1
|
Bosch de Basea L, Boguñà M, Sánchez A, Esteve M, Grasa M, Romero MDM. Sex-Dependent Metabolic Effects in Diet-Induced Obese Rats following Intermittent Fasting Compared with Continuous Food Restriction. Nutrients 2024; 16:1009. [PMID: 38613042 PMCID: PMC11013430 DOI: 10.3390/nu16071009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Recently, intermittent fasting has gained relevance as a strategy to lose weight and improve health as an alternative to continuous caloric restriction. However, the metabolic impact and the sex-related differences are not fully understood. The study aimed to compare the response to a continuous or intermittent caloric restriction in male and female rats following a previous induction of obesity through a cafeteria diet by assessing changes in body weight, energy intake, metabolic parameters, and gene expression in liver hepatic and adipose tissue. The continuous restriction reduced the energy available by 30% and the intermittent restriction consisted of a 75% energy reduction on two non-consecutive days per week. The interventions reduced body weight and body fat in both sexes, but the loss of WAT in females was more marked in both models of caloric restriction, continuous and intermittent. Both caloric restrictions improved insulin sensitivity, but more markedly in females, which showed a more pronounced decrease in HOMA-IR score and an upregulation of hepatic IRS2 and Sirt1 gene expression that was not observed in males. These findings suggest the fact that females are more sensitive than males to reduced caloric content in the diet.
Collapse
Affiliation(s)
- Laia Bosch de Basea
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.B.d.B.); (M.B.); (A.S.)
| | - Marina Boguñà
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.B.d.B.); (M.B.); (A.S.)
| | - Alicia Sánchez
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.B.d.B.); (M.B.); (A.S.)
| | - Montserrat Esteve
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.B.d.B.); (M.B.); (A.S.)
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Madrid, Spain
- Institute of Biomedicine of the University of Barcelona, 08028 Barcelona, Spain
| | - Mar Grasa
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.B.d.B.); (M.B.); (A.S.)
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Madrid, Spain
- Institute of Biomedicine of the University of Barcelona, 08028 Barcelona, Spain
| | - Maria del Mar Romero
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Madrid, Spain
- Institute of Biomedicine of the University of Barcelona, 08028 Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy, University of Barcelona, 02028 Barcelona, Spain
| |
Collapse
|
2
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Ouyang Q, Chen Q, Ke S, Ding L, Yang X, Rong P, Feng W, Cao Y, Wang Q, Li M, Su S, Wei W, Liu M, Liu J, Zhang X, Li JZ, Wang HY, Chen S. Rab8a as a mitochondrial receptor for lipid droplets in skeletal muscle. Dev Cell 2023; 58:289-305.e6. [PMID: 36800997 DOI: 10.1016/j.devcel.2023.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/17/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
Dynamic interaction between lipid droplets (LDs) and mitochondria controls the mobilization of long-chain fatty acids (LCFAs) from LDs for mitochondrial β-oxidation in skeletal muscle in response to energy stress. However, little is known about the composition and regulation of the tethering complex mediating LD-mitochondrion interaction. Here, we identify Rab8a as a mitochondrial receptor for LDs forming the tethering complex with the LD-associated PLIN5 in skeletal muscle. In rat L6 skeletal muscle cells, the energy sensor AMPK increases the GTP-bound active Rab8a that promotes LD-mitochondrion interaction through binding to PLIN5 upon starvation. The assembly of the Rab8a-PLIN5 tethering complex also recruits the adipose triglyceride lipase (ATGL), which couples LCFA mobilization from LDs with its transfer into mitochondria for β-oxidation. Rab8a deficiency impairs fatty acid utilization and decreases endurance during exercise in a mouse model. These findings may help to elucidate the regulatory mechanisms underlying the beneficial effects of exercise on lipid homeostasis control.
Collapse
Affiliation(s)
- Qian Ouyang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China; Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Qiaoli Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China; Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Shunyuan Ke
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Longfei Ding
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Xinyu Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Ping Rong
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Weikuan Feng
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Ye Cao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Qi Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Min Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Shu Su
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Wen Wei
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Minjun Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Jin Liu
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xu Zhang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hong-Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China; Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China.
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China; Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210061, China.
| |
Collapse
|
4
|
Circulating oestradiol determines liver lipid deposition in rats fed standard diets partially unbalanced with higher lipid or protein proportions. Br J Nutr 2021; 128:1499-1508. [PMID: 34776031 PMCID: PMC9557166 DOI: 10.1017/s0007114521004505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The ingestion of excess lipids often produces the accumulation of liver fat. The modulation of diet energy partition affects this process and other metabolic responses, and oestrogens and androgens are implied in this process. Ten-week-old male and female rats were fed with either standard rat chow (SD), SD enriched with coconut oil (high-fat diet, HF), SD enriched with protein (high-protein diet, HP) or a ‘cafeteria’ diet (CAF) for 1 month. HF and CAF diets provided the same lipid-derived percentage of energy (40 %), HP diet protein energy derived was twice (40 %) that of the SD. Animals were killed under anaesthesia and samples of blood and liver were obtained. Hepatic lipid content showed sex-related differences: TAG accumulation tended to increase in HF and CAF fed males. Cholesterol content was higher only in the CAF males. Plasma oestradiol in HF and HP males was higher than in CAF. Circulating cholesterol was inversely correlated with plasma oestradiol. These changes agreed with the differences in the expression of some enzymes related to lipid and energy metabolism, such as fatty acid synthetase or phosphoglycolate phosphatase. Oestrogen protective effects extend to males with ‘normal’ diets, that is, not unbalanced by either lipid or protein, but this protection was not enough against the CAF diet. Oestradiol seems to actively modulate the liver core of 2C-3C partition of energy substrates, regulating cholesterol deposition and lactate production.
Collapse
|
5
|
Lalanza JF, Snoeren EMS. The cafeteria diet: A standardized protocol and its effects on behavior. Neurosci Biobehav Rev 2020; 122:92-119. [PMID: 33309818 DOI: 10.1016/j.neubiorev.2020.11.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Obesity is a major health risk, with junk food consumption playing a central role in weight gain, because of its high palatability and high-energy nutrients. The Cafeteria (CAF) diet model for animal experiments consists of the same tasty but unhealthy food products that people eat (e.g. hot dogs and muffins), and considers variety, novelty and secondary food features, such as smell and texture. This model, therefore, mimics human eating patterns better than other models. In this paper, we systematically review studies that have used a CAF diet in behavioral experiments and propose a standardized CAF diet protocol. The proposed diet is ad libitum and voluntary; combines different textures, nutrients and tastes, including salty and sweet products; and it is rotated and varied. Our summary of the behavioral effects of CAF diet show that it alters meal patterns, reduces the hedonic value of other rewards, and tends to reduce stress and spatial memory. So far, no clear effects of CAF diet were found on locomotor activity, impulsivity, coping and social behavior.
Collapse
Affiliation(s)
- Jaume F Lalanza
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Eelke M S Snoeren
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway; Regional Health Authority of North Norway, Norway.
| |
Collapse
|
6
|
Remesar X, Alemany M. Dietary Energy Partition: The Central Role of Glucose. Int J Mol Sci 2020; 21:E7729. [PMID: 33086579 PMCID: PMC7593952 DOI: 10.3390/ijms21207729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Humans have developed effective survival mechanisms under conditions of nutrient (and energy) scarcity. Nevertheless, today, most humans face a quite different situation: excess of nutrients, especially those high in amino-nitrogen and energy (largely fat). The lack of mechanisms to prevent energy overload and the effective persistence of the mechanisms hoarding key nutrients such as amino acids has resulted in deep disorders of substrate handling. There is too often a massive untreatable accumulation of body fat in the presence of severe metabolic disorders of energy utilization and disposal, which become chronic and go much beyond the most obvious problems: diabetes, circulatory, renal and nervous disorders included loosely within the metabolic syndrome. We lack basic knowledge on diet nutrient dynamics at the tissue-cell metabolism level, and this adds to widely used medical procedures lacking sufficient scientific support, with limited or nil success. In the present longitudinal analysis of the fate of dietary nutrients, we have focused on glucose as an example of a largely unknown entity. Even most studies on hyper-energetic diets or their later consequences tend to ignore the critical role of carbohydrate (and nitrogen disposal) as (probably) the two main factors affecting the substrate partition and metabolism.
Collapse
Affiliation(s)
- Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| |
Collapse
|
7
|
Oliva L, Aranda T, Alemany M, Fernández-López JA, Remesar X. Unconnected Body Accrual of Dietary Lipid and Protein in Rats Fed Diets with Different Lipid and Protein Content. Mol Nutr Food Res 2020; 64:e2000265. [PMID: 32521082 DOI: 10.1002/mnfr.202000265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/15/2020] [Indexed: 12/14/2022]
Abstract
SCOPE Eating large amounts of fat is usually associated with fat accumulation. However, different types of diets (not only lipids) elicit different metabolic responses. METHODS AND RESULTS Male and female rats (10 week-old) are distributed in four groups and fed for 1 month a standard diet (SD), or this diet enriched with either lipid (high-fat diet, HF) or protein (high-protein diet, HP), or a cafeteria diet (CAF). Both HF and CAF diets share the percentage of energy from lipids (40%) but these are different. Protein-derived energy in the HP diet is also 40%. Feeding SD, HF, and HP diets does not result in differences in energy intake, energy expenditure, total body weight, or lipid content. However, the CAF-fed groups show increases in these parameters, which are more marked in the male rats. The CAF diet increases the mass of adipose tissue while the HF diet does not. CONCLUSION Different diets produce substantial changes in the fate of ingested nutrient energy. Dietary lipids are not essential for sustaining an increase in body lipid (or adipose tissue) content. Body protein accrual is unrelated to dietary lipids and overall energy intake. Both protein and lipid accrual are more efficient in male rats.
Collapse
Affiliation(s)
- Laia Oliva
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain
| | - Tania Aranda
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain.,CIBER OBN, Research Web, Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain
| | - José-Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain.,CIBER OBN, Research Web, Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain.,CIBER OBN, Research Web, Barcelona, Av. Diagonal 643, Barcelona, Catalonia, 08028, Spain
| |
Collapse
|
8
|
Rotondo F, Ho-Palma AC, Romero MDM, Remesar X, Fernández-López JA, Alemany M. Higher lactate production from glucose in cultured adipose nucleated stromal cells than for rat adipocytes. Adipocyte 2019; 8:61-76. [PMID: 30676233 PMCID: PMC6768231 DOI: 10.1080/21623945.2019.1569448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
White adipose tissue (WAT) nucleated stromal cells (NSC) play important roles in regulation, defense, regeneration and metabolic control. In WAT sites, the proportions and functions of NSC change under diverse physiological or pathologic conditions. We had previously observed the massive anaerobic wasting of glucose to lactate and glycerol in rat epididymal adipocytes. To test site variability, and whether the adipocyte extensive anaerobic metabolism of glucose was found in NSC, we analyzed, in parallel, subcutaneous, mesenteric and epididymal WAT of male adult Wistar rats. Adipocytes and NSC fractions, were isolated, counted and incubated (as well as red blood cells: RBC) with glucose, and their ability to use glucose and produce lactate, glycerol, and free fatty acids was measured. Results were computed taking into account the number of cells present in WAT samples. Cell numbers were found in proportions close to 1:13:100 (respectively, for adipocytes, NSC and RBC) but their volumes followed a reversed pattern: 7,500:10:1. When counting only non-fat cell volumes, the ratios changed dramatically to 100:10:1. RBC contribution to lactate production was practically insignificant. In most samples, NSC produced more lactate than adipocytes did, but only adipocytes secreted glycerol (and fatty acids in smaller amounts). Glucose consumption was also highest in NSC, especially in mesenteric WAT. The heterogeneous NSC showed a practically anaerobic metabolism (like that already observed in adipocytes). Thus, NSC quantitative production of lactate markedly contributed (i.e. more than adipocytes) to WAT global use (wasting) of glucose. We also confirmed that glucose-derived glycerol is exclusively produced by adipocytes.
Collapse
Affiliation(s)
- Floriana Rotondo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology University of Barcelona, Barcelona, Spain
| | - Ana-Cecilia Ho-Palma
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology University of Barcelona, Barcelona, Spain
| | - María del Mar Romero
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER-OBN Research Web, Barcelona, Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER-OBN Research Web, Barcelona, Spain
| | - José Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER-OBN Research Web, Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER-OBN Research Web, Barcelona, Spain
| |
Collapse
|
9
|
Insulin Controls Triacylglycerol Synthesis through Control of Glycerol Metabolism and Despite Increased Lipogenesis. Nutrients 2019; 11:nu11030513. [PMID: 30823376 PMCID: PMC6470968 DOI: 10.3390/nu11030513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022] Open
Abstract
Under normoxic conditions, adipocytes in primary culture convert huge amounts of glucose to lactate and glycerol. This “wasting” of glucose may help to diminish hyperglycemia. Given the importance of insulin in the metabolism, we have studied how it affects adipocyte response to varying glucose levels, and whether the high basal conversion of glucose to 3-carbon fragments is affected by insulin. Rat fat cells were incubated for 24 h in the presence or absence of 175 nM insulin and 3.5, 7, or 14 mM glucose; half of the wells contained 14C-glucose. We analyzed glucose label fate, medium metabolites, and the expression of key genes controlling glucose and lipid metabolism. Insulin increased both glucose uptake and the flow of carbon through glycolysis and lipogenesis. Lactate excretion was related to medium glucose levels, which agrees with the purported role of disposing excess (circulating) glucose. When medium glucose was low, most basal glycerol came from lipolysis, but when glucose was high, release of glycerol via breakup of glycerol-3P was predominant. Although insulin promotes lipogenesis, it also limited the synthesis of glycerol-3P from glucose and its incorporation into acyl-glycerols. We assume that this is a mechanism of adipose tissue defense to avoid crippling fat accumulation which has not yet been described.
Collapse
|
10
|
Oliva L, Alemany M, Remesar X, Fernández-López JA. The Food Energy/Protein Ratio Regulates the Rat Urea Cycle but Not Total Nitrogen Losses. Nutrients 2019; 11:nu11020316. [PMID: 30717282 PMCID: PMC6412698 DOI: 10.3390/nu11020316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/18/2019] [Accepted: 01/31/2019] [Indexed: 01/01/2023] Open
Abstract
Nitrogen balance studies have shown that a portion of the N ingested but not excreted is not accounted for. We compared several diets (standard, high-fat, high-protein, and self-selected cafeteria) to determine how diet-dependent energy sources affect nitrogen handling, i.e., the liver urea cycle. Diet components and rat homogenates were used for nitrogen, lipid, and energy analyses. Plasma urea and individual amino acids, as well as liver urea cycle enzyme activities, were determined. Despite ample differences in N intake, circulating amino acids remained practically unchanged in contrast to marked changes in plasma urea. The finding of significant correlations between circulating urea and arginine-succinate synthase and lyase activities supported their regulatory role of urea synthesis, the main N excretion pathway. The cycle operation also correlated with the food protein/energy ratio, in contraposition to total nitrogen losses and estimated balance essentially independent of dietary energy load. The different regulation mechanisms observed have potentially important nutritional consequences, hinting at nitrogen disposal mechanisms able to eliminate excess nitrogen under conditions of high availability of both energy and proteins. Their operation reduces urea synthesis to allow for a safe (albeit unknown) mechanism of N/energy excess accommodation.
Collapse
Affiliation(s)
- Laia Oliva
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology,08028 Barcelona, Spain.
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology,08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBER OBN), 08028 Barcelona, Spain.
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology,08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBER OBN), 08028 Barcelona, Spain.
| | - José-Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology,08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBER OBN), 08028 Barcelona, Spain.
| |
Collapse
|
11
|
Rotondo F, Ho-Palma AC, Remesar X, Fernández-López JA, Romero MDM, Alemany M. Effect of sex on glucose handling by adipocytes isolated from rat subcutaneous, mesenteric and perigonadal adipose tissue. PeerJ 2018; 6:e5440. [PMID: 30128201 PMCID: PMC6089212 DOI: 10.7717/peerj.5440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
Background Adult rat epididymal adipocytes are able to convert large amounts of glucose to lactate and glycerol. However, fatty acid efflux is much lower than that expected from glycerol levels if they were the product of lipolysis. Use of glucose for lipogenesis is limited, in contrast with the active glycolysis-derived lactate (and other 3-carbon substrates). In this study, we analyzed whether white adipose tissue (WAT) site and sex affect these processes. Methods Mature adipocytes from perigonadal, mesenteric and subcutaneous WAT of female and male rats were isolated, and incubated with 7 or 14 mM glucose during 1 or 2 days. Glucose consumption, metabolite efflux and gene expression of glycolytic and lipogenesis-related genes were measured. Results The effects of medium initial glucose concentration were minimal on most parameters studied. Sex-induced differences that were more extensive; however, the most marked, distinct, effects between WAT sites, were dependent on the time of incubation. In general, the production of lactate was maintained during the incubation, but glycerol release rates increased with time, shifting from a largely glycolytic origin to its triacylglycerol (TAG) lipolytic release. Glycerol incorporation was concurrent with increased TAG turnover: lipolytic glycerol was selectively secreted, while most fatty acids were recycled again into TAG. Fatty acid efflux increased with incubation, but was, nevertheless, minimal compared with that of glycerol. Production of lactate and glycerol from glucose were maximal in mesenteric WAT. Discussion Female rats showed a higher adipocyte metabolic activity than males. In mesenteric WAT, gene expression (and substrate efflux) data suggested that adipocyte oxidation of pyruvate to acetyl-CoA was higher in females than in males, with enhanced return of oxaloacetate to the cytoplasm for its final conversion to lactate. WAT site differences showed marked tissue specialization-related differences. Use of glucose for lipogenesis was seriously hampered over time, when TAG turnover-related lipolysis was activated. We postulate that these mechanisms may help decrease glycaemia and fat storage, producing, instead, a higher availability of less-regulated 3-carbon substrates, used for energy elsewhere.
Collapse
Affiliation(s)
- Floriana Rotondo
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain
| | - Ana Cecilia Ho-Palma
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBER OBN, Centro de Investigación Biomédica en Red: Obesidad y Nutrición, Barcelona, Spain
| | - José Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBER OBN, Centro de Investigación Biomédica en Red: Obesidad y Nutrición, Barcelona, Spain
| | - María Del Mar Romero
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBER OBN, Centro de Investigación Biomédica en Red: Obesidad y Nutrición, Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBER OBN, Centro de Investigación Biomédica en Red: Obesidad y Nutrición, Barcelona, Spain
| |
Collapse
|
12
|
Ho-Palma AC, Rotondo F, Romero MDM, Fernández-López JA, Remesar X, Alemany M. Use of 14C-glucose by primary cultures of mature rat epididymal adipocytes. Marked release of lactate and glycerol, but limited lipogenesis in the absence of external stimuli. Adipocyte 2018; 7:204-217. [PMID: 29708458 DOI: 10.1080/21623945.2018.1460020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
White adipose tissue can metabolize large amounts of glucose to glycerol and lactate. We quantitatively traced glucose label to lactate, glycerol and fats in primary cultures of mature rat epididymal adipocytes. Cells were incubated with 7/14 mM 14C-glucose for 24/48 h. Medium metabolites and the label in them and in cells' components were measured. Gene expression analysis was done using parallel incubations. Glucose concentration did not affect lactate efflux and most parameters. Glycerol efflux increased after 24 h, coinciding with arrested lipogenesis. Steady production of lactate was maintained in parallel to glycerogenesis. Changes in adipocyte metabolism were paralleled by gene expression. Glucose use for lipogenesis was minimal, and stopped (24 h-onwards) when glycerol efflux increased because of triacylglycerol turnover. Lactate steady efflux showed that anaerobic glycolysis was the main adipocyte source of energy. We can assume that adipose tissue may play a quantitatively significant effect on glycaemia, returning 3C fragments thus minimizing lipogenesis.
Collapse
Affiliation(s)
- Ana Cecilia Ho-Palma
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Floriana Rotondo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - María del Mar Romero
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER-OBN Research Web, Barcelona, Spain
| | - José Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER-OBN Research Web, Barcelona, Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER-OBN Research Web, Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER-OBN Research Web, Barcelona, Spain
| |
Collapse
|
13
|
Oliva L, Aranda T, Caviola G, Fernández-Bernal A, Alemany M, Fernández-López JA, Remesar X. In rats fed high-energy diets, taste, rather than fat content, is the key factor increasing food intake: a comparison of a cafeteria and a lipid-supplemented standard diet. PeerJ 2017; 5:e3697. [PMID: 28929011 PMCID: PMC5600723 DOI: 10.7717/peerj.3697] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/26/2017] [Indexed: 11/20/2022] Open
Abstract
Background Food selection and ingestion both in humans and rodents, often is a critical factor in determining excess energy intake and its related disorders. Methods Two different concepts of high-fat diets were tested for their obesogenic effects in rats; in both cases, lipids constituted about 40% of their energy intake. The main difference with controls fed standard lab chow, was, precisely, the lipid content. Cafeteria diets (K) were self-selected diets devised to be desirable to the rats, mainly because of its diverse mix of tastes, particularly salty and sweet. This diet was compared with another, more classical high-fat (HF) diet, devised not to be as tasty as K, and prepared by supplementing standard chow pellets with fat. We also analysed the influence of sex on the effects of the diets. Results K rats grew faster because of a high lipid, sugar and protein intake, especially the males, while females showed lower weight but higher proportion of body lipid. In contrast, the weight of HF groups were not different from controls. Individual nutrient’s intake were analysed, and we found that K rats ingested large amounts of both disaccharides and salt, with scant differences of other nutrients’ proportion between the three groups. The results suggest that the key differential factor of the diet eliciting excess energy intake was the massive presence of sweet and salty tasting food. Conclusions The significant presence of sugar and salt appears as a powerful inducer of excess food intake, more effective than a simple (albeit large) increase in the diet’s lipid content. These effects appeared already after a relatively short treatment. The differential effects of sex agree with their different hedonic and obesogenic response to diet.
Collapse
Affiliation(s)
- Laia Oliva
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain
| | - Tània Aranda
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain
| | - Giada Caviola
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain
| | - Anna Fernández-Bernal
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBER OBN, Centro de Investigaciones Biomédicas en Red, Barcelona, Spain
| | - José Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBER OBN, Centro de Investigaciones Biomédicas en Red, Barcelona, Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBER OBN, Centro de Investigaciones Biomédicas en Red, Barcelona, Spain
| |
Collapse
|
14
|
Chen Q, Rong P, Xu D, Zhu S, Chen L, Xie B, Du Q, Quan C, Sheng Y, Zhao TJ, Li P, Wang HY, Chen S. Rab8a Deficiency in Skeletal Muscle Causes Hyperlipidemia and Hepatosteatosis by Impairing Muscle Lipid Uptake and Storage. Diabetes 2017; 66:2387-2399. [PMID: 28696211 DOI: 10.2337/db17-0077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/21/2017] [Indexed: 11/13/2022]
Abstract
Skeletal muscle absorbs long-chain fatty acids (LCFAs) that are either oxidized in mitochondria or temporarily stored as triglycerides in lipid droplets (LDs). So far, it is still not fully understood how lipid uptake and storage are regulated in muscle and whether these are important for whole-body lipid homeostasis. Here we show that the small GTPase Rab8a regulates lipid uptake and storage in skeletal muscle. Muscle-specific Rab8a deletion caused hyperlipidemia and exacerbated hepatosteatosis induced by a high-fat diet. Mechanistically, Rab8a deficiency decreased LCFA entry into skeletal muscle and inhibited LD fusion in muscle cells. Consequently, blood lipid levels were elevated and stimulated hepatic mammalian target of rapamycin, which enhanced hepatosteatosis by upregulating hepatic lipogenesis and cholesterol biosynthesis. Our results demonstrate the significance of lipid uptake and storage in muscle in regulating whole-body lipid homeostasis, and they shed light on the roles of skeletal muscle in the pathogenesis of hyperlipidemia and hepatosteatosis.
Collapse
Affiliation(s)
- Qiaoli Chen
- MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Pukou District, Nanjing, China
| | - Ping Rong
- MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Pukou District, Nanjing, China
| | - Dijin Xu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sangsang Zhu
- MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Pukou District, Nanjing, China
| | - Liang Chen
- MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Pukou District, Nanjing, China
| | - Bingxian Xie
- MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Pukou District, Nanjing, China
| | - Qian Du
- MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Pukou District, Nanjing, China
| | - Chao Quan
- MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Pukou District, Nanjing, China
| | - Yang Sheng
- MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Pukou District, Nanjing, China
| | - Tong-Jin Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Peng Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hong Yu Wang
- MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Pukou District, Nanjing, China
| | - Shuai Chen
- MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Pukou District, Nanjing, China
| |
Collapse
|
15
|
Arriarán S, Agnelli S, Remesar X, Alemany M, Fernández-López JA. White adipose tissue urea cycle activity is not affected by one-month treatment with a hyperlipidic diet in female rats. Food Funct 2016; 7:1554-63. [PMID: 26901686 DOI: 10.1039/c5fo01503k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Under high-energy diets, amino acid N is difficult to dispose of, as a consequence of the availability of alternative substrates. We found, recently, that WAT contains a complete functional urea cycle, we analyzed the possible overall changes in the WAT urea cycle (and other-related amino acid metabolism gene expressions) in rats subjected to a cafeteria diet. Adult female Wistar rats were fed control or simplified cafeteria diets. Samples of WAT sites: mesenteric, periovaric, retroperitoneal and subcutaneous, were used for the estimation of all urea cycle enzyme activities and gene expressions. Other key amino acid metabolism gene expressions, and lactate dehydrogenase were also measured. Subcutaneous WAT showed a differentiated amino acid metabolism profile, since its cumulative (whole site) activity for most enzymes was higher than the activities of the other sites studied. After one month of eating an energy-rich cafeteria diet, and in spite of doubling the size of WAT, the transforming capacity of most amino acid metabolism enzymes remained practically unchanged in the tissue. This was not only due to limited changes in the overall enzyme activity, but also a consequence of a relative decrease in the expression of the corresponding genes. Overall, the results of this study support the consideration of WAT as an organ, disperse but under uniform control. The metabolic peculiarities between its different sites, and their ability to adapt to different energy availability conditions only add to the variable nature of adipose tissue. We have presented additional evidence of the significant role of WAT in amino acid metabolism.
Collapse
Affiliation(s)
- Sofía Arriarán
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| | - Silvia Agnelli
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| | - Xavier Remesar
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona, Spain. and Institute of Biomedicine, University of Barcelona, Barcelona, Spain and CIBER-OBN Research Web, Barcelona, Spain
| | - Marià Alemany
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona, Spain. and Institute of Biomedicine, University of Barcelona, Barcelona, Spain and CIBER-OBN Research Web, Barcelona, Spain
| | - José Antonio Fernández-López
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona, Spain. and Institute of Biomedicine, University of Barcelona, Barcelona, Spain and CIBER-OBN Research Web, Barcelona, Spain
| |
Collapse
|
16
|
Sabater D, Agnelli S, Arriarán S, Romero MDM, Fernández-López JA, Alemany M, Remesar X. Cafeteria diet induce changes in blood flow that are more related with heat dissipation than energy accretion. PeerJ 2016; 4:e2302. [PMID: 27547590 PMCID: PMC4975024 DOI: 10.7717/peerj.2302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/07/2016] [Indexed: 01/12/2023] Open
Abstract
Background. A “cafeteria” diet is a self-selected high-fat diet, providing an excess of energy, which can induce obesity. Excess of lipids in the diet hampers glucose utilization eliciting insulin resistance, which, further limits amino acid oxidation for energy. Methods. Male Wistar rats were exposed for a month to “cafeteria” diet. Rats were cannulated and fluorescent microspheres were used to determine blood flow. Results. Exposure to the cafeteria diet did not change cardiac output, but there was a marked shift in organ irrigation. Skin blood flow decreased to compensate increases in lungs and heart. Blood flow through adipose tissue tended to increase in relation to controls, but was considerably increased in brown adipose tissue (on a weight basis). Discussion. The results suggest that the cafeteria diet-induced changes were related to heat transfer and disposal.
Collapse
Affiliation(s)
- David Sabater
- Department of Biochemistry an Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona , Barcelona , Spain
| | - Silvia Agnelli
- Department of Biochemistry an Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona , Barcelona , Spain
| | - Sofía Arriarán
- Department of Biochemistry an Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona , Barcelona , Spain
| | - María Del Mar Romero
- Department of Biochemistry an Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; CIBER OBN Research Network, Barcelona, Spain
| | - José Antonio Fernández-López
- Department of Biochemistry an Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; CIBER OBN Research Network, Barcelona, Spain; Institute of Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry an Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; CIBER OBN Research Network, Barcelona, Spain; Institute of Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Xavier Remesar
- Department of Biochemistry an Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; CIBER OBN Research Network, Barcelona, Spain; Institute of Biomedicine, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Agnelli S, Arriarán S, Oliva L, Remesar X, Fernández-López JA, Alemany M. Modulation of rat liver urea cycle and related ammonium metabolism by sex and cafeteria diet. RSC Adv 2016. [DOI: 10.1039/c5ra25174e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Liver amino acid metabolism decreased with cafeteria diet through lower ammonium production (even lower in females) and urea cycle activity.
Collapse
Affiliation(s)
- Silvia Agnelli
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| | - Sofía Arriarán
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| | - Laia Oliva
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| | - Xavier Remesar
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| | | | - Marià Alemany
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|
18
|
Arriarán S, Agnelli S, Remesar X, Fernández-López JA, Alemany M. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue. PeerJ 2015; 3:e1399. [PMID: 26587356 PMCID: PMC4647552 DOI: 10.7717/peerj.1399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/21/2015] [Indexed: 11/20/2022] Open
Abstract
Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males' subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole.
Collapse
Affiliation(s)
- Sofía Arriarán
- Department of Nutrition & Food Science, University of Barcelona, Faculty of Biology , Barcelona , Spain
| | - Silvia Agnelli
- Department of Nutrition & Food Science, University of Barcelona, Faculty of Biology , Barcelona , Spain
| | - Xavier Remesar
- Department of Nutrition & Food Science, University of Barcelona, Faculty of Biology , Barcelona , Spain ; Institute of Biomedicine, University of Barcelona , Barcelona , Spain ; CIBER OBN , Barcelona , Spain
| | - José Antonio Fernández-López
- Department of Nutrition & Food Science, University of Barcelona, Faculty of Biology , Barcelona , Spain ; Institute of Biomedicine, University of Barcelona , Barcelona , Spain ; CIBER OBN , Barcelona , Spain
| | - Marià Alemany
- Department of Nutrition & Food Science, University of Barcelona, Faculty of Biology , Barcelona , Spain ; Institute of Biomedicine, University of Barcelona , Barcelona , Spain ; CIBER OBN , Barcelona , Spain
| |
Collapse
|
19
|
Glycerol Production from Glucose and Fructose by 3T3-L1 Cells: A Mechanism of Adipocyte Defense from Excess Substrate. PLoS One 2015; 10:e0139502. [PMID: 26426115 PMCID: PMC4591265 DOI: 10.1371/journal.pone.0139502] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/12/2015] [Indexed: 12/28/2022] Open
Abstract
Cultured adipocytes (3T3-L1) produce large amounts of 3C fragments; largely lactate, depending on medium glucose levels. Increased glycolysis has been observed also in vivo in different sites of rat white adipose tissue. We investigated whether fructose can substitute glucose as source of lactate, and, especially whether the glycerol released to the medium was of lipolytic or glycolytic origin. Fructose conversion to lactate and glycerol was lower than that of glucose. The fast exhaustion of medium glucose was unrelated to significant changes in lipid storage. Fructose inhibited to a higher degree than glucose the expression of lipogenic enzymes. When both hexoses were present, the effects of fructose on gene expression prevailed over those of glucose. Adipocytes expressed fructokinase, but not aldolase b. Substantive release of glycerol accompanied lactate when fructose was the substrate. The mass of cell triacylglycerol (and its lack of change) could not justify the comparatively higher amount of glycerol released. Consequently, most of this glycerol should be derived from the glycolytic pathway, since its lipolytic origin could not be (quantitatively) sustained. Proportionally (with respect to lactate plus glycerol), more glycerol was produced from fructose than from glucose, which suggests that part of fructose was catabolized by the alternate (hepatic) fructose pathway. Earlier described adipose glycerophophatase activity may help explain the glycolytic origin of most of the glycerol. However, no gene is known for this enzyme in mammals, which suggests that this function may be carried out by one of the known phosphatases in the tissue. Break up of glycerol-3P to yield glycerol, may be a limiting factor for the synthesis of triacylglycerols through control of glycerol-3P availability. A phosphatase pathway such as that described may have a potential regulatory function, and explain the production of glycerol by adipocytes in the absence of lipolytic stimulation.
Collapse
|
20
|
Arriarán S, Agnelli S, Sabater D, Remesar X, Fernández-López JA, Alemany M. Evidences of basal lactate production in the main white adipose tissue sites of rats. Effects of sex and a cafeteria diet. PLoS One 2015; 10:e0119572. [PMID: 25741703 PMCID: PMC4351194 DOI: 10.1371/journal.pone.0119572] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/15/2015] [Indexed: 12/25/2022] Open
Abstract
Female and male adult Wistar rats were fed standard chow or a simplified cafeteria diet for one month. Then, the rats were killed and the white adipose tissue (WAT) in four sites: perigonadal, retroperitoneal, mesenteric and subcutaneous (inguinal) were sampled and frozen. The complete WAT weight in each site was measured. Gene expression analysis of key lipid and glucose metabolism enzymes were analyzed, as well as tissue and plasma lactate and the activity of lactate dehydrogenase. Lactate gradients between WAT and plasma were estimated. The influence of sex and diet (and indirectly WAT mass) on lactate levels and their relationships with lactate dehydrogenase activity and gene expressions were also measured. A main conclusion is the high production of lactate by WAT, practically irrespective of site, diet or sex. Lactate production is a direct correlate of lactate dehydrogenase activity in the tissue. Furthermore, lactate dehydrogenase activity is again directly correlated with the expression of the genes Ldha and Ldhb for this enzyme. In sum, the ability to produce lactate by WAT is not directly dependent of WAT metabolic state. We postulate that, in WAT, a main function of the lactate dehydrogenase path may be that of converting excess available glucose to 3C fragments, as a way to limit tissue self-utilization as substrate, to help control glycaemia and/or providing short chain substrates for use as energy source elsewhere. More information must be gathered before a conclusive role of WAT in the control of glycaemia, and the full existence of a renewed glucose-lactate-fatty acid cycle is definitely established.
Collapse
Affiliation(s)
- Sofía Arriarán
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Silvia Agnelli
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - David Sabater
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Barcelona, Spain
| | - Xavier Remesar
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Barcelona, Spain
| | - José Antonio Fernández-López
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Barcelona, Spain
- * E-mail:
| | - Marià Alemany
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Barcelona, Spain
| |
Collapse
|
21
|
Arriarán S, Agnelli S, Remesar X, Fernández-López JA, Alemany M. The urea cycle of rat white adipose tissue. RSC Adv 2015. [DOI: 10.1039/c5ra16398f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
White adipose tissue urea-cycle enzymes showed a high activity and gene expression, second only to liver in catalytic capacity.
Collapse
Affiliation(s)
- Sofía Arriarán
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| | - Silvia Agnelli
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| | - Xavier Remesar
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| | | | - Marià Alemany
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|