1
|
Soccio P, Moriondo G, Scioscia G, Tondo P, Bruno G, Giordano G, Sabato R, Foschino Barbaro MP, Landriscina M, Lacedonia D. MiRNA expression affects survival in patients with obstructive sleep apnea and metastatic colorectal cancer. Noncoding RNA Res 2025; 10:91-97. [PMID: 39315340 PMCID: PMC11419774 DOI: 10.1016/j.ncrna.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
INTRODUCTION The relationship between obstructive sleep apnea (OSA) and cancer has been recognized for some time now. However, little is known about the mechanisms by which sleep apnea promotes tumorigenesis and the impact of OSA on survival after cancer diagnosis. In the last few years, research has focused on the exploration of different biomarkers to understand the mechanisms underlying this relationship and miRNAs, non-coding single strands of about 22 nucleotides that post-transcriptionally regulate gene expression, have emerged as possible actors of this process.The aim of the study was to evaluate the impact of OSA on survival of metastatic colorectal cancer (mCRC) patients based on the expression of specific miRNAs. METHODS The expression of 6 miRNAs, respectively miR-21, miR-23b, miR-26a, miR-27b, miR-145 and miR-210, was analyzed by qRT-PCR in patients' sera. Response to first-line therapy, Kaplan-Meier curves of overall and progression-free survival were used to evaluate survival in mCRC patients with and without OSA stratified for the expression of miRNAs. RESULTS The expression of miR-21, miR-23b, miR-26a and miR-210 was significantly upregulated in mCRCs with OSA compared to no OSA. In mCRC patients with OSA and increasing expression of miR-21, miR-23b, miR-26a and miR-210 risk of progression after first-line therapy was higher and both overall and progression-free survival were significantly worst. Conversely, as miR-27b and miR-145 expression increased, the life expectancy of patients diagnosed with OSA and mCRC improved markedly. CONCLUSIONS This study highlights the relevance of specific miRNAs on OSA in mCRCs and their significance as non-invasive biomarkers in predicting the prognosis in patients with mCRC and OSA.
Collapse
Affiliation(s)
- Piera Soccio
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Giorgia Moriondo
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Giulia Scioscia
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
- Institute of Respiratory Diseases, Policlinico of Foggia, Italy
| | - Pasquale Tondo
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Giuseppina Bruno
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Roberto Sabato
- Institute of Respiratory Diseases, Policlinico of Foggia, Italy
| | - Maria Pia Foschino Barbaro
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
- Institute of Respiratory Diseases, Policlinico of Foggia, Italy
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Donato Lacedonia
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
- Institute of Respiratory Diseases, Policlinico of Foggia, Italy
| |
Collapse
|
2
|
Ahmed ASI, Blood AB, Zhang L. MicroRNA-210 mediates hypoxia-induced pulmonary hypertension by targeting mitochondrial bioenergetics and mtROS flux. Acta Physiol (Oxf) 2024; 240:e14212. [PMID: 39073309 PMCID: PMC11934933 DOI: 10.1111/apha.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
AIM Chronic hypoxia is a common cause of pulmonary hypertension (PH). We test the hypothesis that microRNA-210 (miR-210) mediates hypoxia-induced PH by targeting mitochondrial metabolism and increasing reactive oxygen species (mtROS) production in the lungs. METHODS Adult wildtype (WT) or miR-210 knockout (KO) mice were exposed to hypoxia (10.5% O2) or normoxia for 4 weeks. We measured miR-210 levels, right ventricular systolic pressure (RVSP), and histological changes in heart and lung tissues. Mitochondrial bioenergetics and mtROS production were assessed in isolated lung mitochondria. RESULTS Hypoxia increased right ventricular wall thickness and pulmonary vessel wall muscularization in WT, but not miR-210 KO mice. No sex differences were observed. In male mice, hypoxia increased miR-210 levels in the lung and RVSP, which were abrogated by miR-210 deficiency. Hypoxia upregulated mitochondrial oxygen consumption rate and mtROS flux, which were negated in miR-210 KO animals. In addition, chronic hypoxia increased macrophage accumulation in lungs of WT, but not miR-210 KO mice. Moreover, miR-210 overexpression in lungs of WT animals recapitulated the effects of hypoxia and increased mitochondrial oxygen consumption rate, mtROS flux, right ventricular wall thickness, pulmonary vessel wall muscularization and RVSP. MitoQ revoked the effects of miR-210 on lung mitochondrial bioenergetics, right ventricular and pulmonary vessel remodeling and RVSP. CONCLUSION Our findings with loss-of-function and gain-of-function approaches provide explicit evidence that miR-210 mediates hypoxia-induced PH by upregulating mitochondrial bioenergetics and mtROS production in a murine model, revealing new insights into the mechanisms and therapeutic targets for treatment of PH.
Collapse
Affiliation(s)
- Abu Shufian Ishtiaq Ahmed
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Arlin B Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
3
|
Yao B, Xu D, Wang Q, Liu L, Hu Z, Liu W, Zheng Q, Meng H, Xiao R, Xu Q, Hu Y, Wang J. Neuroprotective and vasoprotective effects of herb pair of Zhiqiao-Danggui in ischemic stroke uncovered by LC-MS/MS-based metabolomics approach. Metab Brain Dis 2024; 39:1131-1148. [PMID: 39002017 DOI: 10.1007/s11011-024-01387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Ischemic stroke is the most important cause of disability and death worldwide, but current treatments remain limited. Traditional Chinese medicine (TCM) including the herb pair of Zhiqiao-Danggui (ZD) offers a multifaceted treatment approach through promoting blood circulation, yet its specific anti-ischemic mechanism remains unclear. This study used the photochemically induced thrombosis (PIT) mouse model and the oxygen glucose deprivation/reoxygenation (OGD/R) cell model to explore the therapeutic effect of ZD on ischemic stroke. Mice were treated with high and low doses of ZD extract or positive control. Behavior was assessed using the grid test. The brain tissue was then subjected to infarct volume assessment, histopathology, oxidative stress marker detection, LC/MS metabolomic analysis and qRT-PCR validation. The therapeutic effect of ZD-medicated serum on OGD/R model was tested on cells. Experimental results show that ZD can improve motor function, reduce infarct size, neuronal damage and apoptosis as well as alleviate oxidative stress in mice. ZD-medicated serum promotes endothelial cell proliferation, improves cell survival against OGD/R-induced injury, reduces oxidative damage and protects mitochondrial function. Metabolomics reveals ZD regulation of metabolites in energy metabolism, amino acid metabolism, TCA cycle, and angiogenesis signaling pathways. qRT-PCR results also showed that ZD could attenuate abnormal conduction of angiogenic signals and enhance vessel stability. This study confirmed the neuroprotective and vasoprotective effects of ZD, highlighted its potential in treating ischemic stroke, and provided a scientific basis for the traditional use of ZD.
Collapse
Affiliation(s)
- Benxing Yao
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Di Xu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Qing Wang
- Department of Interventional Surgery, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, Shandong, China
| | - Lin Liu
- Department of Interventional Surgery, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, Shandong, China
| | - Ziyun Hu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Wenya Liu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Qi Zheng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Huihui Meng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Ran Xiao
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Qian Xu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Yudie Hu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Junsong Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| |
Collapse
|
4
|
Renna FJ, Gonzalez CD, Vaccaro MI. Decoding the Versatile Landscape of Autophagic Protein VMP1 in Cancer: A Comprehensive Review across Tissue Types and Regulatory Mechanisms. Int J Mol Sci 2024; 25:3758. [PMID: 38612567 PMCID: PMC11011780 DOI: 10.3390/ijms25073758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Autophagy, a catabolic process orchestrating the degradation of proteins and organelles within lysosomes, is pivotal for maintaining cellular homeostasis. However, its dual role in cancer involves preventing malignant transformation while fostering progression and therapy resistance. Vacuole Membrane Protein 1 (VMP1) is an essential autophagic protein whose expression, per se, triggers autophagy, being present in the whole autophagic flux. In pancreatic cancer, VMP1-whose expression is linked to the Kirsten Rat Sarcoma Virus (KRAS) oncogene-significantly contributes to disease promotion, progression, and chemotherapy resistance. This investigation extends to breast cancer, colon cancer, hepatocellular carcinoma, and more, highlighting VMP1's nuanced nature, contingent on specific tissue contexts. The examination of VMP1's interactions with micro-ribonucleic acids (miRNAs), including miR-21, miR-210, and miR-124, enhances our understanding of its regulatory network in cancer. Additionally, this article discusses VMP1 gene fusions, especially with ribosomal protein S6 kinase B1 (RPS6KB1), shedding light on potential implications for tumor malignancy. By deciphering the molecular mechanisms linking VMP1 to cancer progression, this exploration paves the way for innovative therapeutic strategies to disrupt these pathways and potentially improve treatment outcomes.
Collapse
Affiliation(s)
- Felipe J. Renna
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina;
| | - Claudio D. Gonzalez
- Instituto de Investigaciones, IUC, Medicina Traslacional, Hospital Universitario CEMIC, Buenos Aires C1431FWN, Argentina;
| | - Maria I. Vaccaro
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina;
- Instituto de Investigaciones, IUC, Medicina Traslacional, Hospital Universitario CEMIC, Buenos Aires C1431FWN, Argentina;
| |
Collapse
|
5
|
Chen CW, Wang HC, Tsai IM, Chen IS, Chen CJ, Hou YC, Shan YS. CD204-positive M2-like tumor-associated macrophages increase migration of gastric cancer cells by upregulating miR-210 to reduce NTN4 expression. Cancer Immunol Immunother 2024; 73:1. [PMID: 38175202 PMCID: PMC10766795 DOI: 10.1007/s00262-023-03601-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are the predominant immune cells in the tumor microenvironment and portend poor prognosis. However, the molecular mechanisms underlying the tumor promotion of TAMs have not been fully elucidated. METHODS Coculture of gastric cancer cells with U937 cells was performed to investigate the impact of TAMs on cancer cell behavior. MicroRNA (miRNA) microarray and bioinformatics were applied to identify the involved miRNAs and the functional target genes. The regulation of the miRNA on its target gene was studied using anti-miRNA and miRNA mimic. RESULTS Coculture with CD204+ M2-like TAMs increased proliferation, migration, and epithelial-mesenchymal transition of gastric cancer cells. MiR-210 was the most upregulated miRNA in cancer cells identified by miRNA microarray after coculture. In gastric cancer tissues, miR-210 expression was positively correlated with CD204+ M2-like TAM infiltration. Inactivation of miR-210 by antimir attenuated CD204+ M2-like TAMs-induced cancer cell migration. Using pharmacological inhibitors and neutralizing antibodies, CD204+ M2-like TAMs-secreted TNFα was found to upregulate miR-210 through NF-κB/HIF-1α signaling. Bioinformatics analysis showed netrin-4 (NTN4) as a potential target of miR-210 to suppress gastric cancer cell migration. We also found an inverse expression between miR-210 and NTN4 in cancer cells after coculture or in tumor xenografts. Anti-miR-210 increased NTN4 expression, while miR-210 mimics downregulated NTN4 in cancer cells. Reporter luciferase assays showed that MiR-210 mimics suppressed NTN4 3' untranslated region-driven luciferase activity in cancer cells, but this effect was blocked after mutating miR-210 binding site. CONCLUSIONS CD204+ M2-like TAMs can utilize the TNF-α/NF-κB/HIF-1α/miR-210/NTN4 pathway to facilitate gastric cancer progression.
Collapse
Affiliation(s)
- Chin-Wang Chen
- Department of Surgery, Kaohsiung Veterans General Hospital Tainan Branch, Tainan, Taiwan
| | - Hao-Chen Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Medical Imaging Center, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan
| | - I-Min Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Shu Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chang-Jung Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chin Hou
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138, Sheng-Li Road, Tainan, 70428, Taiwan.
| |
Collapse
|
6
|
Han M, Gu Y, Lu P, Li J, Cao H, Li X, Qian X, Yu C, Yang Y, Yang X, Han N, Dou D, Hu J, Dong H. Retraction Note to: Exosome-mediated lncRNA AFAP1-AS1 promotes trastuzumab resistance through binding with AUF1 and activating ERBB2 translation. Mol Cancer 2022; 21:143. [PMID: 35820907 PMCID: PMC9275128 DOI: 10.1186/s12943-022-01610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pengwei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingyi Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hui Cao
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiangke Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xueke Qian
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chao Yu
- Department of General Surgery, University-Town Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yunqing Yang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xue Yang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Na Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dongwei Dou
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19 XiuHua Road, Xiuying District, Haikou, 570311, China.
| |
Collapse
|
7
|
Dong H, Hu J, Zou K, Ye M, Chen Y, Wu C, Chen X, Han M. Retraction Note to: Activation of LncRNA TINCR by H3K27 acetylation promotes Trastuzumab resistance and epithelial-mesenchymal transition by targeting MicroRNA-125b in breast Cancer. Mol Cancer 2022; 21:139. [PMID: 35768868 PMCID: PMC9241177 DOI: 10.1186/s12943-022-01609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, No.19 Xiu Hua Road, Xiuying District, Haikou City, 570311, Hainan Province, China.
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Kejian Zou
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, No.19 Xiu Hua Road, Xiuying District, Haikou City, 570311, Hainan Province, China
| | - Mulin Ye
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, No.19 Xiu Hua Road, Xiuying District, Haikou City, 570311, Hainan Province, China
| | - Yuanwen Chen
- Department of General Surgery, Chongqing Renji Hospital, University of Chinese Academy of Science, Chongqing, 400062, China
| | - Chengyi Wu
- Department of General Surgery, The Frist Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xin Chen
- Department of General Surgery, The Frist Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
8
|
Kudelova E, Holubekova V, Grendar M, Kolkova Z, Samec M, Vanova B, Mikolajcik P, Smolar M, Kudela E, Laca L, Lasabova Z. Circulating miRNA expression over the course of colorectal cancer treatment. Oncol Lett 2021; 23:18. [PMID: 34868358 PMCID: PMC8630815 DOI: 10.3892/ol.2021.13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/20/2021] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is the third-most common cancer type in males and the second-most common cancer type in females, and has the second-highest overall mortality rate worldwide. Approximately 50% of patients in stage I–III develop metastases, mostly localized to the liver. All physiological conditions occurring in the organism are also reflected in the levels of circulating microRNAs (miRNAs/miRs) in patients. miRNAs are a class of small, non-coding, single-stranded RNAs consisting of 18–25 nucleotides, which have important roles in various cellular processes. The aim of the present study was to evaluate a panel of seven circulating miRNAs (miR-106a-5p, miR-210-5p, miR-155-5p, miR-21-5p, miR-103a-3p, miR-191-5p and miR-16-5p) as biomarkers for monitoring patients undergoing adjuvant treatment of CRC. Total RNA was extracted from the plasma of patients with CRC prior to surgery, in the early post-operative period (n=60) and 3 months after surgery (n=14). The levels of the selected circulating miRNAs were measured with the miRCURY LNA miRNA PCR system and fold changes were calculated using the standard ∆∆Cq method. DIANA-miRPath analysis was used to evaluate the role of significantly deregulated miRNAs. The results indicated significant upregulation of miR-155-5p, miR-21-5p and miR-191-5p, and downregulation of miR-16-5p directly after the surgery. In paired follow-up samples, the most significant upregulation was detected for miR-106a-5p and miR-16-5p, and the most significant downregulation was for miR-21-5p. Pathway analysis outlined the role of the differentially expressed miRNAs in cancer development, but the same pathways are also involved in wound healing and regeneration of intestinal epithelium. It may be suggested that these processes should also be considered in studies investigating sensitive and easily detectable circulating biomarkers for recurrence in patients.
Collapse
Affiliation(s)
- Eva Kudelova
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Veronika Holubekova
- Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Marian Grendar
- Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Zuzana Kolkova
- Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Marek Samec
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Barbora Vanova
- Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Peter Mikolajcik
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Marek Smolar
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Erik Kudela
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Ludovit Laca
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| |
Collapse
|
9
|
Yang Y, Gu J, Li X, Xue C, Ba L, Gao Y, Zhou J, Bai C, Sun Z, Zhao RC. HIF-1α promotes the migration and invasion of cancer-associated fibroblasts by miR-210. Aging Dis 2021; 12:1794-1807. [PMID: 34631221 PMCID: PMC8460292 DOI: 10.14336/ad.2021.0315] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Metastasis is the major cause of death in colorectal cancer (CRC) patients. Inhibition of metastasis will prolong the survival of patients with CRC. Cancer cells bring their own soil, cancer-associated fibroblasts (CAFs), to metastasize together, promoting the survival and colonization of circulating cancer cells. However, the mechanism by which CAFs metastasize remains unclear. In this study, CAFs were derived from adipose mesenchymal stem cells (MSCs) after co-culture with CRC cell lines. Transwell assays showed that CAFs have stronger migration and invasion abilities than MSCs. In a nude mouse subcutaneous xenograft model, CAFs metastasized from the primary tumour to the lung and promoted the formation of CRC metastases. The expression of HIF-1α was upregulated when MSCs differentiated into CAFs. Inhibition of HIF-1α expression inhibited the migration and invasion of CAFs. Western blot and ChIP assays were used to identify the genes regulated by HIF-1α. HIF-1α regulated the migration and invasion of CAFs by upregulating miR-210 transcription. Bioinformatics analysis and luciferase reporter assays revealed that miR-210 specifically targeted the 3'UTR of VMP1 and regulated its expression. Downregulation of VMP1 enhanced the migration and invasion of CAFs. In vivo, inhibition of miR-210 expression in CAFs reduced the metastasis of CAFs and tumour cells. Therefore, the HIF-1α/miR-210/VMP1 pathway might regulate the migration and invasion of CAFs in CRC. Inhibition of CAF metastasis might reduce CRC metastasis.
Collapse
Affiliation(s)
- Ying Yang
- 1Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Junjie Gu
- 1Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xuechun Li
- 2Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Chunling Xue
- 2Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Li Ba
- 2Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Yang Gao
- 1Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianfeng Zhou
- 1Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chunmei Bai
- 1Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhao Sun
- 1Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Robert Chunhua Zhao
- 2Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| |
Collapse
|
10
|
Association of Exosomal miR-210 with Signaling Pathways Implicated in Lung Cancer. Genes (Basel) 2021; 12:genes12081248. [PMID: 34440422 PMCID: PMC8392066 DOI: 10.3390/genes12081248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022] Open
Abstract
MicroRNA is a class of non-coding RNA involved in post-transcriptional gene regulation. Aberrant expression of miRNAs is well-documented in molecular cancer biology. Extensive research has shown that miR-210 is implicated in the progression of multiple cancers including that of the lung, bladder, colon, and renal cell carcinoma. In recent years, exosomes have been evidenced to facilitate cell–cell communication and signaling through packaging and transporting active biomolecules such as miRNAs and thereby modify the cellular microenvironment favorable for lung cancers. MiRNAs encapsulated inside the lipid bilayer of exosomes are stabilized and transmitted to target cells to exert alterations in the epigenetic landscape. The currently available literature indicates that exosomal miR-210 is involved in the regulation of various lung cancer-related signaling molecules and pathways, including STAT3, TIMP-1, KRAS/BACH2/GATA-3/RIP3, and PI3K/AKT. Here, we highlight major findings and progress on the roles of exosomal miR-210 in lung cancer.
Collapse
|
11
|
Liu Y, Chen Q, Zhu Y, Wang T, Ye L, Han L, Yao Z, Yang Z. Non-coding RNAs in necroptosis, pyroptosis and ferroptosis in cancer metastasis. Cell Death Discov 2021; 7:210. [PMID: 34381023 PMCID: PMC8358062 DOI: 10.1038/s41420-021-00596-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Distant metastasis is the main cause of death for cancer patients. Recently, the newly discovered programmed cell death includes necroptosis, pyroptosis, and ferroptosis, which possesses an important role in the process of tumor metastasis. At the same time, it is widely reported that non-coding RNA precisely regulates programmed death and tumor metastasis. In the present review, we summarize the function and role of necroptosis, pyrolysis, and ferroptosis involving in cancer metastasis, as well as the regulatory factors, including non-coding RNAs, of necroptosis, pyroptosis, and ferroptosis in the process of tumor metastasis.
Collapse
Affiliation(s)
- Yan Liu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Qiuyun Chen
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Yanan Zhu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Tiying Wang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Lijuan Ye
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Lei Han
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China.
| |
Collapse
|
12
|
Khan MT, Irlam-Jones JJ, Pereira RR, Lane B, Valentine HR, Aragaki K, Dyrskjøt L, McConkey DJ, Hoskin PJ, Choudhury A, West CML. A miRNA signature predicts benefit from addition of hypoxia-modifying therapy to radiation treatment in invasive bladder cancer. Br J Cancer 2021; 125:85-93. [PMID: 33846523 PMCID: PMC8257670 DOI: 10.1038/s41416-021-01326-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND miRNAs are promising biomarkers in oncology as their small size makes them less susceptible to degradation than mRNA in FFPE tissue. We aimed to derive a hypoxia-associated miRNA signature for bladder cancer. METHODS Taqman miRNA array cards identified miRNA seed genes induced under hypoxia in bladder cancer cell lines. A signature was derived using feature selection methods in a TCGA BLCA training data set. miRNA expression data were generated for 190 tumours from the BCON Phase 3 trial and used for independent validation. RESULTS A 14-miRNA hypoxia signature was derived, which was prognostic for poorer overall survival in the TCGA BLCA cohort (n = 403, p = 0.001). Univariable analysis showed that the miRNA signature predicted an overall survival benefit from having carbogen-nicotinamide with radiotherapy (HR = 0.30, 95% CI 0.094-0.95, p = 0.030) and performed similarly to a 24-gene mRNA signature (HR = 0.47, 95% CI 0.24-0.92, p = 0.025). Combining the signatures improved performance (HR = 0.26, 95% CI 0.08-0.82, p = 0.014) with borderline significance for an interaction test (p = 0.065). The interaction test was significant for local relapse-free survival LRFS (p = 0.033). CONCLUSION A 14-miRNA hypoxia signature can be used with an mRNA hypoxia signature to identify bladder cancer patients benefitting most from having carbogen and nicotinamide with radiotherapy.
Collapse
Affiliation(s)
- Mairah T. Khan
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Joely J. Irlam-Jones
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Ronnie Rodrigues Pereira
- grid.5379.80000000121662407Translational Oncogenomics, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, University of Manchester, Manchester, UK
| | - Brian Lane
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Helen R. Valentine
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Kai Aragaki
- grid.21107.350000 0001 2171 9311Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD USA
| | - Lars Dyrskjøt
- grid.154185.c0000 0004 0512 597XDepartment of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David J. McConkey
- grid.21107.350000 0001 2171 9311Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD USA
| | - Peter J. Hoskin
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Ananya Choudhury
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Catharine M. L. West
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| |
Collapse
|
13
|
Li G, Wang Q, Li Z, Shen Y. Serum miR-21 and miR-210 as promising non-invasive biomarkers for the diagnosis and prognosis of colorectal cancer. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2021; 112:832-837. [PMID: 33054296 DOI: 10.17235/reed.2020.6801/2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE this study aimed to investigate the expression and clinical significance of miR-21 and miR-210 in serum of patients with colorectal cancer (CRC). METHODS the expression levels of serum miR-21 and miR-210 in 40 CRC patients (CRC group) and 20 healthy patients (control group) were measured by qRT-PCR. Correlation analysis was performed of the relationship between serum miR-21 and miR-210 levels with clinical characteristics, including gender, age, tumor location, tumor size, tumor stage, local invasion and TNM staging. The expression levels of miR-21 and miR-210 in the CRC group were separately measured before and after surgery. ROC analysis was performed to evaluate the diagnostic value of miR-21 and miR-210. RESULTS serum miR-21 and miR-210 in the CRC group were much higher than those in the control group. Meanwhile, the levels of serum miR-21 and miR-210 were closely related to tumor size (p = 0.028, p = 0.047), lymphatic metastasis (p = 0.038, p = 0.028), TNM staging (p = 0.014, p = 0.047) and tumor stage (p = 0.014, p = 0.017), but independent of gender, age and tumor location. In addition, serum miR-21 and miR-210 in the CRC group (n = 18) after surgery were lower than those before surgery (p < 0.001). ROC curves showed that miR-21 (AUC = 0.863) and miR-210 (AUC = 0.818) both had diagnostic efficacy in CRC patients. CONCLUSION miR-21 and miR-210 can be used as novel non-invasive biomarkers for CRC diagnosis and prognosis.
Collapse
Affiliation(s)
- Gang Li
- Colorectal Surgery, Shaoxing People's Hospital
| | - Qi Wang
- Colorectal Surgery, Shaoxing People's Hospital
| | - Zhenjun Li
- Colorectal Surgery, Shaoxing People's Hospital
| | - Yi Shen
- Colorectal Surgery, Shaoxing People's Hospital,
| |
Collapse
|
14
|
Ge L, Zhou F, Nie J, Wang X, Zhao Q. Hypoxic colorectal cancer-secreted exosomes deliver miR-210-3p to normoxic tumor cells to elicit a protumoral effect. Exp Biol Med (Maywood) 2021; 246:1895-1906. [PMID: 33969722 DOI: 10.1177/15353702211011576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hypoxia, the most common feature in the tumor microenvironment, is closely related to tumor malignant progression and poor patient's prognosis. Exosomes, initially recognized as cellular "garbage dumpsters", are now known to be important mediums for mediating cellular communication in tumor microenvironment. However, the mechanisms of hypoxic tumor cell-derived exosomes facilitate colorectal cancer progression still need further exploration. In the present study, we found that exosomes from hypoxic colorectal cancer cells (H-Exos) promoted G1-S cycle transition and proliferation while preventing the apoptosis of colorectal cancer cells by transmitting miR-210-3p to normoxic tumor cells. Mechanistic investigation indicated that miR-210-3p from H-Exos elicited its protumoral effect via suppressing CELF2 expression. A preclinical study further confirmed that H-Exos could promote tumorigenesis in vivo. Clinically, the expression of miR-210-3p in circulating plasma exosomes was markedly upregulated in colorectal cancer patients, which were closely associated with multiple unfavorable clinicopathological features. Taken together, these results suggest that hypoxia may stimulate colorectal cancer cells to secrete miR-210-3p-enriched exosomes in tumor microenvironment, which elicit protumoral effects by inhibiting CELF2 expression. These findings provide new insights on the mechanism of colorectal cancer progression and potential therapeutic targets for colorectal cancer.
Collapse
Affiliation(s)
- Liuqing Ge
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University & Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University & Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Jiayan Nie
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University & Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Xiaobing Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University & Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University & Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| |
Collapse
|
15
|
Wallace L, Aikhionbare K, Banerjee S, Peagler K, Pitts M, Yao X, Aikhionbare F. Differential Expression Profiles of Mitogenome Associated MicroRNAs Among Colorectal Adenomatous Polyps. CANCER RESEARCH JOURNAL 2021; 9:23-33. [PMID: 33628862 PMCID: PMC7899164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colorectal tumors are mostly of epithelial origin and represent a wide spectrum of neoplasms. About 97% of colorectal cancer originating from benign lesions of adenomatous polyps are adenocarcinomas. Reactive oxygen species (ROS) generating from mitochondrial DNA (mtDNA) mutations and microRNAs (miRNAs) are associated with oncogene and tumor suppressor genes regulation which are known to parallel the tissue abnormalities involved with tumorigenesis such as colorectal adenoma to adenocarcinoma. However, the differential expression patterns of mitochondrial associated microRNAs (referred as MitomiRs) among colorectal adenomatous polyps progression is yet to be determined. Thus, the aim of this study was to determine the differential expressions profiles of MitomiRs (miR-24, miR-181, miR-210, miR-21 and miR378) in patients with colorectal adenomatous polyps tissues in correlation with clinicopathological tumor architectures of tubular, tubulovillous, villous adenomas and adenocarcinomas. Isolation of mitochondria RNA from colorectal adenomatous polyps, adenocarcinomas, and normal adjacent tissue samples was performed and assessed for mitochondrial associated miRNAs expression differences using quantitative reverse transcription PCR. Data from this study demonstrates that mitochondria genome expression of mitomiRNAs; miR-24, miR-181, miR-210, miR-21 and miR-378 in colorectal tissue samples varies among the adenomatous polyps. Expression of mitomiRNAs 24, 181, 210 and 378 progressively increased from the precancerous of adenomatous polyps to adenocarcinoma. In addition, miR-210 and miR-181 expression increased 3 folds in villous adenomas and greater than 3 folds increased in miR378 in adenocarcinoma (p < 0.005) when compared to tubular adenoma. Meanwhile, miR-21 increased progressively in adenoma tissues but decreased almost 2.5 folds in adenocarcinomas when compared to villous adenoma tissues (p < 0.001). These results suggest mitomiRs may regulate important mitochondrial functional pathways leading to a more favorable environment for transformation or progression of colorectal adenomatous polyps into adenocarcinomas.
Collapse
Affiliation(s)
- LaShanale Wallace
- Department of Medicine, Morehouse School of Medicine,
Atlanta, Georgia, USA
| | - Karen Aikhionbare
- College of Science and Mathematics, Augusta University,
Augusta, Georgia, USA
| | - Saswati Banerjee
- Department of Physiology, Morehouse School of Medicine,
Atlanta, Georgia, USA
| | - Katie Peagler
- Department of Medicine, Morehouse School of Medicine,
Atlanta, Georgia, USA
| | - Mareena Pitts
- Department of Medicine, Morehouse School of Medicine,
Atlanta, Georgia, USA
| | - Xuebiao Yao
- Department of Physiology, Morehouse School of Medicine,
Atlanta, Georgia, USA
| | - Felix Aikhionbare
- Department of Medicine, Morehouse School of Medicine,
Atlanta, Georgia, USA
| |
Collapse
|
16
|
Dos Santos IL, Penna KGBD, Dos Santos Carneiro MA, Libera LSD, Ramos JEP, Saddi VA. Tissue micro-RNAs associated with colorectal cancer prognosis: a systematic review. Mol Biol Rep 2021; 48:1853-1867. [PMID: 33598796 DOI: 10.1007/s11033-020-06075-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/10/2020] [Indexed: 01/05/2023]
Abstract
Colorectal cancer (CRC) is a multifactorial disease commonly diagnosed worldwide, with high mortality rates. Several studies demonstrate important associations between differential expression of micro-RNAs (miRs) and the prognosis of CRC. The present study aimed to identify differentially expressed tissue miRs associated with prognostic factors in CRC patients, through a systematic review of the Literature. Using the PubMed database, Cochrane Library and Web of Science, studies published in English evaluating miRs differentially expressed in tumor tissue and significantly associated with the prognostic aspects of CRC were selected. All the included studies used RT-PCR (Taqman or SYBR Green) for miR expression analysis and the period of publication was from 2009 to 2018. A total of 115 articles accomplished the inclusion criteria and were included in the review. The studies investigated the expression of 100 different miRs associated with prognostic aspects in colorectal cancer patients. The most frequent oncogenic miRs investigated were miR-21, miR-181a, miR-182, miR-183, miR-210 and miR-224 and the hyperexpression of these miRs was associated with distant metastasis, lymph node metastasis and worse survival in patients with CRC. The most frequent tumor suppressor miRs were miR-126, miR-199b and miR-22 and the hypoexpression of these miRs was associated with distant metastasis, worse prognosis and a higher risk of disease relapse (worse disease-free survival). Specific tissue miRs are shown to be promising prognostic biomarkers in patients with CRC, given their strong association with the prognostic aspects of these tumors, however, new studies are necessary to establish the sensibility and specificity of the individual miRs in order to use them in clinical practice.
Collapse
Affiliation(s)
- Igor Lopes Dos Santos
- Programa de Mestrado em Ciências Ambientais e Saúde da Pontifícia Universidade Católica de Goiás, Laboratório de Genética e Biodiversidade, Escola de Ciências Médicas, Farmacêuticas e Biomédicas da Pontifícia Universidade Católica de Goiás, Área IV, Praça Universitária, 1440, Setor Leste Universitário, Goiânia, GO, 74605-010, Brazil.
| | - Karlla Greick Batista Dias Penna
- Programa de Mestrado em Ciências Ambientais e Saúde da Pontifícia Universidade Católica de Goiás, Laboratório de Genética e Biodiversidade, Escola de Ciências Médicas, Farmacêuticas e Biomédicas da Pontifícia Universidade Católica de Goiás, Área IV, Praça Universitária, 1440, Setor Leste Universitário, Goiânia, GO, 74605-010, Brazil
| | | | | | - Jéssica Enocencio Porto Ramos
- Programa de Mestrado em Ciências Ambientais e Saúde da Pontifícia Universidade Católica de Goiás, Laboratório de Genética e Biodiversidade, Escola de Ciências Médicas, Farmacêuticas e Biomédicas da Pontifícia Universidade Católica de Goiás, Área IV, Praça Universitária, 1440, Setor Leste Universitário, Goiânia, GO, 74605-010, Brazil
| | - Vera Aparecida Saddi
- Programa de Mestrado em Ciências Ambientais e Saúde da Pontifícia Universidade Católica de Goiás, Laboratório de Genética e Biodiversidade, Escola de Ciências Médicas, Farmacêuticas e Biomédicas da Pontifícia Universidade Católica de Goiás, Área IV, Praça Universitária, 1440, Setor Leste Universitário, Goiânia, GO, 74605-010, Brazil
| |
Collapse
|
17
|
Retraction: MiR-203 Suppresses ZNF217 Upregulation in Colorectal Cancer and Its Oncogenicity. PLoS One 2020; 15:e0244268. [PMID: 33332447 PMCID: PMC7746159 DOI: 10.1371/journal.pone.0244268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Retraction: Hypoxia-Inducible MiR-210 Is an Independent Prognostic Factor and Contributes to Metastasis in Colorectal Cancer. PLoS One 2020; 15:e0244280. [PMID: 33332444 PMCID: PMC7746280 DOI: 10.1371/journal.pone.0244280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Sun X, Ni N, Ma Y, Wang Y, Leong DT. Retooling Cancer Nanotherapeutics' Entry into Tumors to Alleviate Tumoral Hypoxia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003000. [PMID: 32803846 DOI: 10.1002/smll.202003000] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Anti-hypoxia cancer nanomedicine (AHCN) holds exciting potential in improving oxygen-dependent therapeutic efficiencies of malignant tumors. However, most studies regarding AHCN focus on optimizing structure and function of nanomaterials with presupposed successful entry into tumor cells. From such a traditional perspective, the main barrier that AHCN needs to overcome is mainly the tumor cell membrane. However, such an oversimplified perspective would neglect that real tumors have many biological, physiological, physical, and chemical defenses preventing the current state-of-the-art AHCNs from even reaching the targeted tumor cells. Fortunately, in recent years, some studies are beginning to intentionally focus on overcoming physiological barriers to alleviate hypoxia. In this Review, the limitations behind the traditional AHCN delivery mindset are addressed and the key barriers that need to be surmounted before delivery to cancer cells and some good ways to improve cell membrane attachment, internalization, and intracellular retention are summarized. It is aimed to contribute to Review literature on this emerging topic through refreshing perspectives based on this work and what is also learnt from others. This Review would therefore assist AHCNs researchers to have a quick overview of the essential information and glean thought-provoking ideas to advance this sub-field in cancer nanomedicine.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yanling Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
20
|
Wai Hon K, Zainal Abidin SA, Othman I, Naidu R. Insights into the Role of microRNAs in Colorectal Cancer (CRC) Metabolism. Cancers (Basel) 2020; 12:cancers12092462. [PMID: 32878019 PMCID: PMC7565715 DOI: 10.3390/cancers12092462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers, with a high mortality rate globally. The pathophysiology of CRC is mainly initiated by alteration in gene expression, leading to dysregulation in multiple signalling pathways and cellular processes. Metabolic reprogramming is one of the important cancer hallmarks in CRC, which involves the adaptive changes in tumour cell metabolism to sustain the high energy requirements for rapid cell proliferation. There are several mechanisms in the metabolic reprogramming of cancer cells, such as aerobic glycolysis, oxidative phosphorylation, lactate and fatty acids metabolism. MicroRNAs (miRNAs) are a class of non-coding RNAs that are responsible for post-transcriptional regulation of gene expression. Differential expression of miRNAs has been shown to play an important role in different aspects of tumorigenesis, such as proliferation, apoptosis, and drug resistance, as well as metabolic reprogramming. Increasing evidence also reports that miRNAs could function as potential regulators of metabolic reprogramming in CRC cells. This review provides an insight into the role of different miRNAs in regulating the metabolism of CRC cells as well as to discuss the potential role of miRNAs as biomarkers or therapeutic targets in CRC tumour metabolism.
Collapse
|
21
|
Harquail J, LeBlanc N, Ouellette RJ, Robichaud GA. miRNAs 484 and 210 regulate Pax-5 expression and function in breast cancer cells. Carcinogenesis 2020; 40:1010-1020. [PMID: 30605519 DOI: 10.1093/carcin/bgy191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/13/2018] [Indexed: 01/12/2023] Open
Abstract
Recent studies have enabled the identification of important factors regulating cancer progression, such as paired box gene 5 (Pax-5). This transcription factor has consistently been associated to B-cell cancer lesions and more recently solid tumors including breast carcinoma. Although Pax-5 downstream activity is relatively well characterized, aberrant Pax-5 expression in a cancer-specific context is poorly understood. To investigate the regulation of Pax-5 expression, we turned to micro RNAs (miRNAs), small non-coding RNA molecules that regulate key biological processes. Extensive studies show that miRNA deregulation is prevalent in cancer lesions. In this study, we aim to elucidate a causal link between differentially expressed miRNAs in cancer cells and their putative targeting of Pax-5-dependent cancer processes. Bioinformatic prediction tools indicate that miRNAs 484 and 210 are aberrantly expressed in breast cancer and predicted to target Pax-5 messenger RNA (mRNA). Through conditional modulation of these miRNAs in breast cancer cells, we demonstrate that miRNAs 484 and 210 inhibit Pax-5 expression and regulate Pax-5-associated cancer processes. In validation, we show that these effects are probably caused by direct miRNA/mRNA interaction, which are reversible by Pax-5 recombinant expression. Interestingly, miRNAs 484 and 210, which are both overexpressed in clinical tumor samples, are also modulated during epithelial-mesenchymal transitioning and hypoxia that correlate inversely to Pax-5 expression. This is the first study demonstrating the regulation of Pax-5 expression and function by non-coding RNAs. These findings will help us better understand Pax-5 aberrant expression within cancer cells, creating the possibility for more efficient diagnosis and treatments for cancer patients.
Collapse
Affiliation(s)
- Jason Harquail
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Nicolas LeBlanc
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Rodney J Ouellette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Gilles A Robichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| |
Collapse
|
22
|
Wang F, Zhu J, Zheng J, Duan W, Zhou Z. miR‑210 enhances mesenchymal stem cell‑modulated neural precursor cell migration. Mol Med Rep 2020; 21:2405-2414. [PMID: 32323777 PMCID: PMC7185297 DOI: 10.3892/mmr.2020.11065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/15/2018] [Indexed: 11/06/2022] Open
Abstract
The migration of endogenous neural stem cells and neural precursor cells (NPCs) to sites of injury is essential for neuroregeneration following hypoxic‑ischemic events. Bone marrow‑derived mesenchymal stem cells (BMSCs) are a potential therapeutic source of cells following central nervous system damage; however, few studies have investigated the effects of BMSCs on cell migration. Thus, in the present study, the effects of BMSCs on NPC migration were investigated. In the present study, BMSCs and NPCs were isolated and cultured from mice. The effects of BMSCs on the migration of NPCs were analyzed using a Transwell cell migration assay. BMSCs were transfected with microRNA‑210 (miR‑210) mimics and inhibitors to examine the effects of the respective upregulation and downregulation of miR‑210 in BMSCs on the migration of NPCs. Then, miR‑210 expression in BMSCs were quantified and the expression levels of vascular endothelial growth factor‑C (VEGF‑C), brain derived neurotrophic factor (BDNF) and chemokine C‑C motif ligand 3 (CCL3) in the supernatant under hypoxic conditions were investigated via reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and ELISA. Subsequently, the expression of VEGF‑C, BDNF and CCL3 in BMSCs overexpressing miR‑210 or BMSCs suppressing miR‑210 was examined by RT‑qPCR and western blot analyses. BMSCs promoted the migration of NPC, particularly when pre‑cultured with BMSCs for 24 h and co‑cultured with NPCs for 24 h; the miR‑210 expression levels increased under hypoxic conditions. Additionally, the migration of NPCs was also increased when the BMSCs overexpressed miR‑210 compared with the BMSCs transfected with a negative control miR and BMSCs with downregulated miR‑210 levels. The expression levels of VEGF‑C increased in the BMSCs that overexpressed miR‑210 and were decreased in BMSCs transfected with a miR‑210 inhibitor. The results of the present study indicated that BMSCs promote the migration of NPCs. Overexpression of miR‑210 in BMSCs enhanced NPC migration and may be associated with increases in VEGF‑C expression levels.
Collapse
Affiliation(s)
- Faxiang Wang
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Jie Zhu
- Department of Neurology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, P.R. China
| | - Jian Zheng
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Wei Duan
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Zhujuan Zhou
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| |
Collapse
|
23
|
Kumar A, Deep G. Hypoxia in tumor microenvironment regulates exosome biogenesis: Molecular mechanisms and translational opportunities. Cancer Lett 2020; 479:23-30. [PMID: 32201202 DOI: 10.1016/j.canlet.2020.03.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
Hypoxia is a key feature of solid tumors, associated with disease aggressiveness and poor outcome. Besides undergoing broad intracellular molecular and metabolic adaptations, hypoxic tumor cells extensively communicate with their microenvironment to concoct conditions favorable for their survival, growth and metastatic spread. This mode of communication is through diverse secretory factors including exosomes (extracellular vesicles of endosomal origin and ~30-150 nm in diameter) which could carry package of molecular information including proteins, nucleic acids, lipids, and metabolites wrapped in lipid bilayer. Numerous studies have concluded that hypoxia promotes exosomes secretion by cancer cells. Moreover, exosomal cargo is considerably altered under hypoxia, dictating tumor cells communication with its local and distant microenvironment. In this review, we have summarized the effects of hypoxia on exosomes (ExoHypoxic) secretion and cargo sorting (miRNAs, proteins, lipids and metabolites) as well as their biological effects in local and distant microenvironment. We have described the key molecular mechanisms (e.g. HIF-1α, ceramides, RAB GTPases, tetraspanins, oxidative stress etc) involved in the production of ExoHypoxic. Lastly, we have highlighted the potential usefulness of ExoHypoxic in cancer prognosis as well as therapeutic opportunities in targeting ExoHypoxic.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA; Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
24
|
Farace C, Pisano A, Griñan-Lison C, Solinas G, Jiménez G, Serra M, Carrillo E, Scognamillo F, Attene F, Montella A, Marchal JA, Madeddu R. Deregulation of cancer-stem-cell-associated miRNAs in tissues and sera of colorectal cancer patients. Oncotarget 2020; 11:116-130. [PMID: 32010426 PMCID: PMC6968784 DOI: 10.18632/oncotarget.27411] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is a deadly tumour in Western countries characterized by high cellular/molecular heterogeneity. Cancer stem cells (CSC) act in cancer recurrence, drug-resistance and in metastatic epithelial-to-mesenchymal transition. microRNAs (miRNAs) contribute to cancer is increasing, and miRNA roles in CSC phenotype and fate and their utility as CRC biomarkers have also been reported. Here, we investigated miR-21, miR-221, miR-18a, miR-210, miR-31, miR-34a, miR-10b and miR-16 expression in experimental ALDH+ and CD44+/CD326+ colorectal CSCs obtained from the human CRC cell lines HCT-116, HT-29 and T-84. Then, we moved our analysis in cancer tissue (CT), healthy tissue (HT) and serum (S) of adult CRC patients (n=12), determining relationships with clinical parameters (age, sex, metastasis, biochemical serum markers). Specific miRNA patterns were evident in vitro (normal, monolayers and CSCs) and in patients’ samples stratified by TNM stage (LOW vs HIGH) or metastasis (Met vs no-Met). miR-21, miR-210, miR-34a upregulation ad miR-16 dowregulation associated with the CSCs phenotype. miR-31b robustly overexpressed in monolayers and CSCs, and in CT ad S of HIGH grade and Met patients, suggesting a role as marker of CRC progression and metastasis. miR-18a upregulated in all cancer models and associated to CSC phenotype, and to metastasis and age in patients. miR-10b downregulated in CT and S of LOW/HIGH grade and no-Met patients. Our results identify miRNAs useful as colorectal CSC biomarker and that miR-21, miR-210, miR-10b and miR-31b are promising markers of CRC. A specific role of miR-18a as metastatic CRC serum biomarker in adult patients was also highlighted.
Collapse
Affiliation(s)
- Cristiano Farace
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| | - Andrea Pisano
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Carmen Griñan-Lison
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs.Granada), Granada, Spain
| | - Giuliana Solinas
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs.Granada), Granada, Spain.,Bio-Health Research Foundation of Eastern Andalusia - Alejandro Otero (FIBAO), Granada, Spain
| | - Marina Serra
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Esmeralda Carrillo
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs.Granada), Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | | | - Federico Attene
- O.U. of Surgery I (Surgical Pathology), A.O.U. Sassari, Sassari, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs.Granada), Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Roberto Madeddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| |
Collapse
|
25
|
Yang Y, Qu A, Wu Q, Zhang X, Wang L, Li C, Dong Z, Du L, Wang C. Prognostic value of a hypoxia-related microRNA signature in patients with colorectal cancer. Aging (Albany NY) 2020; 12:35-52. [PMID: 31926112 PMCID: PMC6977676 DOI: 10.18632/aging.102228] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022]
Abstract
Hypoxia has been particularly associated with poor prognosis in cancer patients. Recent studies have suggested that hypoxia-related miRNAs play a critical role in various cancers, including colorectal cancer (CRC). In the present study, we found 52 differentially expressed miRNAs in HT-29 cells under hypoxic conditions versus normoxic conditions by analyzing the profiles of miRNAs. Using Cox model, we developed a hypoxia-related miRNA signature consisting of four miRNAs, which could successfully discriminate high-risk patients in the Cancer Genome Atlas (TCGA) training cohort (n=381). The prognostic value of this signature was further confirmed in the TCGA testing cohort (n=190) and an independent validation cohort composed of formalin-fixed paraffin-embedded clinical CRC samples (n=220), respectively. Multivariable Cox regression and stratified survival analysis revealed this signature was an independent prognostic factor for CRC patients. Time-dependent receiver operating characteristic (ROC) analysis showed that the area under the curve (AUC) of this signature was significantly larger than that of any other clinical risk factors or single miRNA alone. A nomogram was constructed for clinical use, which incorporated both the miRNA signature and clinical risk factors and performed well in the calibration plots. Collectively, this novel hypoxia-related miRNA signature was an independent prognostic factor, and it possessed a stronger predictive power in identifying high-risk CRC patients than currently used clinicopathological features.
Collapse
Affiliation(s)
- Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China.,Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Jinan 250012, Shandong Province, China
| | - Ailin Qu
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China.,Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Jinan 250012, Shandong Province, China
| | - Qi Wu
- Department of Blood Transfusion, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China.,Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Jinan 250012, Shandong Province, China
| | - Lili Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China.,Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Jinan 250012, Shandong Province, China
| | - Chen Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China.,Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Jinan 250012, Shandong Province, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| |
Collapse
|
26
|
Tian YQ, Fan ZJ, Liu S, Wu YJ, Liu SY. Value of microRNAs in diagnosis and prognosis of colorectal cancer. Shijie Huaren Xiaohua Zazhi 2019; 27:1278-1284. [DOI: 10.11569/wcjd.v27.i20.1278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Some new treatment methods have been explored to delay the recurrence of colorectal cancer (CRC). Early diagnosis plays an important role in the improvement of curative effect. The conventional methods used to diagnose and monitor CRC are fecal occult blood test (FOBT) and colonoscopy. However, FOBT has an unsatisfactory sensitivity, while colonoscopy is expensive and invasive. As new biomarkers, microRNAs, which can be detected in CRC tissues, cells, and body fluid as tumor suppressors or oncogenes, can be used in early diagnosis, the monitoring of metastasis and treatment, as well prognostic evaluation of CRC. This article reviews the diagnostic and prognostic value of microRNAs in CRC.
Collapse
Affiliation(s)
- Ya-Qiong Tian
- Third Central Hospital of Tianjin, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Zhi-Juan Fan
- Third Central Hospital of Tianjin, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Shuang Liu
- Third Central Hospital of Tianjin, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Yu-Jing Wu
- Third Central Hospital of Tianjin, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Shu-Ye Liu
- Third Central Hospital of Tianjin, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| |
Collapse
|
27
|
Ren J, Li X, Dong H, Suo L, Zhang J, Zhang L, Zhang J. miR-210-3p regulates the proliferation and apoptosis of non-small cell lung cancer cells by targeting SIN3A. Exp Ther Med 2019; 18:2565-2573. [PMID: 31555365 PMCID: PMC6755421 DOI: 10.3892/etm.2019.7867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
Previous studies have indicated that microRNA (miR)-210-3p is upregulated in NSCLC, however, the specific mechanism underlying the role of miR-210-3p in NSCLC pathogenesis requires further investigation. The aim of the present study was to explore the roles of miR-210-3p in NSCLC and the associated mechanisms. A total of 30 NSCLC tissues and paired adjacent normal tissues were collected for study. Reverse transcription-quantitative polymerase chain reaction was performed to compare the expression of miR-210-3p in the 30 paired cancerous and adjacent normal tissues. Additionally, the expression of miR-210-3p in different NSCLC lines and normal human lung epithelial cell line BEAS-2B were also compared. Furthermore, A549 and H1299 NSCLC cells were cultured and transfected with miR-210-3p inhibitors, and MTT and propidium iodide/annexin V assays were performed to investigate the effects of miR-210-3p inhibition on the proliferation and apoptosis of the cells. RT-qPCR and western blot analyses were also performed to determine the effects of miR-210-3p on the expression levels of SIN3A, B-cell lymphoma 2 (Bcl-2) and Caspase-3. Finally, a reverse experiment was conducted by transfecting A549 cells with miR-210-3p inhibitor and SIN3A small interfering (si)RNA, and a dual-luciferase reporter assay was performed to confirm that SIN3A is a direct target of miR-210-3p. It was observed that miR-210-3p was significantly upregulated in NSCLC tissues compared with the levels in the adjacent normal tissues, and that the expression of miR-210-3p in patients with NSCLC was negatively correlated with the expression of SIN3A in NSCLC tissue. miR-210-3p was also significantly upregulated in different NSCLC cell lines compared with the levels in BEAS-2B cells. The transient downregulation of miR-210-3p in A549 cells led to a significant suppression of cell proliferation and markedly increased cell apoptosis, as well as increased the expression of SIN3A and Caspase-3 and decreased the expression of Bcl-2. On the other hand, co-transfection of miR-210-3p inhibitor and SIN3A siRNA partially blocked miR-210-3p inhibitor-induced pro-apoptotic effects. The results of the dual-luciferase reporter assay demonstrated that SIN3A is a direct target of miR-210-3p. Collectively, these findings indicate that can regulate the proliferation and apoptosis of NSCLC cells by targeting SIN3A. These results suggest that miR-210-3p has the potential to become a novel therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jie Ren
- Department of Clinical Surgery, Handan First Hospital, Handan, Hebei 056002, P.R. China
| | - Xiaodan Li
- Department of Clinical Surgery, Handan First Hospital, Handan, Hebei 056002, P.R. China
| | - Hao Dong
- Department of Orthopedic Trauma, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Longlong Suo
- Department of Clinical Surgery, Handan First Hospital, Handan, Hebei 056002, P.R. China
| | - Jun Zhang
- Department of Radiology, Leling People's Hospital, Leling, Shandong 253600, P.R. China
| | - Lina Zhang
- Department of Oncology, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Jing Zhang
- Department of Oncology, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| |
Collapse
|
28
|
Siveen KS, Raza A, Ahmed EI, Khan AQ, Prabhu KS, Kuttikrishnan S, Mateo JM, Zayed H, Rasul K, Azizi F, Dermime S, Steinhoff M, Uddin S. The Role of Extracellular Vesicles as Modulators of the Tumor Microenvironment, Metastasis and Drug Resistance in Colorectal Cancer. Cancers (Basel) 2019; 11:746. [PMID: 31146452 PMCID: PMC6628238 DOI: 10.3390/cancers11060746] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, with high morbidity and mortality rates. A number of factors including modulation of the tumor microenvironment, high metastatic capability, and resistance to treatment have been associated with CRC disease progression. Recent studies have documented that tumor-derived extracellular vesicles (EVs) play a significant role in intercellular communication in CRC via transfer of cargo lipids, proteins, DNA and RNAs to the recipient tumor cells. This transfer influences a number of immune-related pathways leading to activation/differentiation/expression of immune cells and modulation of the tumor microenvironment that plays a significant role in CRC progression, metastasis, and drug resistance. Furthermore, tumor-derived EVs are secreted in large amounts in biological fluids of CRC patients and as such the expression analysis of EV cargoes have been associated with prognosis or response to therapy and may be a source of therapeutic targets. This review aims to provide a comprehensive insight into the role of EVs in the modulation of the tumor microenvironment and its effects on CRC progression, metastasis, and drug resistance. On the other hand, the potential role of CRC derived EVs as a source of biomarkers of response and therapeutic targets will be discussed in detail to understand the dynamic role of EVs in CRC diagnosis, treatment, and management.
Collapse
Affiliation(s)
- Kodappully S Siveen
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Eiman I Ahmed
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Abdul Q Khan
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Kirti S Prabhu
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Shilpa Kuttikrishnan
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Jericha M Mateo
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Hatem Zayed
- College of Health Sciences, Department of Biomedical Sciences, Qatar University, Doha P.O. Box 2713, Qatar.
| | - Kakil Rasul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Fouad Azizi
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Martin Steinhoff
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
- Department of Dermatology Venereology, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar.
- Weill Cornell-Medicine, Doha P.O. Box 24811, Qatar.
- Weill Cornell University, New York, NY 10065, USA.
| | - Shahab Uddin
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| |
Collapse
|
29
|
Wang X, Wang T, Chen C, Wu Z, Bai P, Li S, Chen B, Liu R, Zhang K, Li W, Chen Y, Xing J. Serum exosomal miR-210 as a potential biomarker for clear cell renal cell carcinoma. J Cell Biochem 2019; 120:1492-1502. [PMID: 30304555 DOI: 10.1002/jcb.27347] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/26/2018] [Indexed: 01/24/2023]
Abstract
Exosomal microRNAs (miRNAs) are suggested to reflect molecular changes occurring in their cells of origin and are potential indicators in the early detection of cancers. This study aimed to determine whether certain exosomal miRNAs from tumor tissue can be used as noninvasive biomarkers for clear cell renal cell carcinoma (ccRCC). Based on ccRCC miRNA expression profiles and the literature, we selected six miRNAs (miR-210, miR-224, miR-452, miR-155, miR-21, and miR-34a) and analyzed their expression in tissues, sera, and serum exosomes through quantitative real-time polymerase chain reaction in hypoxia-induced (with CoCl2 ) renal cell lines. miR-210, miR-224, miR-452, miR-155, and miR-21 were upregulated in tumor tissues compared with normal tissues. Serum miR-210 and miR-155 levels were higher in patients with ccRCC than in healthy controls (HCs). Furthermore, only exosomal miR-210 was significantly upregulated in patients with ccRCC than in HCs. Moreover, receiver operating characteristic (ROC) curve analysis revealed an area under the ROC curve of 0.8779 (95% confidence interval, 0.7987-0.9571) and a sensitivity and specificity of 82.5% and 80.0%, respectively. Moreover, exosomal miR-210 was upregulated at an advanced stage, and Fuhrman grade and metastasis decreased significantly one month after surgery. Acute hypoxia exposure activates miR-210 and release of exosomes with upregulated miR-210 in both normal and tumor RCC cell lines and interferes with vacuole membrane protein 1 mRNA expression, especially in the metastatic ccRCC cell line. In conclusion, Serum exosomal miR-210 originating from tumor tissue has potential as a novel noninvasive biomarker for the detection and prognosis of ccRCC.
Collapse
Affiliation(s)
- Xuegang Wang
- Department of Urology, The First Affiliated Hospital of Xiamen University, The First Clinical College of Fujian Medical University, Xiamen, Fujian, China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Xiamen University, The First Clinical College of Fujian Medical University, Xiamen, Fujian, China
| | - Chenxi Chen
- Department of Urology, The First Affiliated Hospital of Xiamen University, The First Clinical College of Fujian Medical University, Xiamen, Fujian, China
| | - Zhun Wu
- Department of Urology, The First Affiliated Hospital of Xiamen University, The First Clinical College of Fujian Medical University, Xiamen, Fujian, China
| | - Peide Bai
- Department of Urology, The First Affiliated Hospital of Xiamen University, The First Clinical College of Fujian Medical University, Xiamen, Fujian, China
| | - Shouchun Li
- Department of Urology, The First Affiliated Hospital of Xiamen University, The First Clinical College of Fujian Medical University, Xiamen, Fujian, China
| | - Bin Chen
- Department of Urology, The First Affiliated Hospital of Xiamen University, The First Clinical College of Fujian Medical University, Xiamen, Fujian, China
| | - Rongfu Liu
- Department of Urology, The First Affiliated Hospital of Xiamen University, The First Clinical College of Fujian Medical University, Xiamen, Fujian, China
| | - Kaiyan Zhang
- Department of Urology, The First Affiliated Hospital of Xiamen University, The First Clinical College of Fujian Medical University, Xiamen, Fujian, China
| | - Wei Li
- Department of Urology, The First Affiliated Hospital of Xiamen University, The First Clinical College of Fujian Medical University, Xiamen, Fujian, China
| | - Yuedong Chen
- Department of Urology, The First Affiliated Hospital of Xiamen University, The First Clinical College of Fujian Medical University, Xiamen, Fujian, China
| | - Jinchun Xing
- Department of Urology, The First Affiliated Hospital of Xiamen University, The First Clinical College of Fujian Medical University, Xiamen, Fujian, China
| |
Collapse
|
30
|
Ji J, Rong Y, Luo CL, Li S, Jiang X, Weng H, Chen H, Zhang WW, Xie W, Wang FB. Up-Regulation of hsa-miR-210 Promotes Venous Metastasis and Predicts Poor Prognosis in Hepatocellular Carcinoma. Front Oncol 2018; 8:569. [PMID: 30560088 PMCID: PMC6287006 DOI: 10.3389/fonc.2018.00569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/13/2018] [Indexed: 01/29/2023] Open
Abstract
Objective: To investigate the potential biomarkers for venous metastasis of hepatocellular carcinoma (HCC), and briefly discuss their target genes and the signaling pathways they are involved in. Materials and Method: The dataset GSE6857 was downloaded from GEO. Significantly differentially expressed miRNAs were identified using the R package “limma,” After that, the survival analysis was conducted to discover the significance of these up-regulated miRNAs for the prognosis of HCC patients. Additionally, miRNAs which were up-regulated in venous metastasis positive HCC tissues and were significant for the prognosis of HCC patients were further verified in clinical samples using RT-qPCR. The miRNAs were then analyzed for their correlations with clinical characteristics including survival time, AFP level, pathological grade, TNM stage, tumor stage, lymph-node metastasis, distant metastasis, child-pugh score, vascular invasion, liver fibrosis and race using 375 HCC samples downloaded from the TCGA database. The target genes of these miRNAs were obtained using a miRNA target gene prediction database, and their functions were analyzed using the online tool DAVID. Results: 15 miRNAs were differentially expressed in samples with venous metastasis, among which 7 were up-regulated in venous metastasis positive HCC samples. As one of the up-regulated miRNAs, hsa-miR-210 was identified as an independent prognostic factor for HCC. Using RT-qPCR, it was evident that hsa-miR-210 expression was significantly higher in venous metastasis positive HCC samples (p = 0.0036). Further analysis indicated that hsa-miR-210 was positively associated with AFP level, pathological grade, TNM stage, tumor stage and vascular invasion. A total of 168 hsa-miR-210 target genes, which are mainly related to tumor metastasis and tumor signaling pathways, were also predicted in this study. Conclusion: hsa-miR-210 might promote vascular invasion of HCC cells and could be used as a prognostic biomarker.
Collapse
Affiliation(s)
- Jia Ji
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Laboratory Medicine, Wuhan Children's Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chang-Liang Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuo Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Weng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wu-Wen Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen Xie
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fu-Bing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Sabry D, El-Deek SEM, Maher M, El-Baz MAH, El-Bader HM, Amer E, Hassan EA, Fathy W, El-Deek HEM. Role of miRNA-210, miRNA-21 and miRNA-126 as diagnostic biomarkers in colorectal carcinoma: impact of HIF-1α-VEGF signaling pathway. Mol Cell Biochem 2018; 454:177-189. [PMID: 30357530 DOI: 10.1007/s11010-018-3462-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is a major cause of death worldwide. Novel non-invasive, high diagnostic value screening test is urgently needed to improve survival rate, treatment and prognosis. Stable, small, circulating microRNA (miRNA) offers unique opportunities for the early diagnosis of several diseases. It acts as tumor oncogenes or suppressors and involve in cell death, survival, and metastasis. Communication between miRNA and carcinogenesis is critical but it still not clear and needs further investigation. The aim of our study is to evaluate the role of miR-210, miR-21, miR-126, as non-invasive diagnostic biomarkers for screening, early detection of CRC, studying their correlation with prognostic variables, and clarifying the roles of miRNAs on HIF-1α-VEGF signaling pathway. The expression of miR-210, miR-21 and miR-126 was performed using qRT-PCR in adenocarcinoma (no = 35), adenomas (no = 51), and neoplasm free controls (no = 101). Serum levels of VEGF and HIF-1α was determined by ELISA Kit. The results show that the expression of miR-210, miR-21, VEGF, HIF-1α was significantly up-regulated while that miRNA-126 was down-regulated in both adenocarcinoma and adenomas compared with controls (p < 0.001 for each). No significant difference was noted comparing patients with adenocarcinoma and adenomas. The three miRNAs correlated with VEGF, HIF-α. The miR-210 and miR-21 associated with TNM classification and clinical staging of adenocarcinoma (p < 0.001) and they show high diagnostic value with sensitivity and specificity 88.6%, 90.1% and 91.4%, 95.0% respectively. Our study revealed that circulating miR-210, miR-21 were up-regulated while miR-126 was down-regulated in CRC and adenomas patients, they all correlated with TNM staging and they had high diagnostic value. HIF-1α VEGF signaling pathways regulated by miRNAs played a role in colon cancer initiation. To the best of our knowledge, this is the first study of this miRNAs panel in CRC in our community. These data suggested that these biomarkers could be a potential novel, non-invasive marker for early diagnosis, screening and predicting prognosis of CRC. Understanding the molecular functions by which miRNAs affect cancer and understanding its roles in modulating the signaling output of VEGF might be fruitful in reducing the incidence and slowing the progression of this dark malignancy.
Collapse
Affiliation(s)
- Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Sahar E M El-Deek
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Moataz Maher
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona A H El-Baz
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hala M El-Bader
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman Amer
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Elham A Hassan
- Tropical Medicine Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Wael Fathy
- Tropical Medicine Department, Faculty of Medicine, Beny Suef University, Beny Suef, Egypt
| | - Heba E M El-Deek
- Pathology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
32
|
Świtlik W, Karbownik MS, Suwalski M, Kozak J, Szemraj J. miR-30a-5p together with miR-210-3p as a promising biomarker for non-small cell lung cancer: A preliminary study. Cancer Biomark 2018; 21:479-488. [PMID: 29103030 DOI: 10.3233/cbm-170767] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although an immense effort has been made to develop novel diagnostic methods and treatment strategies for non-small cell lung cancer (NSCLC), the survival rate of this disease has remained virtually unchanged. Small non-coding RNAs called microRNAs (miRNAs) have appeared to be very promising biomarkers of cancer including NSCLC. OBJECTIVE We investigated the expression level of six miRNAs, and subsequently we evaluated their diagnostic ability and their clinical significance. METHODS We performed an analysis in 50 paired cancer and non-cancerous lung tissue samples collected from NSCLC patients. The RT-qPCR technique was used to investigate the expression profile. RESULTS Obtained results indicate that miR-30a-5p, miR-126-3p and miR-486-5p are downregulated, while miR-205-5p and miR-210-3p are upregulated in NSCLC tissue. Moreover, performed stepwise discriminant analysis determined the model including miR-30a-5p and miR-210-3p which tested on the test set (n= 30) revealed an AUC of 0.969 and provided 100% sensitivity and 80% specificity in discriminating NSCLC tissue from non-cancerous lung tissue. CONCLUSIONS The present preliminary study demonstrated that five tested miRNAs were deregulated in cancer tissue. Moreover, miR-30a-5p together with miR-210-3p with excellent sensitivity and acceptable specificity may distinguish cancer tissue form non-cancerous tissue and thus may become a potential diagnostic biomarker for NSCLC.
Collapse
Affiliation(s)
- Weronika Świtlik
- Department of Medical Biochemistry, Faculty of Health Sciences with the Division of Nursing and Midwifery, Medical University of Lodz, Lodz, Poland
| | | | - Michał Suwalski
- Regional Specialised Hospital of Tuberculosis, Lung Diseases and Rehabilitation in Tuszyn, Tuszyn, Poland
| | - Józef Kozak
- Department of Thoracic Surgery, Memorial Copernicus Hospital, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Faculty of Health Sciences with the Division of Nursing and Midwifery, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
33
|
Establishment of three novel cell lines derived from African American patients with colorectal carcinoma: A unique tool for assessing racial health disparity. Int J Oncol 2018; 53:1516-1528. [PMID: 30066857 PMCID: PMC6086619 DOI: 10.3892/ijo.2018.4510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/26/2018] [Indexed: 01/08/2023] Open
Abstract
The incidence and mortality rates of colorectal carcinoma (CRC) are higher among African Americans (AAs) compared with Caucasian Americans (CAs). To assess the molecular properties associated with racial health disparity, three cell lines derived from colorectal tumors of three AA subjects were established. Cellular and molecular characterization of the cell lines designated CHTN06, SB501 and SB521 was performed using standard technologies, including immunofluorescence, electron microscopy, karyotyping, reverse transcription-polymerase chain reaction, ELISA and immunoblot analysis. The histology and morphology of CHTN06 xenografts were examined by hematoxylin and eosin staining. A total of three AA CRC cell lines derived from primary tumors were established and characterized. These cell lines were successfully cultured without immortalization and were found to be tumorigenic as mouse xenografts. In the present study, immunoblotting and immunofluorescence confirmed the expression of proteins known to be dysregulated in CRC, such as p53, DNA mismatch repair proteins and villin-1. Oncogenic miRNAs (i.e., miR-17, miR-21, miR-182, miR-210 and miR-222) were overexpressed in the AA CRC lines compared with the CA CRC lines (HT-29, HCT116 and SW480). Additionally, the AA CRC cell lines exhibited a differential inflammatory profile compared with HT-29 (CA CRC cell line); specifically noted was IL-8 secretion in response to inflammatory stimuli. In conclusion, three novel cell lines derived from AA CRC tissues were generated. These cell lines were characterized as epithelial in nature and exhibited differential expression of several miRNAs and inflammatory responses compared with commercially available cell lines of CA origin. The CRC cell lines CHTN06, SB501 and SB521 represent novel tools that may be used to provide diverse in vitro and in vivo models for studying CRC and racial health disparity.
Collapse
|
34
|
Gao S, Zhao ZY, Wu R, Zhang Y, Zhang ZY. Prognostic value of microRNAs in colorectal cancer: a meta-analysis. Cancer Manag Res 2018; 10:907-929. [PMID: 29750053 PMCID: PMC5935085 DOI: 10.2147/cmar.s157493] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Numerous studies have shown that miRNA levels are closely related to the survival time of patients with colon, rectal, or colorectal cancer (CRC). However, the outcomes of different investigations have been inconsistent. Accordingly, a meta-analysis was conducted to study associations among the three types of cancers. Materials and methods Studies published in English that estimated the expression levels of miRNAs with survival curves in CRC were identified until May 20, 2017 by online searches in PubMed, Embase, Web of Science, and the Cochrane Library by two independent authors. Pooled HRs with 95% CIs were used to estimate the correlation between miRNA expression and overall survival. Results A total of 63 relevant articles regarding 13 different miRNAs, with 10,254 patients were ultimately included. CRC patients with high expression of blood miR141 (HR 2.52, 95% CI 1.68-3.77), tissue miR21 (HR 1.31, 95% CI 1.12-1.53), miR181a (HR 1.52, 95% CI 1.26-1.83), or miR224 (HR 2.12, 95% CI 1.04-4.34), or low expression of tissue miR126 (HR 1.55, 95% CI 1.24-1.93) had significantly poor overall survival (P<0.05). Conclusion In general, blood miR141 and tissue miR21, miR181a, miR224, and miR126 had significant prognostic value. Among these, blood miR141 and tissue miR224 were strong biomarkers of prognosis for CRC.
Collapse
Affiliation(s)
- Song Gao
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| | - Zhi-Ying Zhao
- School of Computer Science and Engineering, Northeastern University, Shenyang
| | - Rong Wu
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| | - Yue Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen-Yong Zhang
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| |
Collapse
|
35
|
Daugaard I, Venø MT, Yan Y, Kjeldsen TE, Lamy P, Hager H, Kjems J, Hansen LL. Small RNA sequencing reveals metastasis-related microRNAs in lung adenocarcinoma. Oncotarget 2018; 8:27047-27061. [PMID: 28460486 PMCID: PMC5432317 DOI: 10.18632/oncotarget.15968] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/20/2017] [Indexed: 01/06/2023] Open
Abstract
The majority of lung cancer deaths are caused by metastatic disease. MicroRNAs (miRNAs) are posttranscriptional regulators of gene expression and miRNA dysregulation can contribute to metastatic progression. Here, small RNA sequencing was used to profile the miRNA and piwi-interacting RNA (piRNA) transcriptomes in relation to lung cancer metastasis. RNA-seq was performed using RNA extracted from formalin-fixed paraffin embedded (FFPE) lung adenocarcinomas (LAC) and brain metastases from 8 patients, and LACs from 8 patients without detectable metastatic disease. Impact on miRNA and piRNA transcriptomes was subtle with 9 miRNAs and 8 piRNAs demonstrating differential expression between metastasizing and non-metastasizing LACs. For piRNAs, decreased expression of piR-57125 was the most significantly associated with distant metastasis. Validation by RT-qPCR in a LAC cohort comprising 52 patients confirmed that decreased expression of miR-30a-3p and increased expression of miR-210-3p were significantly associated with the presence of distant metastases. miR-210-3p tumor cell specificity was evaluated by in situ hybridization and its biomarker potential was confirmed by ROC curve analysis (AUC = 0.839). Lastly, agreement between miRNA-seq and RT-qPCR for FFPE-derived RNA was evaluated and a high level of concordance was determined. In conclusion, this study has identified and validated metastasis-related miRNAs in LAC.
Collapse
Affiliation(s)
- Iben Daugaard
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.,Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Morten T Venø
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Yan Yan
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Tina E Kjeldsen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Philippe Lamy
- Department of Molecular Medicine, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Henrik Hager
- Department of Pathology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.,Department of Clinical Pathology, Vejle Hospital, DK-7100 Vejle, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Lise Lotte Hansen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
36
|
Ullmann P, Qureshi-Baig K, Rodriguez F, Ginolhac A, Nonnenmacher Y, Ternes D, Weiler J, Gäbler K, Bahlawane C, Hiller K, Haan S, Letellier E. Hypoxia-responsive miR-210 promotes self-renewal capacity of colon tumor-initiating cells by repressing ISCU and by inducing lactate production. Oncotarget 2018; 7:65454-65470. [PMID: 27589845 PMCID: PMC5323168 DOI: 10.18632/oncotarget.11772] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/25/2016] [Indexed: 01/01/2023] Open
Abstract
Low oxygen concentrations (hypoxia) are known to affect the cellular metabolism and have been suggested to regulate a subpopulation of cancer cells with tumorigenic properties, the so-called tumor-initiating cells (TICs). To better understand the mechanism of hypoxia-induced TIC activation, we set out to study the role of hypoxia-responsive miRNAs in recently established colon cancer patient-derived TICs. We were able to show that low oxygen concentrations consistently lead to the upregulation of miR-210 in different primary TIC-enriched cultures. Both stable overexpression of miR-210 and knockdown of its target gene ISCU resulted in enhanced TIC self-renewal. We could validate the tumorigenic properties of miR- 210 in in vivo experiments by showing that ectopic expression of miR-210 results in increased tumor incidence. Furthermore, enhanced miR-210 expression correlated with reduced TCA cycle activity and increased lactate levels. Importantly, by blocking lactate production via inhibition of LDHA, we could reverse the promoting effect of miR-210 on self-renewal capacity, thereby emphasizing the regulatory impact of the glycolytic phenotype on colon TIC properties. Finally, by assessing expression levels in patient tissue, we could demonstrate the clinical relevance of the miR-210/ISCU signaling axis for colorectal carcinoma. Taken together, our study highlights the importance of hypoxia-induced miR-210 in the regulation of colon cancer initiation.
Collapse
Affiliation(s)
- Pit Ullmann
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Komal Qureshi-Baig
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Fabien Rodriguez
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Aurélien Ginolhac
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | | | - Dominik Ternes
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jil Weiler
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Karoline Gäbler
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Christelle Bahlawane
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Karsten Hiller
- Luxembourg Centre for Systems Biomedicine, L-4367 Belvaux, Luxembourg
| | - Serge Haan
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Elisabeth Letellier
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
37
|
Liu Y, Wang Y, Xu Q, Zhou X, Qin Z, Chen C, Zhang Q, Tian Y, Zhang C, Li X, Qin C. Prognostic evaluation of microRNA-210 in various carcinomas: Evidence from 19 studies. Medicine (Baltimore) 2017; 96:e8113. [PMID: 29068983 PMCID: PMC5671816 DOI: 10.1097/md.0000000000008113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We performed this meta-analysis to provide a comprehensive evaluation of the role of MicroRNA-210 (miR-210) expression on the overall survival (OS) rate of cancers. METHODS We searched for relevant available literatures on miR-210 and cancer until November 1st, 2016 on the databases PubMed, EMBASE, Cochrane Library, and Science Direct database. We calculated the pooled hazard ratio (HR) with 95% confidence intervals (CIs) for OS, which compared the high and low expression levels of miR-210 in patients of the available studies. Subgroup analysis was performed to evaluate the specific role of miR-210 in ethnicity and the type of cancers. Publication bias was evaluated using Begg funnel plots and Egger regression test. RESULTS Overall, 19 studies were involved in this meta-analysis. The result indicated that upregulated miR-210 might be associated with poor OS outcome in various carcinomas, with the pooled HR of 1.80 (95% CI: 1.29-2.51). When stratified by disease, significant results were detected in breast cancer (HR = 2.67, 95% CI: 1.24-5.76) and glioma (HR = 2.42, 95% CI: 1.32-4.43). Besides, in the subgroup analysis by ethnicity, significant results were detected only in Asian populations (HR = 2.14, 95% CI: 1.37-3.34). CONCLUSION The present meta-analysis suggests that high expressed miR-210 is significantly associated with OS in cancer patients, which has the potential to be a prognostic marker in cancers.
Collapse
Affiliation(s)
- Yincheng Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
- First Clinical Medical College of Nanjing Medical University
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Qitong Xu
- First Clinical Medical College of Nanjing Medical University
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Zhiqiang Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Chen Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Qijie Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Ye Tian
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Chao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| | - Xiao Li
- Department of Urology, The affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University
| |
Collapse
|
38
|
Hon KW, Abu N, Ab Mutalib NS, Jamal R. Exosomes As Potential Biomarkers and Targeted Therapy in Colorectal Cancer: A Mini-Review. Front Pharmacol 2017; 8:583. [PMID: 28894420 PMCID: PMC5581359 DOI: 10.3389/fphar.2017.00583] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/11/2017] [Indexed: 01/05/2023] Open
Abstract
The number of colorectal cancer (CRC) cases have increased gradually year by year. In fact, CRC is one of the most widely diagnosed cancer in men and women today. This disease is usually diagnosed at a later stage of the development, and by then, the chance of survival has declined significantly. Even though substantial progress has been made in understanding the basic molecular mechanism of CRC, there is still a lack of understanding in using the available information for diagnosing CRC effectively. Liquid biopsies are minimally invasive and have become the epitome of a good screening source for stage-specific diagnosis, measuring drug response and severity of the disease. There are various circulating entities that can be found in biological fluids, and among them, exosomes, have been gaining considerable attention. Exosomes can be found in almost all biological fluids including serum, urine, saliva, and breast milk. Furthermore, exosomes carry valuable molecular information such as proteins and nucleic acids that directly reflects the source of the cells. Nevertheless, the inconsistent yield and isolation process and the difficulty in obtaining pure exosomes have become major obstacles that need to be addressed. The potential usage of exosomes as biomarkers have not been fully validated and explored yet. This review attempts to uncover the potential molecules that can be derived from CRC-exosomes as promising biomarkers or molecular targets for effective diagnosing of CRC.
Collapse
Affiliation(s)
- Kha Wai Hon
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| |
Collapse
|
39
|
Mullany LE, Herrick JS, Wolff RK, Stevens JR, Samowitz W, Slattery ML. Transcription factor-microRNA associations and their impact on colorectal cancer survival. Mol Carcinog 2017; 56:2512-2526. [PMID: 28667784 PMCID: PMC5633497 DOI: 10.1002/mc.22698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/06/2017] [Accepted: 06/29/2017] [Indexed: 01/16/2023]
Abstract
MicroRNAs (miRNAs) and Transcription Factors (TFs) both influence messenger RNA (mRNA) expression, disrupting biological pathways involved in carcinogenesis and prognosis. As many miRNAs target multiple mRNAs, thus influencing a multitude of biological pathways, deciphering which miRNAs are important for cancer development and survival is difficult. In this study, we (i) determine associations between TF and survival (N = 168 colon cancer cases); (ii) identify miRNAs associated with TFs related to survival; and (iii) determine if factors derived from TF-specific miRNA principal component analysis (PCA) influence survival. Cox Proportional hazard models were run for each PCA factor to determine Hazard Ratios (HR) and 95% Confidence Intervals (CI) adjusting for age, center, and AJCC stage. Thirty TFs improved survival when differential expression increased; 27 of these were associated significantly with normal colonic mucosa expression of 65 unique miRNAs when an FDR q-value of <0.05 was applied. Five factors, comprising 21 miRNAs, altered survival in rectal cancer subjects; four of these five factors improved survival and one factor reduced survival. One factor comprising four miRNAs reduced survival in colon cancer subjects. In summary, our data suggest that expression of TFs and their related miRNAs influence survival after diagnosis with colorectal cancer.
Collapse
Affiliation(s)
- Lila E Mullany
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jennifer S Herrick
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Roger K Wolff
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, Utah
| | - Wade Samowitz
- Department of Pathology, University of Utah School, Salt Lake City, Utah
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
40
|
Zhang X, Gong X, Qiu J, Zhang Y, Gong F. MicroRNA-210 contributes to peripheral nerve regeneration through promoting the proliferation and migration of Schwann cells. Exp Ther Med 2017; 14:2809-2816. [PMID: 28912843 PMCID: PMC5585723 DOI: 10.3892/etm.2017.4869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/31/2017] [Indexed: 12/31/2022] Open
Abstract
Peripheral nerve injury impacts the daily life of affected individuals. MicroRNA (miR)-210 is a multifunctional miR and has effects on the proliferation, migration and differentiation of cells. However, whether miR-210 has effects on peripheral nerve regeneration has remained elusive. In the present study, the miR-210 levels in a rat model of sciatic nerve injury were evaluated by reverse-transcription quantitative PCR and the effects of miR-210 on the proliferation and migration of Schwann cells were explored. Elevated miR-210 levels were discovered in the sciatic nerve injury rat model. miR-210 mimics were found to promote the proliferation and migration of Schwann cells, while miR-210 inhibitor was found to inhibit the proliferation and migration of Schwann cells. Further study showed that miR-210 had effects on the expression of growth-associated protein-43, myelin-associated glycoprotein and myelin basic protein. These results showed that miR-210 had effects on the proliferation and migration of Schwann cells and may be involved in the peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xiaona Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xu Gong
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jinpeng Qiu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fengyan Gong
- Department of Gynaecology and Obstetrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
41
|
Yang W, Ma J, Zhou W, Zhou X, Cao B, Fan D, Hong L. Biological implications and clinical value of mir-210 in gastrointestinal cancer. Expert Rev Gastroenterol Hepatol 2017; 11:539-548. [PMID: 28317401 DOI: 10.1080/17474124.2017.1309281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypoxia, a common feature of tumor microenvironment, is known to accelerate tumor development and growth by promoting the formation of a neoplastic environment. Recent studies have provided a wealth of evidence that miRNAs are significant members of the adaptive response to low oxygen in tumors. miR-210 is one of the hypoxia-induced miRNAs, which has been reported extensively in cancer researches. However, there is no systematic discussion about the role of miR-210 in gastrointestinal cancer. We conducted a literature research in database including PubMed, Elsevier Science Direct and Medline before 16 September 2016, in order to collect articles of miR-210 in gastrointestinal cancer. Areas covered: In the present review, we mainly discuss the following aspects: hypoxia-induced dysregulation of miR-210, the expression of miR-210 and tumorigenesis, the resultant changes of miR-210 targets and its roles in different types of gastrointestinal cancer progression, the diagnostic, therapeutic and prognostic value of miR-210 in gastrointestinal cancer. Expert commentary: Numerous researches have demonstrated the values of miR-210 in cancer diagnosis, prognosis and targeted therapies, especially in gastrointestinal cancers. However, there are also some existing problems and challenges in translating the new research findings into clinical utility. Further investigations and studies are still urgently required.
Collapse
Affiliation(s)
- Wanli Yang
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jiaojiao Ma
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Wei Zhou
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Xin Zhou
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Bo Cao
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Daiming Fan
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Liu Hong
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| |
Collapse
|
42
|
Nijhuis A, Thompson H, Adam J, Parker A, Gammon L, Lewis A, Bundy JG, Soga T, Jalaly A, Propper D, Jeffery R, Suraweera N, McDonald S, Thaha MA, Feakins R, Lowe R, Bishop CL, Silver A. Remodelling of microRNAs in colorectal cancer by hypoxia alters metabolism profiles and 5-fluorouracil resistance. Hum Mol Genet 2017; 26:1552-1564. [PMID: 28207045 PMCID: PMC5393147 DOI: 10.1093/hmg/ddx059] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/13/2017] [Indexed: 12/25/2022] Open
Abstract
Solid tumours have oxygen gradients and areas of near and almost total anoxia. Hypoxia reduces sensitivity to 5-fluorouracil (5-FU)-chemotherapy for colorectal cancer (CRC). MicroRNAs (miRNAs) are hypoxia sensors and were altered consistently in six CRC cell lines (colon cancer: DLD-1, HCT116 and HT29; rectal cancer: HT55, SW837 and VACO4S) maintained in hypoxia (1 and 0.2% oxygen) compared with normoxia (20.9%). CRC cell lines also showed altered amino acid metabolism in hypoxia and hypoxia-responsive miRNAs were predicted to target genes in four metabolism pathways: beta-alanine; valine, leucine, iso-leucine; aminoacyl-tRNA; and alanine, aspartate, glutamate. MiR-210 was increased in hypoxic areas of CRC tissues and hypoxia-responsive miR-21 and miR-30d, but not miR-210, were significantly increased in 5-FU resistant CRCs. Treatment with miR-21 and miR-30d antagonists sensitized hypoxic CRC cells to 5-FU. Our data highlight the complexity and tumour heterogeneity caused by hypoxia. MiR-210 as a hypoxic biomarker, and the targeting of miR-21 and miR-30d and/or the amino acid metabolism pathways may offer translational opportunities.
Collapse
Affiliation(s)
- Anke Nijhuis
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Hannah Thompson
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Julie Adam
- Radcliffe Department of Medicine, OCDEM, University of Oxford, Oxford OX3 7LJ, UK
| | - Alexandra Parker
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Luke Gammon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Amy Lewis
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Jacob G Bundy
- Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Aisha Jalaly
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - David Propper
- Department of Medical Oncology, St Bartholomew's Hospital, Gloucester House, Little Britain, London EC1A 7BE, UK
| | - Rosemary Jeffery
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Nirosha Suraweera
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Sarah McDonald
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Mohamed A Thaha
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK.,Academic Surgical Unit, The Royal London Hospital, Whitechapel, London E1 1BB, UK
| | - Roger Feakins
- Department of Histopathology, Royal London Hospital, Whitechapel, London, UK
| | - Robert Lowe
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Cleo L Bishop
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| |
Collapse
|
43
|
McDermott N, Meunier A, Wong S, Buchete V, Marignol L. Profiling of a panel of radioresistant prostate cancer cells identifies deregulation of key miRNAs. Clin Transl Radiat Oncol 2017; 2:63-68. [PMID: 29658003 PMCID: PMC5893531 DOI: 10.1016/j.ctro.2017.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/15/2022] Open
Abstract
Background miRNAs are increasingly associated with the aggressive phenotype of prostate tumours. Their ability to control radiobiologically-relevant cellular processes strengthens their potential as novel markers of response to radiation therapy. Purpose To identify miRNAs associated with increased clonogenic survival following radiation exposure. Material and methods The miRNA expression profiles of a panel of 22RV1 cells with varying levels of radiosensitivities (hypoxic H-22Rv1 cells, RR-22Rv1 cells derived from WT-22Rv1 cells through 2-Gy fractionated repeated exposure, the associated aged matched cells (AMC-22Rv1) and the WT-22Rv1 cell lines) were generated and cross-analysed to identify common miRNAs associated with a radioresistant phenotype. Results Increased clonogenic survival following irradiation was associated with significant modifications in miRNA expression pattern. miR-221 (up) and miR-4284 (down) in RR-22Rv1 and MiR-31 and miR-200c in AMC-22Rv1 were the most uniquely significantly deregulated miRNAs when compared to WT-22Rv1 cells. miR-200c ranked as the most downregulated miRNAs in hypoxic, when compared to RR-22Rv1 cells. miR-200a was the only differentially expressed miRNA between RR-22Rv1 and AMC-22Rv1 cells. miR-210 yielded the highest fold change in expression in H-22Rv1, when compared to WT-22RV1 cells. Conclusion This study identifies candidate miRNAs for the development of novel prognostic biomarkers for radiotherapy prostate cancer patients.
Collapse
Affiliation(s)
- Niamh McDermott
- Trinity Translational Medicine Institute, Translational Radiobiology and Molecular Oncology, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland
| | - Armelle Meunier
- Trinity Translational Medicine Institute, Translational Radiobiology and Molecular Oncology, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland
| | - Simon Wong
- Irish Centre for High-End Computing, National University of Ireland, Galway, Ireland
| | - Vio Buchete
- School of Physics & Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Laure Marignol
- Trinity Translational Medicine Institute, Translational Radiobiology and Molecular Oncology, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland
| |
Collapse
|
44
|
Andersen S, Richardsen E, Moi L, Donnem T, Nordby Y, Ness N, Holman ME, Bremnes RM, Busund LT. Fibroblast miR-210 overexpression is independently associated with clinical failure in Prostate Cancer - a multicenter (in situ hybridization) study. Sci Rep 2016; 6:36573. [PMID: 27824162 PMCID: PMC5099893 DOI: 10.1038/srep36573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/17/2016] [Indexed: 12/28/2022] Open
Abstract
There is a need for better prognostication in prostate cancer (PC). “The micromanager of hypoxia”, microRNA-210 (miR-210) is directly linked to hypoxia, is overexpressed in PC and has been implied in tumor cell-fibroblast crosstalk. We investigated the prognostic impact of miR-210 in tumor cells and fibroblasts in PC. Tumor and stromal samples from a multicenter PC cohort of 535 prostatectomy patients were inserted into tissue microarrays. To investigate the expression of miR-210, we used in situ hybridization and two pathologists semiquantitatively scored its expression. Overexpression of miR-210 in tumor cells was not associated to biochemical failure-free survival (BFFS, p = 0.85) or clinical failure-free survival (CFFS, p = 0.09). However, overexpression of miR-210 in fibroblasts was significantly associated to a poor CFFS (p = 0.001), but not BFFS (p = 0.232). This feature was validated in both cohorts. Overexpression of miR-210 was independently associated with a reduced CFFS (HR = 2.76, CI 95% 1.25–6.09, p = 0.012). Overexpression of miR-210 in fibroblasts is independently associated with a poor CFFS. This highlights the importance of fibroblasts and cellular compartment crosstalk in PC. miR-210 is a candidate prognostic marker and potential therapeutic target in PC.
Collapse
Affiliation(s)
- Sigve Andersen
- Translational Cancer Research Group, Dept Clinical Medicine, UiT, The Arctic University of Norway, 9037 Tromso, Norway.,Dept Oncology, University Hospital of North Norway, 9038 Tromso, Norway
| | - Elin Richardsen
- Translational Cancer Research Group, Dept of Medical Biology, UiT, The Arctic University of Norway, 9037 Tromso, Norway.,Dept Pathology, University Hospital of North Norway, 9038 Tromso, Norway
| | - Line Moi
- Translational Cancer Research Group, Dept of Medical Biology, UiT, The Arctic University of Norway, 9037 Tromso, Norway.,Dept Pathology, University Hospital of North Norway, 9038 Tromso, Norway
| | - Tom Donnem
- Translational Cancer Research Group, Dept Clinical Medicine, UiT, The Arctic University of Norway, 9037 Tromso, Norway.,Dept Oncology, University Hospital of North Norway, 9038 Tromso, Norway
| | - Yngve Nordby
- Translational Cancer Research Group, Dept Clinical Medicine, UiT, The Arctic University of Norway, 9037 Tromso, Norway.,Dept of Urology, University Hospital of North Norway, 9038 Tromso, Norway
| | - Nora Ness
- Translational Cancer Research Group, Dept of Medical Biology, UiT, The Arctic University of Norway, 9037 Tromso, Norway
| | - Marte Eilertsen Holman
- Translational Cancer Research Group, Dept Clinical Medicine, UiT, The Arctic University of Norway, 9037 Tromso, Norway.,Dept Oncology, University Hospital of North Norway, 9038 Tromso, Norway
| | - Roy M Bremnes
- Translational Cancer Research Group, Dept Clinical Medicine, UiT, The Arctic University of Norway, 9037 Tromso, Norway.,Dept Oncology, University Hospital of North Norway, 9038 Tromso, Norway
| | - Lill-Tove Busund
- Translational Cancer Research Group, Dept of Medical Biology, UiT, The Arctic University of Norway, 9037 Tromso, Norway.,Dept Pathology, University Hospital of North Norway, 9038 Tromso, Norway
| |
Collapse
|
45
|
Bigagli E, Luceri C, Guasti D, Cinci L. Exosomes secreted from human colon cancer cells influence the adhesion of neighboring metastatic cells: Role of microRNA-210. Cancer Biol Ther 2016; 17:1062-1069. [PMID: 27611932 PMCID: PMC5079399 DOI: 10.1080/15384047.2016.1219815] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cancer-secreted exosomes influence tumor microenvironment and support cancer growth and metastasis. MiR-210 is frequently up-regulated in colorectal cancer tissues and correlates with metastatic disease. We investigated whether exosomes are actively released by HCT-8 colon cancer cells, the role of exosomal miR-210 in the cross-talk between primary cancer cells and neighboring metastatic cells and its contribution in regulating epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). After 7 d of culture, a subpopulation of viable HCT-8 cells detached the monolayer and started to grow in suspension, suggesting anoikis resistance and a metastatic potential. The expression of key proteins of EMT revealed that these cells were E-cadherin negative and vimentin positive further confirming their metastatic phenotype and the acquisition of anoikis resistance. Metastatic cells, in the presence of adherently growing HCT-8, continued to grow in suspension whereas only if seeded in cell-free wells, were able to adhere again and to form E-cadherin positive and vimentin negative new colonies, suggesting the occurrence of MET. The chemosensitivity to 5 fluorouracil and to FOLFOX-like treatment of metastatic cells was significantly diminished compared to adherent HCT-8 cells. Of note, adherent new colonies undergoing MET, were insensitive to both chemotherapeutic strategies. Electron microscopy analysis demonstrated that adherently growing HCT-8, actually secreted exosomes and that exosomes in turn were taken up by metastatic cells. When exosomes secreted by adherently growing HCT-8 were administered to metastatic cells, MET was significantly inhibited. miR-210 was significantly upregulated in exosomes compared to its intracellular levels in adherently growing HCT-8 cells and correlated to anoikis resistance and EMT markers. Exosomes containing miR-210 might be considered as EMT promoting signals that preserve the local cancer-growth permissive milieu and also guide metastatic cells to free, new sites of dissemination.
Collapse
Affiliation(s)
- Elisabetta Bigagli
- a Department of Neuroscience, Psychology , Drug Research and Child Health - NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence , Florence , Italy
| | - Cristina Luceri
- a Department of Neuroscience, Psychology , Drug Research and Child Health - NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence , Florence , Italy
| | - Daniele Guasti
- b Department of Experimental and Clinical Medicine - Research Unit of Histology and Embryology , University of Florence , Florence , Italy
| | - Lorenzo Cinci
- a Department of Neuroscience, Psychology , Drug Research and Child Health - NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence , Florence , Italy
| |
Collapse
|
46
|
Ren CX, Leng RX, Fan YG, Pan HF, Wu CH, Ye DQ. MicroRNA-210 and its theranostic potential. Expert Opin Ther Targets 2016; 20:1325-1338. [PMID: 27359286 DOI: 10.1080/14728222.2016.1206890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs) are a set of small single-stranded noncoding RNAs with diverse biological functions. As a prototypical hypoxamir, human microRNA-210 (hsa-miR-210) is one of the most widely studied miRNAs thus far. In addition to its involvement in sophisticated regulation of numerous biological processes, miR-210 has also been shown to be associated with the development of different human diseases including various types of cancers, cardiovascular and cerebrovascular diseases, and immunological diseases. Given its multi-faceted functions, miR-210 may serve as a novel and promising theranostic target for prevention and treatment of diseases. Areas covered: This review aims to provide a comprehensive overview of miR-210, the regulation of its expression, biological functions and molecular mechanisms, with particular emphasis on its diagnostic and therapeutic potential. Expert opinion: Although the exact roles of miR-210 in various diseases have not been fully clarified, targeting miR-210 may be a promising therapeutic strategy. Further investigations are also needed to facilitate therapeutic-clinical applications of miR-210 in human diseases.
Collapse
Affiliation(s)
- Chun-Xia Ren
- a Department of Epidemiology and Biostatistics , School of Public Health, Anhui Medical University , Hefei , Anhui , China.,b Anhui Provincial Laboratory of Population Health & Major Disease Screening and Diagnosis , Anhui Medical University , Hefei , Anhui , China.,c The First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Rui-Xue Leng
- a Department of Epidemiology and Biostatistics , School of Public Health, Anhui Medical University , Hefei , Anhui , China.,b Anhui Provincial Laboratory of Population Health & Major Disease Screening and Diagnosis , Anhui Medical University , Hefei , Anhui , China
| | - Yin-Guang Fan
- a Department of Epidemiology and Biostatistics , School of Public Health, Anhui Medical University , Hefei , Anhui , China.,b Anhui Provincial Laboratory of Population Health & Major Disease Screening and Diagnosis , Anhui Medical University , Hefei , Anhui , China
| | - Hai-Feng Pan
- a Department of Epidemiology and Biostatistics , School of Public Health, Anhui Medical University , Hefei , Anhui , China.,b Anhui Provincial Laboratory of Population Health & Major Disease Screening and Diagnosis , Anhui Medical University , Hefei , Anhui , China
| | - Chang-Hao Wu
- d Faculty of Health and Medical Sciences , University of Surrey , Guildford , UK
| | - Dong-Qing Ye
- a Department of Epidemiology and Biostatistics , School of Public Health, Anhui Medical University , Hefei , Anhui , China.,b Anhui Provincial Laboratory of Population Health & Major Disease Screening and Diagnosis , Anhui Medical University , Hefei , Anhui , China
| |
Collapse
|
47
|
Tagscherer KE, Fassl A, Sinkovic T, Richter J, Schecher S, Macher-Goeppinger S, Roth W. MicroRNA-210 induces apoptosis in colorectal cancer via induction of reactive oxygen. Cancer Cell Int 2016; 16:42. [PMID: 27293381 PMCID: PMC4901463 DOI: 10.1186/s12935-016-0321-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/02/2016] [Indexed: 12/14/2022] Open
Abstract
Background Deregulation of miRNA-210 is a common event in several types of cancer. However, increased expression levels in the cancer tissue have been associated with both poor and good prognosis of patients. Similarly, the function of miR-210 with regard to cell growth and apoptosis is still controversial. Methods Overexpression of miR-210 was performed in HCT116, SW480 and SW707 colorectal cancer (CRC) cell lines. Functional effects of a modulated miR-210 expression were analyzed with regard to proliferation, clonogenicity, cell cycle distribution, reactive oxygen species (ROS) generation, and apoptosis. Furthermore, quantitative real time (RT)-PCR and immunoblot analyses were performed to investigate signaling pathways affected by miR-210. Results We show that in CRC cells miR-210 inhibits clonogenicity and proliferation which was accompanied by an accumulation of cells in the G2/M phase of the cell cycle. Additionally, overexpression of miR-210 results in an increase of ROS generation. Moreover, miR-210 mediated the induction of apoptosis which was associated with an upregulation of pro-apoptotic Bim expression and enhanced processing of Caspase 2. Importantly, inhibition of ROS generation rescued cells from miR-210-induced apoptosis. Conclusions Taken together, miR-210 induces apoptosis in CRC cells via a ROS-dependent mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s12935-016-0321-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katrin E Tagscherer
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany ; Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Anne Fassl
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany ; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 USA ; Department of Genetics, Harvard Medical School, Boston, MA 02215 USA
| | - Tabea Sinkovic
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Jutta Richter
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany ; Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Sabrina Schecher
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany ; Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stephan Macher-Goeppinger
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany ; Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Wilfried Roth
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany ; Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
48
|
Yan Y, Wang C, Zhou W, Shi Y, Guo P, Liu Y, Wang J, Zhang CY, Zhang C. Elevation of Circulating miR-210-3p in High-Altitude Hypoxic Environment. Front Physiol 2016; 7:84. [PMID: 27014085 PMCID: PMC4781857 DOI: 10.3389/fphys.2016.00084] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022] Open
Abstract
Background: The induction of miR-210-3p, a master hypoxamir, is a consistent feature of the hypoxic response in both normal and malignant cells. However, whether miR-210-3p acts as a circulating factor in response to a hypoxic environment remains unknown. The current study aimed to examine the effect of a high-altitude hypoxic environment on circulating miR-210-3p. Methods: We examined and compared the levels of miR-210-3p using TaqMan-based qRT-PCR in both peripheral blood cells and plasma from 84 ethnic Chinese Tibetans residing at 3560 m, 46 newly arrived migrant Han Chinese (Tibet Han) and 82 Han Chinese residing at 8.9 m (Nanjing Han). Furthermore, we analyzed the correlations of miR-210-3p with hematological indices. Results: The relative concentrations of miR-210-3p to internal reference U6 in blood cells were significantly higher in the Tibet Han group (1.01 ± 0.11, P < 0.001) and in the Tibetan group (1.17 ± 0.09, P < 0.001) than in the Nanjing Han group (0.51 ± 0.04). The absolute concentrations of plasma miR-210-3p were also markedly elevated in the Tibet Han group (503.54 ± 42.95 fmol/L, P = 0.004) and in the Tibetan group (557.78 ± 39.84 fmol/L, P < 0.001) compared to the Nanjing Han group (358.39 ± 16.16 fmol/L). However, in both blood cells and plasma, miR-210-3p levels were not significantly different between the Tibet Han group and the Tibetan group (P = 0.280, P = 0.620, respectively). Plasma miR-210-3p concentrations were positively correlated with miR-210-3p levels in blood cells (r = 0.192, P = 0.005). Furthermore, miR-210-3p levels in both blood cells and plasma showed strong positive correlations with red blood cell counts and hemoglobin and hematocrit values. Conclusion: These data demonstrated, for the first time, that miR-210-3p might act as a circulating factor in response to hypoxic environments and could be associated with human adaptation to life at high altitudes.
Collapse
Affiliation(s)
- Yan Yan
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Medicine, Nanjing UniversityNanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Medicine, Nanjing UniversityNanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Wanqing Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University Nanjing, China
| | - Yonghui Shi
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Medicine, Nanjing University Nanjing, China
| | - Pengtao Guo
- Department of Clinical Laboratory, The Forty-First Hospital of PLA Nêdong, China
| | - Yuxiu Liu
- Department of Medical Statistics, Nanjing University School of Medicine, Jinling Hospital, Nanjing University Nanjing, China
| | - Junjun Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Medicine, Nanjing University Nanjing, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University Nanjing, China
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Medicine, Nanjing UniversityNanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing UniversityNanjing, China
| |
Collapse
|
49
|
Wang W, Qu A, Liu W, Liu Y, Zheng G, Du L, Zhang X, Yang Y, Wang C, Chen X. Circulating miR-210 as a diagnostic and prognostic biomarker for colorectal cancer. Eur J Cancer Care (Engl) 2016; 26. [PMID: 26898324 DOI: 10.1111/ecc.12448] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2015] [Indexed: 12/13/2022]
Abstract
microRNA-210 (miR-210), the master hypoxamir, is overexpressed and generally exhibits oncogenic properties in most human solid tumours, including colorectal cancer (CRC). However, the status of circulating miR-210 in CRC is still unknown. This study aims to assess the clinical significance of circulating miR-210 in CRC. Using (reverse transcription quantitative PCR) RT-qPCR analysis, we compared the expression levels of circulating miR-210 in serum of 268 CRC patients and 102 healthy controls, and found that serum miR-210 was significantly higher in CRC than in healthy controls (P < 0.001). The area under the receiver operating characteristic curve (AUC) of circulating miR-210 to detect CRC was 0.821, with a sensitivity of 74.6% and a specificity of 73.5%. The AUC of circulating miR-210 showed significantly higher detection capability than that of carcinoembryogenic antigen (P < 0.05). Kaplan-Meier analysis demonstrated that increased serum miR-210 level correlated with reduced overall survival (OS) and disease-free survival (DFS) (P = 0.008 and P = 0.008 respectively). Cox analysis indicated circulating miR-210 was an independent prognostic factor for OS and DFS. Taken together, our data suggested that circulating miR-210 could be a potential non-invasive marker for diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- W Wang
- Qilu Hospital, Shandong University, Jinan, Shandong Province, China.,Humanistic Medicine Research Center of Shandong University, Jinan, Shandong Province, China
| | - A Qu
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - W Liu
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Y Liu
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - G Zheng
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - L Du
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - X Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Y Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - C Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - X Chen
- Qilu Hospital, Shandong University, Jinan, Shandong Province, China.,Humanistic Medicine Research Center of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
50
|
Cekaite L, Eide PW, Lind GE, Skotheim RI, Lothe RA. MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer. Oncotarget 2016; 7:6476-505. [PMID: 26623728 PMCID: PMC4872728 DOI: 10.18632/oncotarget.6390] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023] Open
Abstract
Gene expression is in part regulated by microRNAs (miRNAs). This review summarizes the current knowledge of miRNAs in colorectal cancer (CRC); their role as growth regulators, the mechanisms that regulate the miRNAs themselves and the potential of miRNAs as biomarkers. Although thousands of tissue samples and bodily fluids from CRC patients have been investigated for biomarker potential of miRNAs (>160 papers presented in a comprehensive tables), none single miRNA nor miRNA expression signatures are in clinical use for this disease. More than 500 miRNA-target pairs have been identified in CRC and we discuss how these regulatory nodes interconnect and affect signaling pathways in CRC progression.
Collapse
Affiliation(s)
- Lina Cekaite
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Peter W. Eide
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Guro E. Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Rolf I. Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| |
Collapse
|