1
|
Conway E, Wu H, Tian L. Overview of Risk Factors for Esophageal Squamous Cell Carcinoma in China. Cancers (Basel) 2023; 15:5604. [PMID: 38067307 PMCID: PMC10705141 DOI: 10.3390/cancers15235604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 05/27/2024] Open
Abstract
(1) Background: China has the highest esophageal squamous cell carcinoma (ESCC) incidence areas in the world, with some areas of incidence over 100 per 100,000. Despite extensive public health efforts, its etiology is still poorly understood. This study aims to review and summarize past research into potential etiologic factors for ESCC in China. (2) Methods: Relevant observational and intervention studies were systematically extracted from four databases using key terms, reviewed using Rayyan software, and summarized into Excel tables. (3) Results: Among the 207 studies included in this review, 129 studies were focused on genetic etiologic factors, followed by 22 studies focused on dietary-related factors, 19 studies focused on HPV-related factors, and 37 studies focused on other factors. (4) Conclusions: ESCC in China involves a variety of factors including genetic variations, gene-environment interactions, dietary factors like alcohol, tobacco use, pickled vegetables, and salted meat, dietary behavior such as hot food/drink consumption, infections like HPV, poor oral health, gastric atrophy, and socioeconomic factors. Public health measures should prioritize genetic screening for relevant polymorphisms, conduct comprehensive investigations into environmental, dietary, and HPV influences, enhance oral health education, and consider socioeconomic factors overall as integral strategies to reduce ESCC in high-risk areas of China.
Collapse
Affiliation(s)
| | | | - Linwei Tian
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Hong Kong SAR, China; (E.C.); (H.W.)
| |
Collapse
|
2
|
Deng M, Ran P, Chen L, Wang Y, Yu Z, Cai K, Feng J, Qin Z, Yin Y, Tan S, Liu Y, Xu C, Shi G, Ji Y, Zhao J, Zhou J, Fan J, Hou Y, Ding C. Proteogenomic characterization of cholangiocarcinoma. Hepatology 2023; 77:411-429. [PMID: 35716043 PMCID: PMC9869950 DOI: 10.1002/hep.32624] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a highly heterogeneous cancer with limited understanding and few effective therapeutic approaches. We aimed at providing a proteogenomic CCA characterization to inform biological processes and treatment vulnerabilities. APPROACH AND RESULTS Integrative genomic analysis with functional validation uncovered biological perturbations downstream of driver events including DPCR1 , RBM47 mutations, SH3BGRL2 copy number alterations, and FGFR2 fusions in CCA. Proteomic clustering identified three subtypes with distinct clinical outcomes, molecular features, and potential therapeutics. Phosphoproteomics characterized targetable kinases in CCA, suggesting strategies for effective treatment with CDK and MAPK inhibitors. Patients with CCA with HBV infection showed increased antigen processing and presentation (APC) and T cell infiltration, conferring a favorable prognosis compared with those without HBV infection. The characterization of extrahepatic CCA recommended the feasible application of vascular endothelial-derived growth factor inhibitors. Multiomics profiling presented distinctive molecular characteristics of the large bile duct and the small bile duct of intrahepatic CCA. The immune landscape further revealed diverse tumor immune microenvironments, suggesting immune subtypes C1 and C5 might benefit from immune checkpoint therapy. TCN1 was identified as a potential CCA prognostic biomarker, promoting cell growth by enhancing vitamin B12 metabolism. CONCLUSIONS We characterized the proteogenomic landscape of 217 CCAs with 197 paired normal adjacent tissues and identified their subtypes and potential therapeutic targets. The multiomics analyses with other databases and some functional validations have indicated strategies regarding the clinical, biological, and therapeutic approaches to the management of CCA.
Collapse
Affiliation(s)
- Mengjie Deng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Ran
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingli Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zixiang Yu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ke Cai
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanan Yin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoming Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian‐Yuan Zhao
- Institute for Development and Regenerative Cardiovascular Medicine, MOE‐Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China,Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China,Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Zhang R, Cao L, Chen W, Ge H, Hu X, Li Z, Wang Y, Fan W, Yong L, Yu Y, Mao Y, Zhen Q, Liu H, Zhang F, Sun L. Fine-Mapping of the Major Histocompatibility Complex Region Linked to Leprosy in Northern China. Front Genet 2022; 12:768259. [PMID: 34976012 PMCID: PMC8716717 DOI: 10.3389/fgene.2021.768259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/29/2021] [Indexed: 01/31/2023] Open
Abstract
Background: Leprosy is a chronic infectious skin and neurological disease, and genetic background is considered to be one of the major factors of risk. The major histocompatibility complex (MHC) region not only affects susceptibility to leprosy but also its development and outcome. Given the complex traits of the MHC region, variants and the potential mechanism by which HLA influences leprosy development need to be further explored. Methods: We extracted previous genome-wide association study data from the Northern Han Chinese population to perform HLA fine-mapping. Using the 1,000 Genome Project Phase 3 dataset as the reference panel, single-nucleotide polymorphisms (SNP), insertion and deletion (INDEL) and copy number variant (CNV) imputation were carried out. HLA classical alleles and amino acids in the MHC region were imputed using the HAN-MHC database. Further stepwise regression analysis was conducted to analyze independent signals of variants related to leprosy. Results: We identified four independent variants: esv3608598, rs7754498, rs3130781 and rs144388449. Among them, esv3608598 is a CNV and the first HLA CNV associated with leprosy risk. SNP annotation using RegulomeDB, HaploReg, and rVarBase showed that three SNPs are likely to affect the pathogenesis of leprosy. Conclusion: In summary, this is the first study to assess the association between HLA CNV and leprosy susceptibility in a Northern Han Chinese population. By fine mapping of the MHC region in this population, our findings provide evidence for the contribution of HLA to leprosy susceptibility.
Collapse
Affiliation(s)
- Ruixue Zhang
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Lu Cao
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Weiwei Chen
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Huiyao Ge
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Xia Hu
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Zhuo Li
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Yirui Wang
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Wencheng Fan
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Liang Yong
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Yafen Yu
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Yiwen Mao
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Qi Zhen
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liangdan Sun
- Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| |
Collapse
|
4
|
Ma L, Yao N, Chen P, Zhuang Z. TRIM27 promotes the development of esophagus cancer via regulating PTEN/AKT signaling pathway. Cancer Cell Int 2019; 19:283. [PMID: 31719796 PMCID: PMC6839104 DOI: 10.1186/s12935-019-0998-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
Background Tripartite motif‑containing 27 (TRIM27) belongs to the TRIM protein family, which is closely related to the progression of some certain human cancers. Nevertheless, the biological function of TRIM27 in esophageal squamous cell carcinoma (ESCC) is still not clear. The aim of present research is to examine the function of TRIM27 in ESCC cells. Methods In the present study, RNA interference (RNAi) and lentiviral vector were used to knockdown and overexpression of TRIM27 in ESCC cells respectively. qRT-PCR and western blot were used to examine the expression of TRIM27 in ESCC cells. Cell counting kit-8 (CCK-8) assay was performed to determine the proliferation of cells. Results Our analyses indicated that TRIM27 was a pro-proliferation factor in ESCC cells. Moreover, overexpression of TRIM27 deeply suppressed the apoptosis of ESCC cells and accelerated its glucose uptake. In addition, an AKT inhibitor LY294002 was used to determine the connection between TRIM27 and AKT in ESCC cells. Our results demonstrated that TRIM27 has involved in the PI3/AKT signaling pathway. Moreover, TRIM27 interacted with PTEN and mediated its poly-ubiquitination in ESCC cells. Importantly, the glycolysis inhibitor 3-BrPA also inhibited the effect of TRIM27 on ESCC cells. Hence, TRIM27 also participated in the regulation of energy metabolism in ESCC cells. Conclusions This research not only gained a deep insight into the biological function of TRIM27 but also elucidated its potential target and signaling pathway in human ESCC cells.
Collapse
Affiliation(s)
- Liang Ma
- 1Department of Oncology, The Second Affiliated Hospital of Soochow University, Sanxiang Road No. 1055, Gusu District, Suzhou, 215004 Jiangsu China.,Department of Oncology, First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yulong West Road No.166, Tinghu District, Yancheng, 224001 Jiangsu China
| | - Ninghua Yao
- 3Departments of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu China
| | - Ping Chen
- Department of Oncology, First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yulong West Road No.166, Tinghu District, Yancheng, 224001 Jiangsu China
| | - Zhixiang Zhuang
- 1Department of Oncology, The Second Affiliated Hospital of Soochow University, Sanxiang Road No. 1055, Gusu District, Suzhou, 215004 Jiangsu China
| |
Collapse
|
5
|
Matejcic M, Mathew CG, Parker MI. The Relationship Between Environmental Exposure and Genetic Architecture of the 2q33 Locus With Esophageal Cancer in South Africa. Front Genet 2019; 10:406. [PMID: 31118947 PMCID: PMC6504765 DOI: 10.3389/fgene.2019.00406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/12/2019] [Indexed: 11/21/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) has a high prevalence in several countries in Africa and Asia. Previous genome-wide association studies (GWAS) in Chinese populations have identified several ESCC susceptibility loci, including variants on chromosome 2q33 and 6p21, but the contribution of these loci to risk in African populations is unknown. In this study we tested the association of 10 genetic variants at these two risk loci on susceptibility to ESCC in two South African ethnic groups. Variants at 2q33 (rs3769823, rs10931936, rs13016963, rs7578456, rs2244438) and 6p21 (rs911178, rs3763338, rs2844695, rs17533090, rs1536501) were genotyped in a set of Black Xhosa (463 cases and 480 controls) and Mixed Ancestry (269 cases and 288 controls) individuals. Genotyping was performed using TaqMan allelic discrimination assays. The Pearson’s chi-squared test was used to compare the allele frequency between cases and controls. Gene-environment interactions with tobacco smoking and alcohol consumption were investigated in a case-control analysis. A logistic regression analysis was further performed to elucidate the independent effect of each association signal on the risk of ESCC. The 2q33 variants rs10931936, rs7578456, and rs2244438 were marginally associated with higher risk of ESCC in the Mixed Ancestry population (ORs = 1.39–1.58, p ≤ 0.035), of which rs7578456 and rs2244438 remained significant after multiple correction (p < 0.005). The associations with rs7578456 and rs2244438 were also observed across strata of tobacco smoking (ORs = 1.47–2.75, p ≤ 0.035) and alcohol consumption (ORs = 1.45–2.06, p ≤ 0.085) status. However, only the association with rs2244438, which lies within an exon of TRAK2, remained significant after adjustment for the other variants in the region. Interestingly, none of the variants tested were significantly associated with ESCC in the Black South African population. These finding implicate TRAK2 as a casual gene for ESCC risk in the Mixed Ancestry population of South Africa and confirm prior evidence of population-specific differences in the genetic contribution to ESCC, which may reflect differences in genetic architecture and environmental exposure across ethnic groups.
Collapse
Affiliation(s)
- Marco Matejcic
- Division of Medical Biochemistry and Structural Biology, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Christopher G Mathew
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa.,Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - M Iqbal Parker
- Division of Medical Biochemistry and Structural Biology, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Shen FF, Pan Y, Li JZ, Zhao F, Yang HJ, Li JK, Gao ZW, Su JF, Duan LJ, Lun SM, Zhang P, Tian LQ, Sun G, Huang D, Cao YT, Zhou FY. High expression of HLA-DQA1 predicts poor outcome in patients with esophageal squamous cell carcinoma in Northern China. Medicine (Baltimore) 2019; 98:e14454. [PMID: 30813145 PMCID: PMC6408075 DOI: 10.1097/md.0000000000014454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Our previous studies demonstrate that the major histocompatibility complex (MHC) is associated with the progression of esophageal squamous cell carcinoma (ESCC). HLA-DQA1, which belongs to the MHC Class II family, may be a potential biomarker in ESCC progression. However, the association between HLA-DQA1 and ESCC in high-incidence area of northern China has not been well characterized. The purpose of this study is to investigate the relationship of HLA-DQA1 expression with the progression and prognosis of ESCC. METHODS We analyzed the expression profiles of HLA-DQA1 in esophageal cancer (EC) samples in the TCGA database and validated HLA-DQA1 expression by immunohistochemistry, western blotting, and quantitative reverse-transcription polymerase chain reaction in matched EC and normal tissues, respectively. The correlation between HLA-DQA1 expression and clinicopathologic characteristics of ESCC was further analyzed. RESULT Immunohistochemical analysis indicated that the expression level of HLA-DQA1 in ESCC tissues was significantly higher than the matched normal tissues (P < .001). HLA-DQA1 mRNA and protein expression were significantly higher in ESCC tissues compared to the matched normal tissues. Patients with family history negative or with tumor sizes >4 cm were associated with higher HLA-DQA1 expression levels. A prognostic significance of HLA-DQA1 was also found by the Log-rank method, in which high expression of HLA-DQA1 was correlated with a shorter overall survival time. The receiver operating characteristic (ROC) curve analysis yielded the area under the ROC curve value of 0.693. Univariate and multivariate analyses also suggest that high expression of HLA-DQA1 is a potential indicator for poor prognosis of ESCC. CONCLUSIONS Our results demonstrate that HLA-DQA1 plays an important role in ESCC progression and may be a biomarker for ESCC diagnosis and prognosis, as well as a potential target for the treatment of patients with ESCC.
Collapse
Affiliation(s)
- Fang-Fang Shen
- The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang
| | - Ying Pan
- The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang
| | - Jing-Zhong Li
- The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang
| | - Fang Zhao
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang
| | - Hai-Jun Yang
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang
| | - Jun-Kuo Li
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang
| | - Zhao-Wei Gao
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang
| | - Jing-Fen Su
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang
| | - Li-Juan Duan
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang
| | - Shu-Min Lun
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang
| | - Peng Zhang
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lin-Qiang Tian
- The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang
| | - Gang Sun
- The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang
| | - Da Huang
- The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang
| | - Yan-Tian Cao
- The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang
| | - Fu-You Zhou
- The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang
| |
Collapse
|
7
|
Yang H, Mao W, Rodriguez-Aguayo C, Mangala LS, Bartholomeusz G, Iles LR, Jennings NB, Ahmed AA, Sood AK, Lopez-Berestein G, Lu Z, Bast RC. Paclitaxel Sensitivity of Ovarian Cancer Can be Enhanced by Knocking Down Pairs of Kinases that Regulate MAP4 Phosphorylation and Microtubule Stability. Clin Cancer Res 2018; 24:5072-5084. [PMID: 30084832 DOI: 10.1158/1078-0432.ccr-18-0504] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/08/2018] [Accepted: 06/27/2018] [Indexed: 01/11/2023]
Abstract
Purpose: Most patients with ovarian cancer receive paclitaxel chemotherapy, but less than half respond. Pre-treatment microtubule stability correlates with paclitaxel response in ovarian cancer cell lines. Microtubule stability can be increased by depletion of individual kinases. As microtubule stability can be regulated by phosphorylation of microtubule-associated proteins (MAPs), we reasoned that depletion of pairs of kinases that regulate phosphorylation of MAPs could induce microtubule stabilization and paclitaxel sensitization.Experimental Design: Fourteen kinases known to regulate paclitaxel sensitivity were depleted individually in 12 well-characterized ovarian cancer cell lines before measuring proliferation in the presence or absence of paclitaxel. Similar studies were performed by depleting all possible pairs of kinases in six ovarian cancer cell lines. Pairs that enhanced paclitaxel sensitivity across multiple cell lines were studied in depth in cell culture and in two xenograft models.Results: Transfection of siRNA against 10 of the 14 kinases enhanced paclitaxel sensitivity in at least six of 12 cell lines. Dual knockdown of IKBKB/STK39 or EDN2/TBK1 enhanced paclitaxel sensitivity more than silencing single kinases. Sequential knockdown was superior to concurrent knockdown. Dual silencing of IKBKB/STK39 or EDN2/TBK1 stabilized microtubules by inhibiting phosphorylation of p38 and MAP4, inducing apoptosis and blocking cell cycle more effectively than silencing individual kinases. Knockdown of IKBKB/STK39 or EDN2/TBK1 enhanced paclitaxel sensitivity in two ovarian xenograft models.Conclusions: Sequential knockdown of dual kinases increased microtubule stability by decreasing p38-mediated phosphorylation of MAP4 and enhanced response to paclitaxel in ovarian cancer cell lines and xenografts, suggesting a strategy to improve primary therapy. Clin Cancer Res; 24(20); 5072-84. ©2018 AACR.
Collapse
Affiliation(s)
- Hailing Yang
- Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Weiqun Mao
- Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Lingegowda S Mangala
- Center for RNA Interference and Non-Coding RNA, University of Texas, M.D. Anderson Cancer Center, Houston, Texas.,Department of Gynecologic Oncology and Reproductive Medicine, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Geoffrey Bartholomeusz
- Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Lakesla R Iles
- Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Nicholas B Jennings
- Center for RNA Interference and Non-Coding RNA, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Ahmed Ashour Ahmed
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, United Kingdom.,Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Anil K Sood
- Center for RNA Interference and Non-Coding RNA, University of Texas, M.D. Anderson Cancer Center, Houston, Texas.,Department of Gynecologic Oncology and Reproductive Medicine, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Zhen Lu
- Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Robert C Bast
- Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
8
|
Liu J, Cheng Y, Wang X, Zhang L, Wang ZJ. Cancer Characteristic Gene Selection via Sample Learning Based on Deep Sparse Filtering. Sci Rep 2018; 8:8270. [PMID: 29844511 PMCID: PMC5974408 DOI: 10.1038/s41598-018-26666-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 05/17/2018] [Indexed: 11/09/2022] Open
Abstract
Identification of characteristic genes associated with specific biological processes of different cancers could provide insights into the underlying cancer genetics and cancer prognostic assessment. It is of critical importance to select such characteristic genes effectively. In this paper, a novel unsupervised characteristic gene selection method based on sample learning and sparse filtering, Sample Learning based on Deep Sparse Filtering (SLDSF), is proposed. With sample learning, the proposed SLDSF can better represent the gene expression level by the transformed sample space. Most unsupervised characteristic gene selection methods did not consider deep structures, while a multilayer structure may learn more meaningful representations than a single layer, therefore deep sparse filtering is investigated here to implement sample learning in the proposed SLDSF. Experimental studies on several microarray and RNA-Seq datasets demonstrate that the proposed SLDSF is more effective than several representative characteristic gene selection methods (e.g., RGNMF, GNMF, RPCA and PMD) for selecting cancer characteristic genes.
Collapse
Affiliation(s)
- Jian Liu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yuhu Cheng
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xuesong Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Lin Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Z Jane Wang
- Electrical and Computer Engineering Department, University of British Columbia, V6T 1Z4, Vancouver, BC, Canada
| |
Collapse
|
9
|
Abstract
The incidence and mortality trends of oesophageal cancer are changing significantly across the world with considerable heterogeneity between sex, histological types, ethnic patterns and geographical distribution. Recent oesophageal cancer incidence and mortality trends have been analysed using data available from the WHO mortality database, the GLOBOCAN 2012 database and the Cancer Incidence in Five Continents database managed by the International Agency for Research on Cancer. Huge geographical variation is an epidemiological characteristic of oesophageal cancer, with the highest incidence rates observed in Eastern Asia and in Eastern and Southern Africa and the lowest rates observed in Western Africa. The variation is to the order of more than 21 times between the lowest-incidence and the highest-incidence countries. Although the incidence of squamous cell carcinoma is increasing globally, its incidence rates are decreasing in the USA and a few European countries. However, the decrease in the incidence of squamous cell carcinomas in these countries has been accompanied by a marked increase in adenocarcinoma incidence rates. There is a significant sex variation as well, with men being affected three to four times more commonly than women worldwide. The observed trends reflect significant global variations in the incidence and mortality of oesophageal cancers on the basis of sex, geographical distribution, ethnicity and histology. These epidemiological factors related to oesophageal cancers point out a possibly significant role of molecular epidemiological factors (genetic susceptibility and response to treatment) with major differences likely between the characteristics of Asian and Western populations.
Collapse
|
10
|
Zhang P, Li XM, Zhao XK, Song X, Yuan L, Shen FF, Fan ZM, Wang LD. Novel genetic locus at MHC region for esophageal squamous cell carcinoma in Chinese populations. PLoS One 2017; 12:e0177494. [PMID: 28493959 PMCID: PMC5426749 DOI: 10.1371/journal.pone.0177494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Background Our previous genome-wide association study (GWAS) identified three independent single nucleotide polymorphisms (SNPs) in human major histocompatibility complex (MHC) region showing association with esophageal squamous cell carcinoma (ESCC). In this study, we increased GWAS sample size on MHC region and performed validation in an independent ESCC cases and normal controls with aim to find additional loci at MHC region showing association with an increased risk to ESCC. Methods The 1,077 ESCC cases and 1,733 controls were genotyped using Illumina Human 610-Quad Bead Chip, and 451 cases and 374 controls were genotyped using Illumina Human 660W-Quad Bead Chip. After quality control, the selected SNPs were replicated by TaqMan genotyping assay on another 2,026 ESCC cases and 2,384 normal controls. Results By excluding low quality SNPs in primary GWAS screening, we selected 2,533 SNPs in MHC region for association analysis, and identified 5 SNPs with p <10−4. Further validation analysis in an independent case-control cohort confirmed one of the 5 SNPs (rs911178) that showed significant association with ESCC. rs911178 (PGWAS = 6.125E-04, OR = 0.644 and Preplication = 1.406E-22, OR = 0.489) was located at upstream of SCAND3. Conclusion The rs911178 (SCAND3 gene) in MHC region is significantly associated with high risk of ESCC. This study not only reveal the potential role of MHC region for the pathogenesis of ESCC, but also provides important clues for the establishment of tools and methods for screening high risk population of ESCC.
Collapse
Affiliation(s)
- Peng Zhang
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin-Min Li
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Pathology, The Maternal and Child Health Care Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Xue-Ke Zhao
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Song
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Yuan
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Fang-Fang Shen
- The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Zong-Min Fan
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li-Dong Wang
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- * E-mail:
| |
Collapse
|
11
|
Lan X, Gao H, Wang F, Feng J, Bai J, Zhao P, Cao L, Gui S, Gong L, Zhang Y. Whole-exome sequencing identifies variants in invasive pituitary adenomas. Oncol Lett 2016; 12:2319-2328. [PMID: 27698795 PMCID: PMC5038494 DOI: 10.3892/ol.2016.5029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/18/2016] [Indexed: 12/24/2022] Open
Abstract
Pituitary adenomas exhibit a wide range of behaviors. The prediction of invasion or malignant behavior in pituitary adenomas remains challenging. The objective of the present study was to identify the genetic abnormalities associated with invasion in sporadic pituitary adenomas. In the present study, the exomes of six invasive pituitary adenomas (IPA) and six non-invasive pituitary adenomas (nIPA) were sequenced by whole-exome sequencing. Variants were confirmed by dideoxynucleotide sequencing, and candidate driver genes were assessed in an additional 28 pituitary adenomas. A total of 15 identified variants were mainly associated with angiogenesis, metabolism, cell cycle phase, cellular component organization, cytoskeleton and biogenesis immune at a cellular level, including 13 variants that occurred as single nucleotide variants and 2 that comprised of insertions. The messenger RNA (mRNA) levels of diffuse panbronchiolitis critical region 1 (DPCR1), KIAA0226, myxovirus (influenza virus) resistance, proline-rich protein BstNI subfamily 3, PR domain containing 2, with ZNF domain, RIZ1 (PRDM2), PR domain containing 8 (PRDM8), SPANX family member N2 (SPANXN2), TRIO and F-actin binding protein and zinc finger protein 717 in IPA specimens were 50% decreased compared with nIPA specimens. In particular, DPCR1, PRDM2, PRDM8 and SPANXN2 mRNA levels in IPA specimens were approximately four-fold lower compared with nIPA specimens (P=0.003, 0.007, 0.009 and 0.004, respectively). By contrast, the mRNA levels of dentin sialophospho protein, EGF like domain, multiple 7 (EGFL7), low density lipoprotein receptor-related protein 1B and dynein, axonemal, assembly factor 1 (LRRC50) were increased in IPA compared with nIPA specimens (P=0.041, 0.037, 0.022 and 0.013, respectively). Furthermore, decreased PRDM2 expression was associated with tumor recurrence. The findings of the present study indicate that DPCR1, EGFL7, the PRDM family and LRRC50 in pituitary adenomas are modifiers of tumorigenesis, and most likely contribute to the development of oncocytic change and to the invasive tumor phenotype.
Collapse
Affiliation(s)
- Xiaolei Lan
- Key Laboratory of Central Nervous System Injury Research, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China; Department of Neurosurgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hua Gao
- Key Laboratory of Central Nervous System Injury Research, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Fei Wang
- Department of Neurosurgery, Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jie Feng
- Key Laboratory of Central Nervous System Injury Research, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Jiwei Bai
- Key Laboratory of Central Nervous System Injury Research, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Peng Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 200050, P.R. China
| | - Lei Cao
- Key Laboratory of Central Nervous System Injury Research, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 200050, P.R. China
| | - Lei Gong
- Key Laboratory of Central Nervous System Injury Research, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yazhuo Zhang
- Key Laboratory of Central Nervous System Injury Research, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|