1
|
Song M, Xu Q, Raka RN, Yin C, Liu X, Yan H. Detection of Cereibacter azotoformans-YS02 as a Novel Source of Coenzyme Q10 and Its Metabolic Analysis. Antioxidants (Basel) 2025; 14:429. [PMID: 40298819 PMCID: PMC12024278 DOI: 10.3390/antiox14040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/18/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Coenzyme Q10 (CoQ10), a high-value-added nutraceutical antioxidant, exhibits an excellent ability to prevent cardiovascular disease. Here, a novel Cereibacter azotoformans strain, designated YS02, was isolated for its ability to produce CoQ10 and genetically characterized by whole genome sequencing (WGS). The CoQ10 biosynthesis and metabolism differences of YS02 under various culture conditions were also systematically investigated. Phylogenetic analysis based on 16 S rRNA genes, along with taxonomic verification using average nucleotide identity (ANI) analysis, confirmed its classification as C. azotoformans. Enzymatic genes dxs, dxr, idi, ubiA, and ubiG were annotated in YS02, which are critical genetic hallmarks for CoQ10 biosynthesis. Under aerobic-dark cultivation, YS02 grows well, and CoQ10 production can reach 201 mg/kg. A total of 542 small-molecule metabolites were identified from YS02 in aerobic-dark and anaerobic-light cultivation via ultra-high performance liquid chromatography-coupled quadrupole orbitrap high-resolution mass spectrometry (UPLC-Q-Exactive Orbitrap MS). Additionally, 40 differential metabolites were screened through multivariate statistical analysis. Metabolic pathway analysis revealed that the biosynthesis of phenylalanine, tyrosine, and tryptophan might be latent factors influencing CoQ10 production discrepancies within YS02 under both cultural modes. These findings represent new insights into the metabolic mechanism of YS02 and underscore its potential as an alternative strain source for industrial CoQ10 production, enriching the existing resources.
Collapse
Affiliation(s)
- Meijie Song
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.S.); (Q.X.); (C.Y.); (X.L.)
| | - Qianqian Xu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.S.); (Q.X.); (C.Y.); (X.L.)
| | - Rifat Nowshin Raka
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China;
| | - Chunhua Yin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.S.); (Q.X.); (C.Y.); (X.L.)
| | - Xiaolu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.S.); (Q.X.); (C.Y.); (X.L.)
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.S.); (Q.X.); (C.Y.); (X.L.)
| |
Collapse
|
2
|
Pailliè-Jiménez ME, Stincone P, Pereira JQ, Santagapita PR, Rodrigues E, Brandelli A. Isolation and Characterization of an Antioxidant Aryl Polyene Pigment from Antarctic Bacterium Lysobacter sp. A03. Mol Biotechnol 2025; 67:1483-1493. [PMID: 38546763 DOI: 10.1007/s12033-024-01132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2025]
Abstract
Lysobacter is known as a bacterial genus with biotechnological potential, producing an array of enzymes, antimicrobial metabolites, and bioactive antioxidant compounds, including aryl polyene (APE) pigments that have been described as protecting substances against photooxidative damage and lipid peroxidation. In this study, the pigment extracted from keratinolytic Lysobacter sp. A03 isolated from Antarctic environment was characterized. The results of KOH test, UV-vis spectroscopy, CIELAB color system, 1H-NMR, and FTIR-ATR spectroscopy suggest the pigment is a yellow xanthomonadin-like pigment. The in vitro antioxidant activity of the pigment was confirmed by the scavenging of ABTS and DPPH radicals. In silico analysis of the genome through antiSMASH software was also performed and the secondary metabolite gene clusters for APE and resorcinol synthesis were identified, suggesting that proteins responsible for the pigment biosynthesis are encoded in Lysobacter A03 genome.
Collapse
Affiliation(s)
- Maria Elisa Pailliè-Jiménez
- Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, ICTA-UFRGS, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Paolo Stincone
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Jamile Queiroz Pereira
- Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, ICTA-UFRGS, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Patricio Román Santagapita
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR, UBA-CONICET), 1428, Buenos Aires, Argentina
| | - Eliseu Rodrigues
- Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, ICTA-UFRGS, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Adriano Brandelli
- Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, ICTA-UFRGS, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
3
|
Xia Z, Xiang H, Shi YM. Bacterial Secondary Metabolites Embedded in Producer Cell Membranes and Antibiotics Targeting Their Biosynthesis. ChemMedChem 2024; 19:e202400469. [PMID: 39287217 DOI: 10.1002/cmdc.202400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
The bacterial cell membrane primarily houses lipids, carbohydrates, and proteins forming a barrier and interface that maintains cellular integrity, supports homeostasis, and senses environmental changes. Compared to lipid components and excreted secondary metabolites, compounds embedded in the producer cell membrane are often overlooked due to their low abundance and niche-specific functions. The accumulation of findings has led to an increased appreciation of their crucial roles in bacterial cell biochemistry, physiology, and ecology, as well as their impact on mutualistic and pathogenic bacteria-eukaryote interactions. This review highlights the structures, biosynthesis, regulation, and ecological functions of membrane-embedded secondary metabolites. It also discusses antibiotics that target their biosynthetic pathways, aiming to inspire the development of antibiotics specific to pathogenic bacteria without harming human cells.
Collapse
Affiliation(s)
- Zhao Xia
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hao Xiang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ming Shi
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Fernández-Arévalo U, Fuchs J, Boll M, Díaz E. Transcriptional regulation of the anaerobic 3-hydroxybenzoate degradation pathway in Aromatoleum sp. CIB. Microbiol Res 2024; 288:127882. [PMID: 39216330 DOI: 10.1016/j.micres.2024.127882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Phenolic compounds are commonly found in anoxic environments, where they serve as both carbon and energy sources for certain anaerobic bacteria. The anaerobic breakdown of m-cresol, catechol, and certain lignin-derived compounds yields the central intermediate 3-hydroxybenzoate/3-hydroxybenzoyl-CoA. In this study, we have characterized the transcription and regulation of the hbd genes responsible for the anaerobic degradation of 3-hydroxybenzoate in the β-proteobacterium Aromatoleum sp. CIB. The hbd cluster is organized in three catabolic operons and a regulatory hbdR gene that encodes a dimeric transcriptional regulator belonging to the TetR family. HbdR suppresses the activity of the three catabolic promoters (PhbdN, PhbdE and PhbdH) by binding to a conserved palindromic operator box (ATGAATGAN4TCATTCAT). 3-Hydroxybenzoyl-CoA, the initial intermediate of the 3-hydroxybenzoate degradation pathway, along with benzoyl-CoA, serve as effector molecules that bind to HbdR inducing the expression of the hbd genes. Moreover, the hbd genes are subject to additional regulation influenced by the presence of non-aromatic carbon sources (carbon catabolite repression), and their expression is induced in oxygen-deprived conditions by the AcpR transcriptional activator. The prevalence of the hbd cluster among members of the Aromatoleum/Thauera bacterial group, coupled with its association with mobile genetic elements, suggests acquisition through horizontal gene transfer. These findings significantly enhance our understanding of the regulatory mechanisms governing the hbd gene cluster in bacteria, paving the way for further exploration into the anaerobic utilization/valorization of phenolic compounds derived from lignin.
Collapse
Affiliation(s)
- Unai Fernández-Arévalo
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Jonathan Fuchs
- Faculty of Biology-Microbiology, University of Freiburg, Freiburg, Germany
| | - Matthias Boll
- Faculty of Biology-Microbiology, University of Freiburg, Freiburg, Germany
| | - Eduardo Díaz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain.
| |
Collapse
|
5
|
Computational Insight into Intraspecies Distinctions in Pseudoalteromonas distincta: Carotenoid-like Synthesis Traits and Genomic Heterogeneity. Int J Mol Sci 2023; 24:ijms24044158. [PMID: 36835570 PMCID: PMC9966250 DOI: 10.3390/ijms24044158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Advances in the computational annotation of genomes and the predictive potential of current metabolic models, based on more than thousands of experimental phenotypes, allow them to be applied to identify the diversity of metabolic pathways at the level of ecophysiology differentiation within taxa and to predict phenotypes, secondary metabolites, host-associated interactions, survivability, and biochemical productivity under proposed environmental conditions. The significantly distinctive phenotypes of members of the marine bacterial species Pseudoalteromonas distincta and an inability to use common molecular markers make their identification within the genus Pseudoalteromonas and prediction of their biotechnology potential impossible without genome-scale analysis and metabolic reconstruction. A new strain, KMM 6257, of a carotenoid-like phenotype, isolated from a deep-habituating starfish, emended the description of P. distincta, particularly in the temperature growth range from 4 to 37 °C. The taxonomic status of all available closely related species was elucidated by phylogenomics. P. distincta possesses putative methylerythritol phosphate pathway II and 4,4'-diapolycopenedioate biosynthesis, related to C30 carotenoids, and their functional analogues, aryl polyene biosynthetic gene clusters (BGC). However, the yellow-orange pigmentation phenotypes in some strains coincide with the presence of a hybrid BGC encoding for aryl polyene esterified with resorcinol. The alginate degradation and glycosylated immunosuppressant production, similar to brasilicardin, streptorubin, and nucleocidines, are the common predicted features. Starch, agar, carrageenan, xylose, lignin-derived compound degradation, polysaccharide, folate, and cobalamin biosynthesis are all strain-specific.
Collapse
|
6
|
Girard L, Lood C, De Mot R, van Noort V, Baudart J. Genomic diversity and metabolic potential of marine Pseudomonadaceae. Front Microbiol 2023; 14:1071039. [PMID: 37168120 PMCID: PMC10165715 DOI: 10.3389/fmicb.2023.1071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/21/2023] [Indexed: 05/13/2023] Open
Abstract
Recent changes in the taxonomy of the Pseudomonadaceae family have led to the delineation of three new genera (Atopomonas, Halopseudomonas and Stutzerimonas). However, the genus Pseudomonas remains the most densely populated and displays a broad genetic diversity. Pseudomonas are able to produce a wide variety of secondary metabolites which drives important ecological functions and have a great impact in sustaining their lifestyles. While soilborne Pseudomonas are constantly examined, we currently lack studies aiming to explore the genetic diversity and metabolic potential of marine Pseudomonas spp. In this study, 23 Pseudomonas strains were co-isolated with Vibrio strains from three marine microalgal cultures and rpoD-based phylogeny allowed their assignment to the Pseudomonas oleovorans group (Pseudomonas chengduensis, Pseudomonas toyotomiensis and one new species). We combined whole genome sequencing on three selected strains with an inventory of marine Pseudomonas genomes to assess their phylogenetic assignations and explore their metabolic potential. Our results revealed that most strains are incorrectly assigned at the species level and half of them do not belong to the genus Pseudomonas but instead to the genera Halopseudomonas or Stutzerimonas. We highlight the presence of 26 new species (Halopseudomonas (n = 5), Stutzerimonas (n = 7) and Pseudomonas (n = 14)) and describe one new species, Pseudomonas chaetocerotis sp. nov. (type strain 536T = LMG 31766T = DSM 111343T). We used genome mining to identify numerous BGCs coding for the production of diverse known metabolites (i.e., osmoprotectants, photoprotectants, quorum sensing molecules, siderophores, cyclic lipopeptides) but also unknown metabolites (e.g., ARE, hybrid ARE-DAR, siderophores, orphan NRPS gene clusters) awaiting chemical characterization. Finally, this study underlines that marine environments host a huge diversity of Pseudomonadaceae that can drive the discovery of new secondary metabolites.
Collapse
Affiliation(s)
- Léa Girard
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Léa Girard,
| | - Cédric Lood
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Julia Baudart
- Laboratoire de Biodiversité et Biotechnologie Microbiennes, Sorbonne Université, CNRS, Observatoire Océanologique, Banyuls-sur-Mer, France
- *Correspondence: Julia Baudart,
| |
Collapse
|
7
|
Kavakli S, Grammbitter GL, Bode HB. Biosynthesis of the multifunctional isopropylstilbene in Photorhabdus laumondii involves cross-talk between specialized and primary metabolism. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Chen A, Jiang Z, Burkart MD. Enzymology of standalone elongating ketosynthases. Chem Sci 2022; 13:4225-4238. [PMID: 35509474 PMCID: PMC9006962 DOI: 10.1039/d1sc07256k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
The β-ketoacyl-acyl carrier protein synthase, or ketosynthase (KS), catalyses carbon-carbon bond formation in fatty acid and polyketide biosynthesis via a decarboxylative Claisen-like condensation. In prokaryotes, standalone elongating KSs interact with the acyl carrier protein (ACP) which shuttles substrates to each partner enzyme in the elongation cycle for catalysis. Despite ongoing research for more than 50 years since KS was first identified in E. coli, the complex mechanism of KSs continues to be unravelled, including recent understanding of gating motifs, KS-ACP interactions, substrate recognition and delivery, and roles in unsaturated fatty acid biosynthesis. In this review, we summarize the latest studies, primarily conducted through structural biology and molecular probe design, that shed light on the emerging enzymology of standalone elongating KSs.
Collapse
Affiliation(s)
- Aochiu Chen
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Ziran Jiang
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| |
Collapse
|
9
|
Jones CV, Jarboe BG, Majer HM, Ma AT, Beld J. Escherichia coli Nissle 1917 secondary metabolism: aryl polyene biosynthesis and phosphopantetheinyl transferase crosstalk. Appl Microbiol Biotechnol 2021; 105:7785-7799. [PMID: 34546406 DOI: 10.1007/s00253-021-11546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Escherichia coli Nissle 1917 (EcN) is a Gram-negative bacterium that is used to treat inflammatory bowel diseases. The probiotic character of EcN is not well-understood, but its ability to produce secondary metabolites plays an important role in its activity. The EcN genome encodes for an aryl polyene (APE) biosynthetic gene cluster (BGC), and APE products have a role in biofilm formation. We show here that this unusual polyketide assembly line synthase produces four APE molecules which are likely cis/trans isomers. Within the APE BGC, two acyl carrier proteins are involved in biosynthesis. Acyl carrier proteins require activation by post-translational modification with a phosphopantetheinyl transferase (PPTase). Through analysis of single, double, and triple mutants of three PPTases, the PPTase-BGC crosstalk relationship in EcN was characterized. Understanding PPTase-BGC crosstalk is important for the engineering of secondary metabolite production hosts and for targeting of PPTases with new antibiotics. KEY POINTS: • Escherichia coli Nissle 1917 biosynthesizes four aryl polyene isoforms. • Phosphopantetheinyl transferase crosstalk is important for biosynthesis.
Collapse
Affiliation(s)
- Courtney V Jones
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Brianna G Jarboe
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Haley M Majer
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Amy T Ma
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA.
| |
Collapse
|
10
|
Hubrich F, Müller M, Andexer JN. Chorismate- and isochorismate converting enzymes: versatile catalysts acting on an important metabolic node. Chem Commun (Camb) 2021; 57:2441-2463. [PMID: 33605953 DOI: 10.1039/d0cc08078k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chorismate and isochorismate represent an important branching point connecting primary and secondary metabolism in bacteria, fungi, archaea and plants. Chorismate- and isochorismate-converting enzymes are potential targets for new bioactive compounds, as well as valuable biocatalysts for the in vivo and in vitro synthesis of fine chemicals. The diversity of the products of chorismate- and isochorismate-converting enzymes is reflected in the enzymatic three-dimensional structures and molecular mechanisms. Due to the high reactivity of chorismate and its derivatives, these enzymes have evolved to be accurately tailored to their respective reaction; at the same time, many of them exhibit a fascinating flexibility regarding side reactions and acceptance of alternative substrates. Here, we give an overview of the different (sub)families of chorismate- and isochorismate-converting enzymes, their molecular mechanisms, and three-dimensional structures. In addition, we highlight important results of mutagenetic approaches that generate a broader understanding of the influence of distinct active site residues for product formation and the conversion of one subfamily into another. Based on this, we discuss to what extent the recent advances in the field might influence the general mechanistic understanding of chorismate- and isochorismate-converting enzymes. Recent discoveries of new chorismate-derived products and pathways, as well as biocatalytic conversions of non-physiological substrates, highlight how this vast field is expected to continue developing in the future.
Collapse
Affiliation(s)
- Florian Hubrich
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | | | | |
Collapse
|
11
|
Venil CK, Dufossé L, Renuka Devi P. Bacterial Pigments: Sustainable Compounds With Market Potential for Pharma and Food Industry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00100] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
12
|
He YW, Cao XQ, Poplawsky AR. Chemical Structure, Biological Roles, Biosynthesis and Regulation of the Yellow Xanthomonadin Pigments in the Phytopathogenic Genus Xanthomonas. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:705-714. [PMID: 32027580 DOI: 10.1094/mpmi-11-19-0326-cr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Xanthomonadins are membrane-bound yellow pigments that are typically produced by phytopathogenic bacterial Xanthomonas spp., Xylella fastidiosa, and Pseudoxanthomonas spp. They are also produced by a diversity of environmental bacterial species. Considerable research has revealed that they are a unique group of halogenated, aryl-polyene, water-insoluble pigments. Xanthomonadins have been shown to play important roles in epiphytic survival and host-pathogen interactions in the phytopathogen Xanthomonas campestris pv. campestris, which is the causal agent of black rot in crucifers. Here, we review recent advances in the understanding of xanthomonadin chemical structures, physiological roles, biosynthetic pathways, regulatory mechanisms, and crosstalk with other signaling pathways. The aim of the present review is to provide clues for further in-depth research on xanthomonadins from Xanthomonas and other related bacterial species.
Collapse
Affiliation(s)
- Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Qiang Cao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Alan R Poplawsky
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, U.S.A
| |
Collapse
|
13
|
Madden KS, Jokhoo HRE, Conradi FD, Knowles JP, Mullineaux CW, Whiting A. Using Nature's polyenes as templates: studies of synthetic xanthomonadin analogues and realising their potential as antioxidants. Org Biomol Chem 2020; 17:3752-3759. [PMID: 30840015 DOI: 10.1039/c9ob00275h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Two truncated analogues of the polyenyl photoprotective xanthomonadin pigments have been synthesised utilising an iterative Heck-Mizoroki (HM)/iododeboronation cross coupling approach and investigated as models of the natural product photoprotective agents in bacteria. Despite the instability of these types of compounds, both analogues proved to be sufficiently stable to allow isolation, spectroscopic analysis and biological studies of their photoprotective behaviour which showed that despite their shorter polyene chain length, they retained the ability to protect bacteria from photochemical damage; i.e. incorporation of one compound into E. coli provided photoprotective activity against singlet oxygen analogous to the natural photoprotective mechanisms employed by Xanthomonas bacteria, answering key questions about what minimal functionality is required to impart photoprotection, potentially leading to new classes of photoprotective and antioxidants compounds.
Collapse
Affiliation(s)
- Katrina S Madden
- Department of Chemistry, Durham University, Science Site, South Road, Durham, DH1 3LE, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Martins TP, Rouger C, Glasser NR, Freitas S, de Fraissinette NB, Balskus EP, Tasdemir D, Leão PN. Chemistry, bioactivity and biosynthesis of cyanobacterial alkylresorcinols. Nat Prod Rep 2019; 36:1437-1461. [PMID: 30702733 PMCID: PMC6836626 DOI: 10.1039/c8np00080h] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 12/18/2022]
Abstract
Covering: up to 2019 Alkylresorcinols are amphiphilic metabolites, well-known for their diverse biological activities, produced by both prokaryotes and eukaryotes. A few classes of alkylresorcinol scaffolds have been reported from the photoautotrophic cyanobacteria, ranging from the relatively simple hierridins to the more intricate cylindrocyclophanes. Recently, it has emerged that cyanobacteria employ two different biosynthetic pathways to produce unique alkylresorcinol scaffolds. However, these convergent pathways intersect by sharing biosynthetic elements which lead to common structural motifs. To obtain a broader view of the biochemical diversity of these compounds in cyanobacteria, we comprehensively cover the isolation, structure, biological activity and biosynthesis of their mono- and dialkylresorcinols. Moreover, we provide an overview of the diversity and distribution of alkylresorcinol-generating biosynthetic gene clusters in this phylum and highlight opportunities for discovery of novel alkylresorcinol scaffolds. Because some of these molecules have inspired notable syntheses, different approaches used to build these molecules in the laboratory are showcased.
Collapse
Affiliation(s)
- Teresa P. Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)
, University of Porto
,
Matosinhos
, Portugal
.
| | - Caroline Rouger
- Research Unit Marine Natural Products Chemistry
, GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech)
, GEOMAR Helmholtz Centre for Ocean Research Kiel
,
Germany
| | - Nathaniel R. Glasser
- Department of Chemistry & Chemical Biology
, Harvard University
,
Cambridge
, MA
, USA
| | - Sara Freitas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)
, University of Porto
,
Matosinhos
, Portugal
.
| | - Nelly B. de Fraissinette
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)
, University of Porto
,
Matosinhos
, Portugal
.
| | - Emily P. Balskus
- Department of Chemistry & Chemical Biology
, Harvard University
,
Cambridge
, MA
, USA
| | - Deniz Tasdemir
- Research Unit Marine Natural Products Chemistry
, GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech)
, GEOMAR Helmholtz Centre for Ocean Research Kiel
,
Germany
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)
, University of Porto
,
Matosinhos
, Portugal
.
| |
Collapse
|
15
|
Grammbitter GLC, Schmalhofer M, Karimi K, Shi YM, Schöner TA, Tobias NJ, Morgner N, Groll M, Bode HB. An Uncommon Type II PKS Catalyzes Biosynthesis of Aryl Polyene Pigments. J Am Chem Soc 2019; 141:16615-16623. [DOI: 10.1021/jacs.8b10776] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Gina L. C. Grammbitter
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt am Main and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, Max-von-Laue-Straße 9 and 15, 60438 Frankfurt am Main, Germany
| | - Maximilian Schmalhofer
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Kudratullah Karimi
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Yi-Ming Shi
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt am Main and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, Max-von-Laue-Straße 9 and 15, 60438 Frankfurt am Main, Germany
| | - Tim A. Schöner
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt am Main and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, Max-von-Laue-Straße 9 and 15, 60438 Frankfurt am Main, Germany
| | - Nicholas J. Tobias
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt am Main and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, Max-von-Laue-Straße 9 and 15, 60438 Frankfurt am Main, Germany
| | - Nina Morgner
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Helge B. Bode
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt am Main and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, Max-von-Laue-Straße 9 and 15, 60438 Frankfurt am Main, Germany
| |
Collapse
|
16
|
Abstract
Enzymes that catalyze a Michael-type addition in polyketide biosynthesis are summarized and discussed.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| |
Collapse
|
17
|
Grüninger MJ, Buchholz PCF, Mordhorst S, Strack P, Müller M, Hubrich F, Pleiss J, Andexer JN. Chorismatases – the family is growing. Org Biomol Chem 2019; 17:2092-2098. [DOI: 10.1039/c8ob03038c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A newly discovered subfamily of chorismatases catalyses the same reaction as chorismate lyases (cleavage of chorismate to 4-hydroxybenzoate), but does not suffer from product inhibition.
Collapse
Affiliation(s)
- Mads J. Grüninger
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Patrick C. F. Buchholz
- Institute of Biochemistry and Technical Biochemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Silja Mordhorst
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Patrick Strack
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Florian Hubrich
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Jennifer N. Andexer
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| |
Collapse
|
18
|
Cao XQ, Wang JY, Zhou L, Chen B, Jin Y, He YW. Biosynthesis of the yellow xanthomonadin pigments involves an ATP-dependent 3-hydroxybenzoic acid: acyl carrier protein ligase and an unusual type II polyketide synthase pathway. Mol Microbiol 2018; 110:16-32. [PMID: 29995983 DOI: 10.1111/mmi.14064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 11/30/2022]
Abstract
Xanthomonadins are yellow pigments that are produced by the phytopathogen Xanthomonas campestris pv. campestris (Xcc). A pig cluster is responsible for xanthomonadin biosynthesis. Previously, Xcc4014 of the cluster was characterized as a bifunctional chorismatase that produces 3-hydroxybenzoic acid (3-HBA) and 4-HBA. In this study, genetic analysis identified 11 genes within the pig cluster to be essential for xanthomonadin biosynthesis. Biochemical and bioinformatics analysis suggest that xanthomonadins are synthesized via an unusual type II polyketide synthase pathway. Heterologous expression of the pig cluster in non-xanthomonadin-producing Pseudomonas aeruginosa strain resulted in the synthesis of chlorinated xanthomonadin-like pigments. Further analysis showed that xanC encodes an acyl carrier protein (ACP) while xanA2 encodes a ATP-dependent 3-HBA:ACP ligase. Both of them act together to catalyse the formation of 3-HBA-S-ACP from 3-HBA to initiate xanthomonadin biosynthesis. Finally, we showed that xanH encodes a FabG-like enzyme and xanK encodes a novel glycosyltransferase. Both xanH and xanK are not only required for xanthomonadin biosynthesis, but also required for the balanced biosynthesis of extracellular polysaccharides and DSF-family quorum sensing signals. These findings provide us with a better understanding of xanthomonadin biosynthetic mechanisms and directly demonstrate the presence of extensive cross-talk among xanthomonadin biosynthetic pathways and other metabolic pathways.
Collapse
Affiliation(s)
- Xue-Qiang Cao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia-Yuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lian Zhou
- Zhiyuan Innovation Research Centre, Student Innovation Institute, Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Jin
- School of Biotechnology, East China Science and Technology University, Shanghai, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
19
|
Sharma V, Siedenburg G, Birke J, Mobeen F, Jendrossek D, Prakash T. Metabolic and taxonomic insights into the Gram-negative natural rubber degrading bacterium Steroidobacter cummioxidans sp. nov., strain 35Y. PLoS One 2018; 13:e0197448. [PMID: 29851965 PMCID: PMC5979037 DOI: 10.1371/journal.pone.0197448] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 05/02/2018] [Indexed: 11/19/2022] Open
Abstract
The pathway of rubber (poly [cis-1,4-isoprene]) catabolism is well documented for Gram-positive rubber degraders but only little information exists for Gram-negative species. The first documented potent rubber degrading Gram-negative strain is Xanthomonas sp. strain 35Y that uses extracellular rubber oxygenases for the initial cleavage of the polyisoprene molecule. However, neither the exact phylogenetic position of Xanthomonas sp. strain 35Y nor the catabolic pathway of the primary polyisoprene cleavage products have been investigated. In this contribution, we started to address both these issues by a comprehensive taxonomic characterization and by the analysis of the draft genome sequence of strain 35Y. Evaluation of the 16S rRNA gene sequence pointed to a borderline taxonomic position of strain 35Y as a novel species of the genus Steroidobacter. Further, substantial differences in the genotypic properties of strain 35Y and the members of the genus Steroidobacter, including average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH), resolved the taxonomic position of strain 35Y and suggested its positioning as a novel species of the genus Steroidobacter. This was further confirmed by comparative analysis of physiological and biochemical features of strain 35Y with other members of the genus Steroidobacter. Thus, we conclude that strain 35Y represents a novel species of the genus Steroidobacter, for which we propose the designation Steroidobacter cummioxidans sp. nov., strain 35YT. A comprehensive analysis of the draft genome of S. cummioxidans strain 35Y revealed similarities but also substantial differences to rubber degrading Gram-positive counterparts. In particular, the putative transporters for the uptake of polyisoprene cleavage products differ from Gram-positive rubber degrading species. The draft genome sequence of S. cummioxidans strain 35Y will be useful for researchers to experimentally verify the predicted similarities and differences in the pathways of polyisoprene catabolism in Gram-positive and Gram-negative rubber degrading species.
Collapse
Affiliation(s)
- Vikas Sharma
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, Mandi, India
| | | | - Jakob Birke
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| | - Fauzul Mobeen
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, Mandi, India
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| | - Tulika Prakash
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, Mandi, India
| |
Collapse
|
20
|
Schöner TA, Gassel S, Osawa A, Tobias NJ, Okuno Y, Sakakibara Y, Shindo K, Sandmann G, Bode HB. Aryl Polyenes, a Highly Abundant Class of Bacterial Natural Products, Are Functionally Related to Antioxidative Carotenoids. Chembiochem 2016; 17:247-53. [PMID: 26629877 DOI: 10.1002/cbic.201500474] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 01/17/2023]
Abstract
Bacterial pigments of the aryl polyene type are structurally similar to the well-known carotenoids with respect to their polyene systems. Their biosynthetic gene cluster is widespread in taxonomically distant bacteria, and four classes of such pigments have been found. Here we report the structure elucidation of the aryl polyene/dialkylresorcinol hybrid pigments of Variovorax paradoxus B4 by HPLC-UV-MS, MALDI-MS and NMR. Furthermore, we show for the first time that this pigment class protects the bacterium from reactive oxygen species, similarly to what is known for carotenoids. An analysis of the distribution of biosynthetic genes for aryl polyenes and carotenoids in bacterial genomes is presented; it shows a complementary distribution of these protective pigments in bacteria.
Collapse
Affiliation(s)
- Tim A Schöner
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue Strasse 9, 60438, Frankfurt am Main, Germany
| | - Sören Gassel
- Biosynthesis Group, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Strasse 9, 60438, Frankfurt am Main, Germany
| | - Ayako Osawa
- Japan Women's University, 2-8-1, Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Nicholas J Tobias
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue Strasse 9, 60438, Frankfurt am Main, Germany
| | - Yukari Okuno
- Japan Women's University, 2-8-1, Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Yui Sakakibara
- Japan Women's University, 2-8-1, Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Kazutoshi Shindo
- Japan Women's University, 2-8-1, Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Gerhard Sandmann
- Biosynthesis Group, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Strasse 9, 60438, Frankfurt am Main, Germany
| | - Helge B Bode
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue Strasse 9, 60438, Frankfurt am Main, Germany. .,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Max-von-Laue-Strasse 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Leão PN, Nakamura H, Costa M, Pereira AR, Martins R, Vasconcelos V, Gerwick WH, Balskus EP. Biosynthesis‐Assisted Structural Elucidation of the Bartolosides, Chlorinated Aromatic Glycolipids from Cyanobacteria. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pedro N. Leão
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge MA, 02138 (USA)
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093 (USA)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas, 289, 4050‐123 Porto (Portugal)
| | - Hitomi Nakamura
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge MA, 02138 (USA)
| | - Margarida Costa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas, 289, 4050‐123 Porto (Portugal)
| | - Alban R. Pereira
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093 (USA)
| | - Rosário Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas, 289, 4050‐123 Porto (Portugal)
- Centre of Health and Environmental Research—CISA, ESTSP, Polytechnic Institute of Porto, Rua Valente Perfeito 322, 4400‐330 Vila Nova de Gaia (Portugal)
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas, 289, 4050‐123 Porto (Portugal)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169‐007 Porto (Portugal)
| | - William H. Gerwick
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093 (USA)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 (USA)
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge MA, 02138 (USA)
| |
Collapse
|
22
|
Leão PN, Nakamura H, Costa M, Pereira AR, Martins R, Vasconcelos V, Gerwick WH, Balskus EP. Biosynthesis-assisted structural elucidation of the bartolosides, chlorinated aromatic glycolipids from cyanobacteria. Angew Chem Int Ed Engl 2015; 54:11063-7. [PMID: 26235728 PMCID: PMC5687511 DOI: 10.1002/anie.201503186] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/15/2015] [Indexed: 11/11/2022]
Abstract
The isolation of the bartolosides, unprecedented cyanobacterial glycolipids featuring aliphatic chains with chlorine substituents and C-glycosyl moieties, is reported. Their chlorinated dialkylresorcinol (DAR) core presented a major structural-elucidation challenge. To overcome this, we discovered the bartoloside (brt) biosynthetic gene cluster and linked it to the natural products through in vitro characterization of the DAR-forming ketosynthase and aromatase. Bioinformatic analysis also revealed a novel potential halogenase. Knowledge of the bartoloside biosynthesis constrained the DAR core structure by defining key pathway intermediates, ultimately allowing us to determine the full structures of the bartolosides. This work illustrates the power of genomics to enable the use of biosynthetic information for structure elucidation.
Collapse
Affiliation(s)
- Pedro N Leão
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge MA, 02138 (USA)
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093 (USA)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal)
| | - Hitomi Nakamura
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge MA, 02138 (USA)
| | - Margarida Costa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal)
| | - Alban R Pereira
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093 (USA)
| | - Rosário Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal)
- Centre of Health and Environmental Research-CISA, ESTSP, Polytechnic Institute of Porto, Rua Valente Perfeito 322, 4400-330 Vila Nova de Gaia (Portugal)
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal).
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal).
| | - William H Gerwick
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093 (USA).
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 (USA).
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge MA, 02138 (USA).
| |
Collapse
|
23
|
Hubrich F, Juneja P, Müller M, Diederichs K, Welte W, Andexer JN. Chorismatase Mechanisms Reveal Fundamentally Different Types of Reaction in a Single Conserved Protein Fold. J Am Chem Soc 2015; 137:11032-7. [DOI: 10.1021/jacs.5b05559] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Florian Hubrich
- Institute
of Pharmaceutical Sciences, University of Freiburg, Albertstr.
25, 79104 Freiburg, Germany
| | - Puneet Juneja
- Department
of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Michael Müller
- Institute
of Pharmaceutical Sciences, University of Freiburg, Albertstr.
25, 79104 Freiburg, Germany
| | - Kay Diederichs
- Department
of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Wolfram Welte
- Department
of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jennifer N. Andexer
- Institute
of Pharmaceutical Sciences, University of Freiburg, Albertstr.
25, 79104 Freiburg, Germany
| |
Collapse
|
24
|
Biosynthesis and function of bacterial dialkylresorcinol compounds. Appl Microbiol Biotechnol 2015; 99:8323-8. [DOI: 10.1007/s00253-015-6905-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
|
25
|
Abstract
It is well recognized that bacteria communicate via small diffusible molecules, a process termed quorum sensing. The best understood quorum sensing systems are those that use acylated homoserine lactones (AHLs) for communication. The prototype of those systems consists of a LuxI-like AHL synthase and a cognate LuxR receptor that detects the signal. However, many proteobacteria possess LuxR receptors, yet lack any LuxI-type synthase, and thus these receptors are referred to as LuxR orphans or solos. In addition to the well-known AHLs, little is known about the signaling molecules that are sensed by LuxR solos. Here, we describe a novel cell-cell communication system in the insect and human pathogen Photorhabdus asymbiotica. We identified the LuxR homolog PauR to sense dialkylresorcinols (DARs) and cyclohexanediones (CHDs) instead of AHLs as signals. The DarABC synthesis pathway produces the molecules, and the entire system emerged as important for virulence. Moreover, we have analyzed more than 90 different Photorhabdus strains by HPLC/MS and showed that these DARs and CHDs are specific to the human pathogen P. asymbiotica. On the basis of genomic evidence, 116 other bacterial species are putative DAR producers, among them many human pathogens. Therefore, we discuss the possibility of DARs as novel and widespread bacterial signaling molecules and show that bacterial cell-cell communication goes far beyond AHL signaling in nature.
Collapse
|