value (p=0.178). The grade of peritoneal adhesion was also comparable between the three study groups (p=0.103). The mean number of 1st WBC count was also comparable between three study groups (p=0.382). We observed that 2nd WBC count was also comparable between two study groups (p=0.317). CONCLUSION Administration of intravenous infliximab after intraabdominal surgicalprocedures would not prevent the formation of peritoneal adhesions in animal model of albino rat.
Collapse
Affiliation(s)
- Saman Nikeghbalian
- Department of Transplantation, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Homeira Vafaei
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Moradian
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kourosh Kazemi
- Animal Laboratory, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Animal Laboratory, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Shayan
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Nikeghbalian
- Department of Anesthesiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Karadag S, Gursu M, Sakin A, Atalay E, Basinoglu F, Aydin Z, Uzun S, Sumnu A, Cebeci E, Koldas M, Ozturk S, Kazancioglu R. The Relationship between Soluble Tumor Necrosis Factor-like Weak Inducer of Apoptosis Levels and Cardiac Functions in Peritoneal Dialysis Patients. EUR J INFLAMM 2014. [DOI: 10.1177/1721727x1401200304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (sTWEAK) levels has been reported to be decreased in patients on hemodialysis (HD) and patients with heart failure. We aimed to study the relationship between sTWEAK levels and cardiac functions in peritoneal dialysis (PD) patients. This cross-sectional study was carried out on patients on chronic PD programs for more than three months. Patients aged under 18 or over 80 years, patients with overt cardiac disease, overt hypervolemia, active systemic infection, malignancy, peritonitis within the last month were excluded. The patient group was compared with the control group including healthy adults aged 24–61 years. Fifty-two PD patients were included in the study (mean age: 52.7±15.4 years; female/male ratio: 30/22). The corresponding data of the control group were 41.3±10.7 years and 17/14. There was no statistically significant difference between demographic parameters of the groups except age. The mean sTWEAK level of the patient and the control groups were similar (564±17 pcg/ml vs 535±126 pcg/ml, p=0.419). No correlation was detected between any of the demographic variables and sTWEAK levels. Among the echocardiographic parameters, only ejection fraction was found to be correlated negatively with sTWEAK levels. Patients with ischemic heart disease (IHD) and heart failure had significantly higher sTWEAK levels compared with the patients without these diseases. With linear regression analysis, only age and the presence of heart failure were found to be the independent determinants of sTWEAK levels. Level of sTWEAK is significantly high in PD patients with heart failure and IHD. sTWEAK may be a marker of cardiac functions in PD patients.
Collapse
Affiliation(s)
- S. Karadag
- Haseki Training and Research Hospital, Department of Nephrology, Istanbul, Turkey
| | - M. Gursu
- Haseki Training and Research Hospital, Department of Nephrology, Istanbul, Turkey
| | - A. Sakin
- Haseki Training and Research Hospital, Department of Internal Medicine, Istanbul, Turkey
| | - E. Atalay
- Haseki Training and Research Hospital, Department of Internal Medicine, Istanbul, Turkey
| | - F. Basinoglu
- Haseki Training and Research Hospital, Department of Biochemistry, Istanbul, Turkey
| | - Z. Aydin
- Haseki Training and Research Hospital, Department of Nephrology, Istanbul, Turkey
| | - S. Uzun
- Haseki Training and Research Hospital, Department of Nephrology, Istanbul, Turkey
| | - A. Sumnu
- Haseki Training and Research Hospital, Department of Nephrology, Istanbul, Turkey
| | - E. Cebeci
- Haseki Training and Research Hospital, Department of Nephrology, Istanbul, Turkey
| | - M. Koldas
- Haseki Training and Research Hospital, Department of Biochemistry, Istanbul, Turkey
| | - S. Ozturk
- Haseki Training and Research Hospital, Department of Nephrology, Istanbul, Turkey
| | - R. Kazancioglu
- Bezmialem Vakif University, Medical Faculty, Department of Nephrology, Istanbul, Turkey
| |
Collapse
|