2
|
Wankanit S, Mahachoklertwattana P, Tim-Aroon T, Sorapipatcharoen K, Poomthavorn P. Central Precocious Puberty in a Boy with Pseudohypoparathyroidism Type 1A due to a Novel GNAS Variant, with Congenital Hypothyroidism as the First Manifestation. J Clin Res Pediatr Endocrinol 2022; 14:485-489. [PMID: 34327978 PMCID: PMC9724060 DOI: 10.4274/jcrpe.galenos.2021.2021.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pseudohypoparathyroidism (PHP) type 1A (PHP1A) is a disorder of multiple hormone resistance, mainly parathyroid hormone. It is associated with Albright hereditary osteodystrophy phenotypes. Patients with PHP1A may initially present with hypothyroidism during infancy and later develop typical PHP1A characteristics during their childhood. Central precocious puberty (CPP) is extremely rare among PHP1A patients in whom gonadotropin resistance is more usual. This is a case report of a 9.5-year-old boy with congenital hypothyroidism who developed hypocalcemia secondary to PHP. He had relatively short stature with height standard deviation score of -0.9. Obesity had been noted since the age of two years. At the presentation of PHP, pubertal-sized testes of 10 mL were observed, and CPP was documented with serum testosterone concentration of 298 ng/dL (normal for Tanner stage III, 100-320), luteinizing hormone of 3.9 IU/L (normal, 0.2-5.0), and follicle stimulating hormone of 4.8 IU/L (normal, 1.2-5.8). Pituitary magnetic resonance imaging was unremarkable. Genetic analysis confirmed the diagnosis of PHP1A with a novel heterozygous missense variant of GNAS gene in exon 13, c.1103A>G (p.Asp368Gly). Awareness of PHP1A diagnosis in patients with congenital hypothyroidism and early childhood-onset obesity is important for early diagnosis. Apart from multiple hormone resistance, CPP may manifest in patients with PHP1A.
Collapse
Affiliation(s)
- Somboon Wankanit
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pat Mahachoklertwattana
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thipwimol Tim-Aroon
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kinnaree Sorapipatcharoen
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Preamrudee Poomthavorn
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand,* Address for Correspondence: Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand Phone: +662 201 1394 E-mail:
| |
Collapse
|
3
|
Apetrei A, Molin A, Gruchy N, Godin M, Bracquemart C, Resbeut A, Rey G, Nadeau G, Richard N. A novel synonymous variant in exon 1 of GNAS gene results in a cryptic splice site and causes pseudohypoparathyroidism type 1A and pseudo-pseudohypoparathyroidism in a French family. Bone Rep 2021; 14:101073. [PMID: 33997150 PMCID: PMC8100090 DOI: 10.1016/j.bonr.2021.101073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Pseudohypoparathyroidism type 1A (PHP1A) and pseudopseudohypoparathyroidism (PPHP) (Inactivating PTH/PTHrP Signaling Disorders type 2, IPPSD2) are two rare autosomal disorders caused by loss-of-function mutations on either maternal or paternal allele, respectively, in the imprinted GNAS gene, which encodes the α subunit of the ubiquitously-expressed stimulatory G protein (Gαs). CASE PRESENTATION We investigated a synonymous GNAS variant NM_001077488.2: c.108C>A / p.(Val36=) identified in a family presenting with IPPSD2 phenotype. In silico splicing prediction algorithms were in favor of a deleterious effect of this variant, by creating a new donor splicing site. The GNAS expression studies in blood suggested haploinsufficiency and showed an alternate splice product demonstrating the unmasking of a cryptic site, leading to a 34 base pairs deletion and the creation of a probable unstable RNA.We present the first familial case of IPPSD2 caused by a pathogenic synonymous variant in GNAS gene.
Collapse
Affiliation(s)
- Andreea Apetrei
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, Reference Center of Rare Diseases of Calcium and Phosphorus Metabolism, EA 7450 BioTARGen, Caen, France
| | - Arnaud Molin
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, Reference Center of Rare Diseases of Calcium and Phosphorus Metabolism, EA 7450 BioTARGen, Caen, France
| | - Nicolas Gruchy
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, Reference Center of Rare Diseases of Calcium and Phosphorus Metabolism, EA 7450 BioTARGen, Caen, France
| | - Manon Godin
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, Reference Center of Rare Diseases of Calcium and Phosphorus Metabolism, EA 7450 BioTARGen, Caen, France
| | - Claire Bracquemart
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, Reference Center of Rare Diseases of Calcium and Phosphorus Metabolism, EA 7450 BioTARGen, Caen, France
| | - Antoine Resbeut
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, Reference Center of Rare Diseases of Calcium and Phosphorus Metabolism, EA 7450 BioTARGen, Caen, France
| | - Gaëlle Rey
- Metropole Savoie Hospital Center, Genetics Department, Chambéry, France
| | - Gwenaël Nadeau
- Metropole Savoie Hospital Center, Genetics Department, Chambéry, France
| | - Nicolas Richard
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, Reference Center of Rare Diseases of Calcium and Phosphorus Metabolism, EA 7450 BioTARGen, Caen, France
| |
Collapse
|
5
|
Mantovani G, Bastepe M, Monk D, de Sanctis L, Thiele S, Usardi A, Ahmed SF, Bufo R, Choplin T, De Filippo G, Devernois G, Eggermann T, Elli FM, Freson K, García Ramirez A, Germain-Lee EL, Groussin L, Hamdy N, Hanna P, Hiort O, Jüppner H, Kamenický P, Knight N, Kottler ML, Le Norcy E, Lecumberri B, Levine MA, Mäkitie O, Martin R, Martos-Moreno GÁ, Minagawa M, Murray P, Pereda A, Pignolo R, Rejnmark L, Rodado R, Rothenbuhler A, Saraff V, Shoemaker AH, Shore EM, Silve C, Turan S, Woods P, Zillikens MC, Perez de Nanclares G, Linglart A. Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement. Nat Rev Endocrinol 2018; 14:476-500. [PMID: 29959430 PMCID: PMC6541219 DOI: 10.1038/s41574-018-0042-0] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This Consensus Statement covers recommendations for the diagnosis and management of patients with pseudohypoparathyroidism (PHP) and related disorders, which comprise metabolic disorders characterized by physical findings that variably include short bones, short stature, a stocky build, early-onset obesity and ectopic ossifications, as well as endocrine defects that often include resistance to parathyroid hormone (PTH) and TSH. The presentation and severity of PHP and its related disorders vary between affected individuals with considerable clinical and molecular overlap between the different types. A specific diagnosis is often delayed owing to lack of recognition of the syndrome and associated features. The participants in this Consensus Statement agreed that the diagnosis of PHP should be based on major criteria, including resistance to PTH, ectopic ossifications, brachydactyly and early-onset obesity. The clinical and laboratory diagnosis should be confirmed by a molecular genetic analysis. Patients should be screened at diagnosis and during follow-up for specific features, such as PTH resistance, TSH resistance, growth hormone deficiency, hypogonadism, skeletal deformities, oral health, weight gain, glucose intolerance or type 2 diabetes mellitus, and hypertension, as well as subcutaneous and/or deeper ectopic ossifications and neurocognitive impairment. Overall, a coordinated and multidisciplinary approach from infancy through adulthood, including a transition programme, should help us to improve the care of patients affected by these disorders.
Collapse
Affiliation(s)
- Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program (PEBC), Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Luisa de Sanctis
- Pediatric Endocrinology Unit, Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
| | - Susanne Thiele
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Alessia Usardi
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Roberto Bufo
- IPOHA, Italian Progressive Osseous Heteroplasia Association, Cerignola, Foggia, Italy
| | - Timothée Choplin
- K20, French PHP and related disorders patient association, Jouars Pontchartrain, France
| | - Gianpaolo De Filippo
- APHP, Department of medicine for adolescents, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - Guillemette Devernois
- K20, French PHP and related disorders patient association, Jouars Pontchartrain, France
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Francesca M Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Gasthuisberg, University of Leuven, Leuven, Belgium
| | - Aurora García Ramirez
- AEPHP, Spanish PHP and related disorders patient association, Huércal-Overa, Almería, Spain
| | - Emily L Germain-Lee
- Albright Center & Center for Rare Bone Disorders, Division of Pediatric Endocrinology & Diabetes, Connecticut Children's Medical Center, Farmington, CT, USA
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lionel Groussin
- APHP, Department of Endocrinology, Cochin Hospital (HUPC), Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Neveen Hamdy
- Department of Medicine, Division of Endocrinology and Centre for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
| | - Patrick Hanna
- INSERM U1169, Bicêtre Paris Sud, Paris Sud - Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Olaf Hiort
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Kamenický
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- APHP, Department of Endocrinology and Reproductive Diseases, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- INSERM U1185, Paris Sud - Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Nina Knight
- UK acrodysostosis patients' group, London, UK
| | - Marie-Laure Kottler
- Department of Genetics, Reference Centre for Rare Disorders of Calcium and Phosphate Metabolism, Caen University Hospital, Caen, France
- BIOTARGEN, UNICAEN, Normandie University, Caen, France
| | - Elvire Le Norcy
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
- APHP, Department of Odontology, Bretonneau Hospital (PNVS), Paris, France
| | - Beatriz Lecumberri
- Department of Endocrinology and Nutrition, La Paz University Hospital, Madrid, Spain
- Department of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Endocrine Diseases Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Michael A Levine
- Division of Endocrinology and Diabetes and Center for Bone Health, Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Regina Martin
- Osteometabolic Disorders Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Hospital das Clínicas HCFMUSP, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Gabriel Ángel Martos-Moreno
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, CIBERobn, ISCIII, Madrid, Spain
- Department of Pediatrics, Autonomous University of Madrid (UAM), Madrid, Spain
- Endocrine Diseases Research Group, Hospital La Princesa Institute for Health Research (IIS La Princesa), Madrid, Spain
| | | | - Philip Murray
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Arrate Pereda
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain
| | | | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rebecca Rodado
- AEPHP, Spanish PHP and related disorders patient association, Huércal-Overa, Almería, Spain
| | - Anya Rothenbuhler
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - Vrinda Saraff
- Department of Endocrinology and Diabetes, Birmingham Children's Hospital, Birmingham, UK
| | - Ashley H Shoemaker
- Pediatric Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eileen M Shore
- Departments of Orthopaedic Surgery and Genetics, Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline Silve
- APHP, Service de Biochimie et Génétique Moléculaires, Hôpital Cochin, Paris, France
| | - Serap Turan
- Department of Pediatrics, Division of Endocrinology and Diabetes, Marmara University, Istanbul, Turkey
| | | | - M Carola Zillikens
- Department of Internal Medicine, Bone Center Erasmus MC - University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain.
| | - Agnès Linglart
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France.
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France.
- INSERM U1169, Bicêtre Paris Sud, Paris Sud - Paris Saclay University, Le Kremlin-Bicêtre, France.
| |
Collapse
|
6
|
Chu X, Zhu Y, Wang O, Nie M, Quan T, Xue Y, Wang W, Jiang Y, Li M, Xia W, Xing X. Clinical and genetic characteristics of Pseudohypoparathyroidism in the Chinese population. Clin Endocrinol (Oxf) 2018; 88:285-294. [PMID: 29136292 DOI: 10.1111/cen.13516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pseudohypoparathyroidism (PHP) is caused by mutations and epimutations in the GNAS locus, and characterized by the possibility of resistance to multiple hormones and Albright's hereditary osteodystrophy. PHP can be classified into the forms 1A/C, sporadic 1B and familial 1B. OBJECTIVES To obtain an overall view of the clinical and genetic characteristics of the Chinese PHP patient population. METHODS From 2000 to 2016, 120 patients were recruited and studied using Sanger sequencing, methylation-specific multiple ligation-dependent probe amplification (MS-MLPA) and combined bisulfite restriction analysis (COBRA). Of these patients, 104 had positive molecular alterations indicative of certain forms of PHP and were included in data analysis. Clinical and laboratory features were compared between PHP1A/C and PHP1B patients. RESULTS Ten PHP1A/C, 21 familial PHP1B and 73 sporadic PHP1B patients were identified. Four novel GNAS mutations were discovered in these patients, including c.1038+1G>T, c.530+2T>C, c.880_883delCAAG and c.311_312delAAG, insT. The most common symptoms in this series were recurrent tetany (89.4%) and epilepsy (47.1%). The prevalence of weight excess increased with age for PHP1B (10%-35%) and PHP1A/C (50%-75%). Intracranial calcification had a prevalence of 94.6% and correlated with seizures (r = .227, P = .029). Cataracts occurred in 56.2% PHP patients, and there was a trend towards longer disease duration in patients with cataracts (P = .051). Statistically significant differences (P < .05) were observed when comparing certain clinical characteristics between PHP1B and PHP1A/C patients, including age of onset (10 vs 7 year), short stature (21.3% vs 70%), rounded face (60.6% vs 100%), brachydactyly (25.5% vs 100%), ectopic ossification (1.1% vs 40%) and TSH resistance (44.6% vs 90%), respectively. CONCLUSIONS This study is the largest single-centre series of PHP patients and summarizes the clinical and genetic features of the Chinese PHP population. While there was substantial clinical overlap between PHP1A/C and PHP1B, differences in disease progression were observed.
Collapse
Affiliation(s)
- Xueying Chu
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yan Zhu
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Ou Wang
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Min Nie
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Tingting Quan
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yu Xue
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Wenbo Wang
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yan Jiang
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Mei Li
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Weibo Xia
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Xiaoping Xing
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| |
Collapse
|