1
|
Vitorino IR, Lobo-da-Cunha A, Vasconcelos V, Vicente F, Lage OM. Isolation, diversity and antimicrobial activity of planctomycetes from the Tejo river estuary (Portugal). FEMS Microbiol Ecol 2022; 98:6609431. [PMID: 35709427 DOI: 10.1093/femsec/fiac066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
The discovery of new bioactive compounds is an invaluable aid to the development of new drugs. Strategies for finding novel molecules can focus on the exploitation of less studied organisms and ecosystems such as planctomycetes and brackish habitats. The unique cell biology of the underexplored Planctomycetota mean it is of particular interest. In this study, we aimed to isolate planctomycetes from the estuary of the Tejo river (Portugal). To reach this goal, macroalgae, water and sediments were sampled and diverse media and isolation techniques applied. Sixty-nine planctomycetal strains were brought into pure culture. An analysis of the 16S rRNA genes found that the majority of the isolates were affiliated to the genus Rhodopirellula. Putative novel taxa belonging to genera Stieleria and Rhodopirellula were also isolated and characterized morphologically. Enterobacterial Repetitive Intergenic Consensus fingerprinting analyses showed higher diversity and different genotypes within close strains. Relevant biosynthetic gene clusters were found in most isolates and acetone extracts from representative strains exhibited mild antimicrobial activities against Escherichia coli and Staphylococcus aureus. Our work has not only enlarged the number and diversity of cultured planctomycetes but also shown the potential for the discovery of bioactive compounds from the novel taxa.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
2
|
Vitorino IR, Lage OM. The Planctomycetia: an overview of the currently largest class within the phylum Planctomycetes. Antonie van Leeuwenhoek 2022; 115:169-201. [PMID: 35037113 DOI: 10.1007/s10482-021-01699-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023]
Abstract
The phylum Planctomycetes comprises bacteria with uncommon features among prokaryotes, such as cell division by budding, absence of the bacterial tubulin-homolog cell division protein FtsZ and complex cell plans with invaginations of the cytoplasmic membrane. Although planctomycetes are ubiquitous, the number of described species and isolated strains available as axenic cultures is still low compared to the diversity observed in metagenomes or environmental studies. An increasing interest in planctomycetes is reflected by the recent description of a large number of new species and their increasing accessibility in terms of pure cultures. In this review, data from all taxonomically described species belonging to Planctomycetia, the class with the currently highest number of characterized members within the phylum Planctomycetes, is summarized. Phylogeny, morphology, physiology, ecology and genomic traits of its members are discussed. This comprehensive overview will help to acknowledge several aspects of the biology of these fascinating bacteria.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| |
Collapse
|
3
|
Seeger C, Dyrhage K, Mahajan M, Odelgard A, Lind SB, Andersson SGE. The Subcellular Proteome of a Planctomycetes Bacterium Shows That Newly Evolved Proteins Have Distinct Fractionation Patterns. Front Microbiol 2021; 12:643045. [PMID: 34745019 PMCID: PMC8567305 DOI: 10.3389/fmicb.2021.643045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The Planctomycetes bacteria have unique cell architectures with heavily invaginated membranes as confirmed by three-dimensional models reconstructed from FIB-SEM images of Tuwongella immobilis and Gemmata obscuriglobus. The subcellular proteome of T. immobilis was examined by differential solubilization followed by LC-MS/MS analysis, which identified 1569 proteins in total. The Tris-soluble fraction contained mostly cytoplasmic proteins, while inner and outer membrane proteins were found in the Triton X-100 and SDS-soluble fractions, respectively. For comparisons, the subcellular proteome of Escherichia coli was also examined using the same methodology. A notable difference in the overall fractionation pattern of the two species was a fivefold higher number of predicted cytoplasmic proteins in the SDS-soluble fraction in T. immobilis. One category of such proteins is represented by innovations in the Planctomycetes lineage, including unique sets of serine/threonine kinases and extracytoplasmic sigma factors with WD40 repeat domains for which no homologs are present in E. coli. Other such proteins are members of recently expanded protein families in which the newly evolved paralog with a new domain structure is recovered from the SDS-soluble fraction, while other paralogs may have similar domain structures and fractionation patterns as the single homolog in E. coli. The expanded protein families in T. immobilis include enzymes involved in replication-repair processes as well as in rRNA and tRNA modification and degradation. These results show that paralogization and domain shuffling have yielded new proteins with distinct fractionation characteristics. Understanding the molecular intricacies of these adaptive changes might aid in the development of a model for the evolution of cellular complexity.
Collapse
Affiliation(s)
- Christian Seeger
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Karl Dyrhage
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Mayank Mahajan
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Anna Odelgard
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Siv G E Andersson
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Kun Á. The major evolutionary transitions and codes of life. Biosystems 2021; 210:104548. [PMID: 34547424 DOI: 10.1016/j.biosystems.2021.104548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
Major evolutionary transitions as well as the evolution of codes of life are key elements in macroevolution which are characterized by increase in complexity Major evolutionary transitions ensues by a transition in individuality and by the evolution of a novel mode of using, transmitting or storing information. Here is where codes of life enter the picture: they are arbitrary mappings between different (mostly) molecular species. This flexibility allows information to be employed in a variety of ways, which can fuel evolutionary innovation. The collation of the list of major evolutionary transitions and the list of codes of life show a clear pattern: codes evolved prior to a major evolutionary transition and then played roles in the transition and/or in the transformation of the new individual. The evolution of a new code of life is in itself not a major evolutionary transition but allow major evolutionary transitions to happen. This could help us to identify new organic codes.
Collapse
Affiliation(s)
- Ádám Kun
- Parmenides Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1, D-82049, Pullach, Germany; Institute of Evolution, Centre for Ecological Research, Konkoly-Thege Miklós út 29-33, H-1121, Budapest, Hungary; MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary; Institute for Advanced Studies Kőszeg, Chernel utca 14, H-9730, Kőszeg, Hungary; Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary.
| |
Collapse
|
5
|
Franke JD, Fuerst JA, Poole AM. Editorial: Structure, Function and Evolution of Complex Cellular Organization in Bacteria and Archaea. Front Microbiol 2021; 12:751416. [PMID: 34526983 PMCID: PMC8435829 DOI: 10.3389/fmicb.2021.751416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Josef D Franke
- Department of Biology, Creighton University, Omaha, NE, United States
| | - John A Fuerst
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Anthony M Poole
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Kaboré OD, Godreuil S, Drancourt M. Planctomycetes as Host-Associated Bacteria: A Perspective That Holds Promise for Their Future Isolations, by Mimicking Their Native Environmental Niches in Clinical Microbiology Laboratories. Front Cell Infect Microbiol 2020; 10:519301. [PMID: 33330115 PMCID: PMC7734314 DOI: 10.3389/fcimb.2020.519301] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023] Open
Abstract
Traditionally recognized as environmental bacteria, Planctomycetes have just been linked recently to human pathology as opportunistic pathogens, arousing a great interest for clinical microbiologists. However, the lack of appropriate culture media limits our future investigations as no Planctomycetes have ever been isolated from patients' specimens despite several attempts. Several Planctomycetes have no cultivable members and are only recognized by 16S rRNA gene sequence detection and analysis. The cultured representatives are slow-growing fastidious bacteria and mostly difficult to culture on synthetic media. Accordingly, the provision of environmental and nutritional conditions like those existing in the natural habitat where yet uncultured/refractory bacteria can be detected might be an option for their potential isolation. Hence, we systematically reviewed the various natural habitats of Planctomycetes, to review their nutritional requirements, the physicochemical characteristics of their natural ecological niches, current methods of cultivation of the Planctomycetes and gaps, from a perspective of collecting data in order to optimize conditions and the protocols of cultivation of these fastidious bacteria. Planctomycetes are widespread in freshwater, seawater, and terrestrial environments, essentially associated to particles or organisms like macroalgae, marine sponges, and lichens, depending on the species and metabolizable polysaccharides by their sulfatases. Most Planctomycetes grow in nutrient-poor oligotrophic environments with pH ranging from 3.4 to 11, but a few strains can also grow in quite nutrient rich media like M600/M14. Also, a seasonality variation of abundance is observed, and bloom occurs in summer-early autumn, correlating with the strong growth of algae in the marine environments. Most Planctomycetes are mesophilic, but with a few Planctomycetes being thermophilic (50°C to 60°C). Commonly added nutrients are N-acetyl-glucosamine, yeast-extracts, peptone, and some oligo and macro-elements. A biphasic host-associated extract (macroalgae, sponge extract) conjugated with a diluted basal medium should provide favorable results for the success of isolation in pure culture.
Collapse
Affiliation(s)
- Odilon D. Kaboré
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Sylvain Godreuil
- Université de Montpellier UMR 1058 UMR MIVEGEC, UMR IRD 224-CNRS Inserm, Montpellier, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
7
|
Guo M, Wang J, Zhang Y, Zhang L. Increased WD40 motifs in Planctomycete bacteria and their evolutionary relevance. Mol Phylogenet Evol 2020; 155:107018. [PMID: 33242584 DOI: 10.1016/j.ympev.2020.107018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 10/05/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Species of the family Planctomycetes have a complex intracellular structure, which is distinct from that of the majority of non-Planctomycetes bacteria. At present, genomic evidence of the evolution of intracellular complexity is lacking, cognitions of Planctomycetes's intracellular structure mainly rely on electron microscope observation. As the presence of WD40 motifs in eukaryotic proteins probably links to intracellular complexity, bioinformatic studies were conducted to detect and enumerate WD40 motifs, WD40 domains, and WD40 motif-bearing proteins in the genomes of 11 Planctomycetes species, 2775 non-Planctomycetes bacteria, and 63 representative eukaryotes. Compared to non-Planctomycetes bacteria (average 5 WD40 motifs and 1 WD40 motif-bearing protein per genome), a large increase in the number of WD40 motifs in Planctomycetes species (average 116 WD40 motifs and 26 WD40 motif-bearing proteins per genome) was observed. However, the average number of WD40 motifs in Planctomycetes species was significantly lower than that of eukaryotes (average 584 WD40 motifs and 193 WD40 motif-bearing proteins per genome). The number of WD40 motif-bearing proteins was found to correlate with genome size and gene number. Most WD40 motif-bearing proteins of Planctomycetes species belonged to the categories of 'ribosome assembly protein 4' and 'eukaryotic-like serine/threonine protein kinase.' Collinearity analysis of amino acid compositions of Planctomycetes and eukaryotic WD40 motifs revealed that the sequences of the four anti-parallel β-sheets of WD40 motifs were conserved. However, a number of Planctomycetes WD40 motifs had increased size of the interval region of β-sheets D and A. Taken together, results of this study suggest a positive correlation between the number of WD40 motif-bearing proteins and the evolution of Planctomycetes species toward a complex intracellular structure similar to that of eukaryotes.
Collapse
Affiliation(s)
- Min Guo
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Junhua Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuzhi Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
8
|
Takemura M. Medusavirus Ancestor in a Proto-Eukaryotic Cell: Updating the Hypothesis for the Viral Origin of the Nucleus. Front Microbiol 2020; 11:571831. [PMID: 33013805 PMCID: PMC7494782 DOI: 10.3389/fmicb.2020.571831] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
The mechanistic evolutionary origin of the eukaryotic cell nucleus remains unknown. Among several plausible hypotheses, the most controversial is that large DNA viruses, such as poxviruses, led to the emergence of the eukaryotic cell nucleus. Several recent findings, including the discovery of a nucleus-like structure in prokaryotic viruses and prokaryotes possessing nucleus-like inner membranes, suggest genomic DNA compartmentalization not only in eukaryotes but also in prokaryotes. The sophisticated viral machinery of mimiviruses is thought to resemble the eukaryotic nucleus: DNA replicates both inside the viral factory and nucleus, which is at least partially surrounded by membranes and is devoid of ribosomes. Furthermore, several features of the recently identified Acanthamoeba castellanii medusavirus suggest that the evolutionary relationship between ancestral viral factory and eukaryotic nucleus. Notably, Ran, DNA polymerase, and histones show molecular fossils of lateral transfer of nuclear genes between the virus and host. These results suggest viral innovation in the emergence of the eukaryotic nucleus. According to these results, a new scenario explaining the origin of the eukaryotic nucleus from the perspective of viral participation is proposed. This new scenario could substantially impact the study of eukaryogenesis and stimulate further discussion about viral contributions to the evolution of the eukaryotic nucleus.
Collapse
Affiliation(s)
- Masaharu Takemura
- Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
9
|
Mahajan M, Yee B, Hägglund E, Guy L, Fuerst JA, Andersson SGE. Paralogization and New Protein Architectures in Planctomycetes Bacteria with Complex Cell Structures. Mol Biol Evol 2019; 37:1020-1040. [DOI: 10.1093/molbev/msz287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Bacteria of the phylum Planctomycetes have a unique cell plan with an elaborate intracellular membrane system, thereby resembling eukaryotic cells. The origin and evolution of these remarkable features is debated. To study the evolutionary genomics of bacteria with complex cell architectures, we have resequenced the 9.2-Mb genome of the model organism Gemmata obscuriglobus and sequenced the 10-Mb genome of G. massiliana Soil9, the 7.9-Mb genome of CJuql4, and the 6.7-Mb genome of Tuwongella immobilis, all of which belong to the family Gemmataceae. A gene flux analysis of the Planctomycetes revealed a massive emergence of novel protein families at multiple nodes within the Gemmataceae. The expanded protein families have unique multidomain architectures composed of domains that are characteristic of prokaryotes, such as the sigma factor domain of extracytoplasmic sigma factors, and domains that have proliferated in eukaryotes, such as the WD40, leucine-rich repeat, tetratricopeptide repeat and Ser/Thr kinase domains. Proteins with identifiable domains in the Gemmataceae have longer lengths and linkers than proteins in most other bacteria, and the analyses suggest that these traits were ancestrally present in the Planctomycetales. A broad comparison of protein length distribution profiles revealed an overlap between the longest proteins in prokaryotes and the shortest proteins in eukaryotes. We conclude that the many similarities between proteins in the Planctomycetales and the eukaryotes are due to convergent evolution and that there is no strict boundary between prokaryotes and eukaryotes with regard to features such as gene paralogy, protein length, and protein domain composition patterns.
Collapse
Affiliation(s)
- Mayank Mahajan
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Benjamin Yee
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Emil Hägglund
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Lionel Guy
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - John A Fuerst
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Siv G E Andersson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Shiratori T, Suzuki S, Kakizawa Y, Ishida KI. Phagocytosis-like cell engulfment by a planctomycete bacterium. Nat Commun 2019; 10:5529. [PMID: 31827088 PMCID: PMC6906331 DOI: 10.1038/s41467-019-13499-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022] Open
Abstract
Phagocytosis is a key eukaryotic feature, conserved from unicellular protists to animals, that enabled eukaryotes to feed on other organisms. It could also be a driving force behind endosymbiosis, a process by which α-proteobacteria and cyanobacteria evolved into mitochondria and plastids, respectively. Here we describe a planctomycete bacterium, 'Candidatus Uab amorphum', which is able to engulf other bacteria and small eukaryotic cells through a phagocytosis-like mechanism. Observations via light and electron microscopy suggest that this bacterium digests prey cells in specific compartments. With the possible exception of a gene encoding an actin-like protein, analysis of the 'Ca. Uab amorphum' genomic sequence does not reveal any genes homologous to eukaryotic phagocytosis genes, suggesting that cell engulfment in this microorganism is probably not homologous to eukaryotic phagocytosis. The discovery of this "phagotrophic" bacterium expands our understanding of the cellular complexity of prokaryotes, and may be relevant to the origin of eukaryotic cells.
Collapse
Affiliation(s)
- Takashi Shiratori
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-0053, Japan.
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan.
| | - Shigekatsu Suzuki
- National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-0053, Japan
| | - Yukako Kakizawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-0053, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-0053, Japan
| |
Collapse
|
11
|
Poole AM, Hendrickson HL. Response: Commentary: Manifold Routes to a Nucleus. Front Microbiol 2019; 10:2585. [PMID: 31781075 PMCID: PMC6857541 DOI: 10.3389/fmicb.2019.02585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/24/2019] [Indexed: 11/18/2022] Open
Affiliation(s)
- Anthony M Poole
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Heather L Hendrickson
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| |
Collapse
|
12
|
Kaboré OD, Aghnatios R, Godreuil S, Drancourt M. Escherichia coli Culture Filtrate Enhances the Growth of Gemmata spp. Front Microbiol 2019; 10:2552. [PMID: 31781064 PMCID: PMC6851166 DOI: 10.3389/fmicb.2019.02552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/22/2019] [Indexed: 12/05/2022] Open
Abstract
Background Planctomycetes bacteria are known to be difficult to isolate, we hypothesized this may be due to missing iron compounds known to be important for other bacteria. We tested the growth-enhancement effect of complementing two standard media with Escherichia coli culture filtrate on two cultured strains of Gemmata spp. Also, the acquisition of iron by Gemmata spp. was evaluated by measuring various molecules involved in iron metabolism. Materials and Methods Gemmata obscuriglobus and Gemmata massiliana were cultured in Caulobacter and Staley’s medium supplemented or not with E. coli culture filtrate, likely containing siderophores and extracellular ferrireductases. We performed iron metabolism studies with FeSO4, FeCl3 and deferoxamine in the cultures with the E. coli filtrate and the controls. Results and Discussion The numbers of G. obscuriglobus and G. massiliana colonies on Caulobacter medium or Staley’s medium supplemented with E. coli culture filtrate were significantly higher than those on the standard medium (p < 0.0001). Agar plate assays revealed that the Gemmata colonies near E. coli colonies were larger than the more distant colonies, suggesting the diffusion of unknown growth promoting molecules. The inclusion of 10–4 to 10–3 M FeSO4 resulted in rapid Gemmata spp. growth (4–5 days compared with 8–9 days for the controls), suggesting that both species can utilize FeSO4 to boost their growth. In contrast, deferoxamine slowed down and prevented Gemmata spp. growth. Further studies revealed that the complementation of Caulobacter medium with E. coli culture filtrate and 10–4 M FeSO4 exerted a significant growth-enhancement effect compared with that obtained with Caulobacter medium supplemented with E. coli culture filtrate alone (p < 0.0122). Moreover, the intracellular iron concentrations in G. obscuriglobus and G. massiliana cultures in iron-depleted broth supplemented with the E. coli filtrate were 0.63 ± 0.16 and 0.78 ± 0.12 μmol/L, respectively, whereas concentrations of 1.72 ± 0.13 and 1.56± 0.11 μmol/L were found in the G. obscuriglobus and G. massiliana cultures grown in broth supplemented with the E. coli filtrate and FeSO4. The data reported here indicated that both E. coli culture filtrate and FeSO4 act as growth factors for Gemmata spp. via a potentiation mechanism.
Collapse
Affiliation(s)
- Odilon D Kaboré
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Rita Aghnatios
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Sylvain Godreuil
- Département de Bactériologie-Virologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Michel Drancourt
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
13
|
Jogler C, Wiegand S, Devos DP. Commentary: Manifold Routes to a Nucleus. Front Microbiol 2019; 10:1198. [PMID: 31214141 PMCID: PMC6554331 DOI: 10.3389/fmicb.2019.01198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christian Jogler
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Sandra Wiegand
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| |
Collapse
|
14
|
Gudde LR, Hulce M, Largen AH, Franke JD. Sterol synthesis is essential for viability in the planctomycete bacterium Gemmata obscuriglobus. FEMS Microbiol Lett 2019; 366:5304612. [DOI: 10.1093/femsle/fnz019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Luke R Gudde
- Department of Biology, Creighton University, Hixson-Leid Science Building Room 403, 2500 California Plaza, Omaha, NE 68178, USA
| | - Martin Hulce
- Department of Chemistry, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Alexander H Largen
- Department of Biology, Creighton University, Hixson-Leid Science Building Room 403, 2500 California Plaza, Omaha, NE 68178, USA
| | - Josef D Franke
- Department of Biology, Creighton University, Hixson-Leid Science Building Room 403, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
15
|
Abstract
It is widely assumed that there is a clear distinction between eukaryotes, with cell nuclei, and prokaryotes, which lack nuclei. This suggests the evolution of nuclear compartmentation is a singular event. However, emerging knowledge of the diversity of bacterial internal cell structures suggests the picture may not be as black-and-white as previously thought. For instance, some members of the bacterial PVC superphylum appear to have nucleus-like compartmentation, where transcription and translation are physically separated, and some jumbophages have recently been shown to create nucleus-like structures within their Pseudomonad hosts. Moreover, there is also tantalizing metagenomic identification of new Archaea that carry homologs of genes associated with internal cell membrane structure in eukaryotes. All these cases invite comparison with eukaryote cell biology. While the bacterial cases of genetic compartmentation are likely convergent, and thus viewed by many as not germane to the question of eukaryote origins, we argue here that, in addressing the broader question of the evolution of compartmentation, other instances are at least as important: they provide us with a point of comparison which is critical for a more general understanding of both the conditions favoring the emergence of intracellular compartmentation of DNA and the evolutionary consequences of such cellular architecture. Finally, we consider three classes of explanation for the emergence of compartmentation: physical protection, crosstalk avoidance and nonadaptive origins.
Collapse
Affiliation(s)
- Heather L. Hendrickson
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Anthony M. Poole
- Bioinformatics Institute, The University of Auckland, Auckland, New Zealand
- Te Ao Mârama/Centre for Fundamental Inquiry, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Franke JD, Blomberg WR, Todd RT, Thomas RW, Selmecki AM. Assembly of a complete genome sequence for Gemmata obscuriglobus reveals a novel prokaryotic rRNA operon gene architecture. Antonie van Leeuwenhoek 2018; 111:2095-2105. [DOI: 10.1007/s10482-018-1102-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/16/2018] [Indexed: 11/28/2022]
|
17
|
Development of a chemically-defined minimal medium for studies on growth and protein uptake of Gemmata obscuriglobus. J Microbiol Methods 2017; 145:40-46. [PMID: 29292201 DOI: 10.1016/j.mimet.2017.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 11/21/2022]
Abstract
We experimentally determined minimal media requirements for Gemmata obscuriglobus, a Gram-negative Planctomycete bacteria with several unusual physiological features. We find that supplementing media with the usual vitamins solution does not improve viability, but does result in an increased growth rate in liquid cultures and a larger colony size on agar plates. By systematically including individual vitamins, or omitting individual vitamins, from media we find that the addition of only two vitamins, biotin and cyanocobalamin, are sufficient to restore colony growth to comparable rates as other commonly used media. Overall, our findings define minimal media requirements for the culturing of this low-nutrient organism. One of G. obscuriglobus unusual physiological features is the ability to internalize fully-folded proteins. Using fluorescence microscopy and flow cytometery we show that this physiological behavior is dependent on media state and composition. The percentage of cells exhibiting internalization of GFP when grown on a particular, solid minimal medium is far greater than cells grown in liquid medium of similar composition or other solid media with different compositions.
Collapse
|
18
|
Marinho MC, Lage OM, Catita J, Antunes SC. Adequacy of planctomycetes as supplementary food source for Daphnia magna. Antonie van Leeuwenhoek 2017; 111:825-840. [PMID: 29222603 DOI: 10.1007/s10482-017-0997-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/01/2017] [Indexed: 11/30/2022]
Abstract
The nutritional quality of daphnids diet can influence their growth, reproduction and survival. In aquatic ecosystems, bacteria can contribute significantly to Daphnia diet by supporting, for instances, their high needs for phosphorus. The laboratory feeding of the model organisms Daphnia spp. is algal based, but should be improved to allow their better performance. The aim of this study was to evaluate the potential of two planctomycetes, Gemmata obscuriglobus and Rhodopirellula rubra, from exponential and stationary growth phases as alternative or supplementary food source for Daphnia magna. The actinobacterium Arthrobacter sp. was used for comparison. The feeding with only bacteria showed the inefficacy of both planctomycetes and actinobacteria as the only food source. However, when used in supplement to Raphidocelis subcapitata, a decrease in the age of first reproduction, a significant increase in reproductive output, in somatic growth and in rate of population increase was found for the highest cell densities of bacteria tested. The typical pink coloration of these bacteria present in daphnids body and eggs confirmed bacterial absorption and metabolization of their pigment. Planctomycetes yielded better results than the actinobacteria Arthrobacter but G. obscuriglobus that possesses sterols did not induce a better performance comparatively to R. rubra. No relation could be established between the feeding treatments that allowed improvement of Daphnia performance and the different kind of Daphnia' Fatty Acid Methyl Esters. The use of sonication to separate planctomycetal cells before feeding the daphnids proved to be efficient. We confirmed that R. subcapitata supplemented by bacteria allows a better growth performance of D. magna.
Collapse
Affiliation(s)
- M C Marinho
- Departamento de Biologia da Faculdade de Ciências da, Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - O M Lage
- Departamento de Biologia da Faculdade de Ciências da, Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007, Porto, Portugal. .,Centro Interdisciplinar de Investigação Marinha e A8 Ambiental (CIIMAR/CIMAR), Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| | - José Catita
- Paralab, SA, Valbom, Portugal.,CEBIMED - Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - S C Antunes
- Departamento de Biologia da Faculdade de Ciências da, Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.,Centro Interdisciplinar de Investigação Marinha e A8 Ambiental (CIIMAR/CIMAR), Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| |
Collapse
|
19
|
Feijoo-Siota L, Rama JLR, Sánchez-Pérez A, Villa TG. Considerations on bacterial nucleoids. Appl Microbiol Biotechnol 2017; 101:5591-5602. [PMID: 28664324 DOI: 10.1007/s00253-017-8381-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022]
Abstract
The classic genome organization of the bacterial chromosome is normally envisaged with all its genetic markers linked, thus forming a closed genetic circle of duplex stranded DNA (dsDNA) and several proteins in what it is called as "the bacterial nucleoid." This structure may be more or less corrugated depending on the physiological state of the bacterium (i.e., resting state or active growth) and is not surrounded by a double membrane as in eukayotic cells. The universality of the closed circle model in bacteria is however slowly changing, as new data emerge in different bacterial groups such as in Planctomycetes and related microorganisms, species of Borrelia, Streptomyces, Agrobacterium, or Phytoplasma. In these and possibly other microorganisms, the existence of complex formations of intracellular membranes or linear chromosomes is typical; all of these situations contributing to weakening the current cellular organization paradigm, i.e., prokaryotic vs eukaryotic cells.
Collapse
Affiliation(s)
- Lucía Feijoo-Siota
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - José Luis R Rama
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Angeles Sánchez-Pérez
- Discipline of Physiology and Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tomás G Villa
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
20
|
Staley JT. Domain Cell Theory supports the independent evolution of the Eukarya, Bacteria and Archaea and the Nuclear Compartment Commonality hypothesis. Open Biol 2017; 7:170041. [PMID: 28659382 PMCID: PMC5493775 DOI: 10.1098/rsob.170041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/26/2017] [Indexed: 01/15/2023] Open
Abstract
In 2015, the Royal Society of London held a meeting to discuss the various hypotheses regarding the origin of the Eukarya. Although not all participants supported a hypothesis, the proposals that did fit into two broad categories: one group favoured 'Prokaryotes First' hypotheses and another addressed 'Eukaryotes First' hypotheses. Those who proposed Prokaryotes First hypotheses advocated either a fusion event between a bacterium and an archaeon that produced the first eukaryote or the direct evolution of the Eukarya from the Archaea. The Eukaryotes First proponents posit that the eukaryotes evolved initially and then, by reductive evolution, produced the Bacteria and Archaea. No mention was made of another previously published hypothesis termed the Nuclear Compartment Commonality (NuCom) hypothesis, which proposed the evolution of the Eukarya and Bacteria from nucleated ancestors (Staley 2013 Astrobiol Outreach1, 105 (doi:10.4172/2332-2519.1000105)). Evidence from two studies indicates that the nucleated Planctomycetes-Verrucomicrobia-Chlamydia superphylum members are the most ancient Bacteria known (Brochier & Philippe 2002 Nature417, 244 (doi:10.1038/417244a); Jun et al. 2010 Proc. Natl Acad. Sci. USA107, 133-138 (doi:10.1073/pnas.0913033107)). This review summarizes the evidence for the NuCom hypothesis and discusses how simple the NuCom hypothesis is in explaining eukaryote evolution relative to the other hypotheses. The philosophical importance of simplicity and its relationship to truth in hypotheses such as NuCom and Domain Cell Theory is presented. Domain Cell Theory is also proposed herein, which contends that each of the three cellular lineages of life, the Archaea, Bacteria and Eukarya domains, evolved independently, in support of the NuCom hypothesis. All other proposed hypotheses violate Domain Cell Theory because they posit the evolution of different cellular descendants from ancestral cellular types.
Collapse
Affiliation(s)
- James T Staley
- Department of Microbiology and Astrobiology Program, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
21
|
Guo M, Yang R, Huang C, Liao Q, Fan G, Sun C, Lee SMY. Evolutionary gradient of predicted nuclear localization signals (NLS)-bearing proteins in genomes of family Planctomycetaceae. BMC Microbiol 2017; 17:86. [PMID: 28376722 PMCID: PMC5381049 DOI: 10.1186/s12866-017-0981-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 03/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nuclear envelope is considered a key classification marker that distinguishes prokaryotes from eukaryotes. However, this marker does not apply to the family Planctomycetaceae, which has intracellular spaces divided by lipidic intracytoplasmic membranes (ICMs). Nuclear localization signal (NLS), a short stretch of amino acid sequence, destines to transport proteins from cytoplasm into nucleus, and is also associated with the development of nuclear envelope. We attempted to investigate the NLS motifs in Planctomycetaceae genomes to demonstrate the potential molecular transition in the development of intracellular membrane system. RESULTS In this study, we identified NLS-like motifs that have the same amino acid compositions as experimentally identified NLSs in genomes of 11 representative species of family Planctomycetaceae. A total of 15 NLS types and 170 NLS-bearing proteins were detected in the 11 strains. To determine the molecular transformation, we compared NLS-bearing protein abundances in the 11 representative Planctomycetaceae genomes with them in genomes of 16 taxonomically varied microorganisms: nine bacteria, two archaea and five fungi. In the 27 strains, 29 NLS types and 1101 NLS-bearing proteins were identified, principal component analysis showed a significant transitional gradient from bacteria to Planctomycetaceae to fungi on their NLS-bearing protein abundance profiles. Then, we clustered the 993 non-redundant NLS-bearing proteins into 181 families and annotated their involved metabolic pathways. Afterwards, we aligned the ten types of NLS motifs from the 13 families containing NLS-bearing proteins among bacteria, Planctomycetaceae or fungi, considering their diversity, length and origin. A transition towards increased complexity from non-planctomycete bacteria to Planctomycetaceae to archaea and fungi was detected based on the complexity of the 10 types of NLS-like motifs in the 13 NLS-bearing proteins families. CONCLUSION The results of this study reveal that Planctomycetaceae separates slightly from the members of non-planctomycete bacteria but still has substantial differences from fungi, based on the NLS-like motifs and NLS-bearing protein analysis.
Collapse
Affiliation(s)
- Min Guo
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chen Huang
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qiwen Liao
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guangyi Fan
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chenghang Sun
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
22
|
Sagulenko E, Nouwens A, Webb RI, Green K, Yee B, Morgan G, Leis A, Lee KC, Butler MK, Chia N, Pham UTP, Lindgreen S, Catchpole R, Poole AM, Fuerst JA. Nuclear Pore-Like Structures in a Compartmentalized Bacterium. PLoS One 2017; 12:e0169432. [PMID: 28146565 PMCID: PMC5287468 DOI: 10.1371/journal.pone.0169432] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/02/2016] [Indexed: 01/02/2023] Open
Abstract
Planctomycetes are distinguished from other Bacteria by compartmentalization of cells via internal membranes, interpretation of which has been subject to recent debate regarding potential relations to Gram-negative cell structure. In our interpretation of the available data, the planctomycete Gemmata obscuriglobus contains a nuclear body compartment, and thus possesses a type of cell organization with parallels to the eukaryote nucleus. Here we show that pore-like structures occur in internal membranes of G.obscuriglobus and that they have elements structurally similar to eukaryote nuclear pores, including a basket, ring-spoke structure, and eight-fold rotational symmetry. Bioinformatic analysis of proteomic data reveals that some of the G. obscuriglobus proteins associated with pore-containing membranes possess structural domains found in eukaryote nuclear pore complexes. Moreover, immunogold labelling demonstrates localization of one such protein, containing a β-propeller domain, specifically to the G. obscuriglobus pore-like structures. Finding bacterial pores within internal cell membranes and with structural similarities to eukaryote nuclear pore complexes raises the dual possibilities of either hitherto undetected homology or stunning evolutionary convergence.
Collapse
Affiliation(s)
- Evgeny Sagulenko
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Richard I. Webb
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Kathryn Green
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin Yee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Garry Morgan
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew Leis
- CSIRO - Livestock Industries, Australian Animal Health Laboratory, Biosecurity Microscopy Facility (ABMF), Geelong, Victoria, Australia
| | - Kuo-Chang Lee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Margaret K. Butler
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Chia
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Uyen Thi Phuong Pham
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Stinus Lindgreen
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Ryan Catchpole
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Anthony M. Poole
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Allan Wilson Centre, University of Canterbury, Christchurch, New Zealand
- Bioinformatics Institute, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - John A. Fuerst
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
23
|
Staley JT, Fuerst JA. Ancient, highly conserved proteins from a LUCA with complex cell biology provide evidence in support of the nuclear compartment commonality (NuCom) hypothesis. Res Microbiol 2017; 168:395-412. [PMID: 28111289 DOI: 10.1016/j.resmic.2017.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 12/23/2022]
Abstract
The nuclear compartment commonality (NuCom) hypothesis posits a complex last common ancestor (LUCA) with membranous compartments including a nuclear membrane. Such a LUCA then evolved to produce two nucleated lineages of the tree of life: the Planctomycetes-Verrucomicrobia-Chlamydia superphylum (PVC) within the Bacteria, and the Eukarya. We propose that a group of ancient essential protokaryotic signature proteins (PSPs) originating in LUCA were incorporated into ancestors of PVC Bacteria and Eukarya. Tubulins, ubiquitin system enzymes and sterol-synthesizing enzymes are consistent with early origins of these features shared between the PVC superphylum and Eukarya.
Collapse
Affiliation(s)
- James T Staley
- Department of Microbiology and Astrobiology Program, University of Washington, Seattle 98195, USA
| | - John A Fuerst
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
24
|
Rivas-Marín E, Canosa I, Devos DP. Evolutionary Cell Biology of Division Mode in the Bacterial Planctomycetes- Verrucomicrobia- Chlamydiae Superphylum. Front Microbiol 2016; 7:1964. [PMID: 28018303 PMCID: PMC5147048 DOI: 10.3389/fmicb.2016.01964] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/23/2016] [Indexed: 11/30/2022] Open
Abstract
Bacteria from the Planctomycetes, Verrucomicrobia, and Chlamydiae (PVC) superphylum are exceptions to the otherwise dominant mode of division by binary fission, which is based on the interaction between the FtsZ protein and the peptidoglycan (PG) biosynthesis machinery. Some PVC bacteria are deprived of the FtsZ protein and were also thought to lack PG. How these bacteria divide is still one of the major mysteries of microbiology. The presence of PG has recently been revealed in Planctomycetes and Chlamydiae, and proteins related to PG synthesis have been shown to be implicated in the division process in Chlamydiae, providing important insights into PVC mechanisms of division. Here, we review the historical lack of observation of PG in PVC bacteria, its recent detection in two phyla and its involvement in chlamydial cell division. Based on the detection of PG-related proteins in PVC proteomes, we consider the possible evolution of the diverse division mechanisms in these bacteria. We conclude by summarizing what is known and what remains to be understood about the evolutionary cell biology of PVC division modes.
Collapse
Affiliation(s)
- Elena Rivas-Marín
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide Seville, Spain
| | - Inés Canosa
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide Seville, Spain
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide Seville, Spain
| |
Collapse
|
25
|
Rivera-Perez JI, Santiago-Rodriguez TM, Toranzos GA. Paleomicrobiology: a Snapshot of Ancient Microbes and Approaches to Forensic Microbiology. Microbiol Spectr 2016; 4:10.1128/microbiolspec.EMF-0006-2015. [PMID: 27726770 PMCID: PMC5287379 DOI: 10.1128/microbiolspec.emf-0006-2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 01/14/2023] Open
Abstract
Paleomicrobiology, or the study of ancient microorganisms, has raised both fascination and skepticism for many years. While paleomicrobiology is not a recent field, the application of emerging techniques, such as DNA sequencing, is proving essential and has provided novel information regarding the evolution of viruses, antibiotic resistance, saprophytes, and pathogens, as well as ancient health and disease status, cultural customs, ethnic diets, and historical events. In this review, we highlight the importance of studying ancient microbial DNA, its contributions to current knowledge, and the role that forensic paleomicrobiology has played in deciphering historical enigmas. We also discuss the emerging techniques used to study the microbial composition of ancient samples as well as major concerns that accompany ancient DNA analyses.
Collapse
|
26
|
Mahat R, Seebart C, Basile F, Ward NL. Global and Targeted Lipid Analysis of Gemmata obscuriglobus Reveals the Presence of Lipopolysaccharide, a Signature of the Classical Gram-Negative Outer Membrane. J Bacteriol 2016; 198:221-36. [PMID: 26483522 PMCID: PMC4751799 DOI: 10.1128/jb.00517-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/10/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Planctomycete bacteria possess many unusual cellular properties, contributing to a cell plan long considered to be unique among the bacteria. However, data from recent studies are more consistent with a modified Gram-negative cell plan. A key feature of the Gram-negative plan is the presence of an outer membrane (OM), for which lipopolysaccharide (LPS) is a signature molecule. Despite genomic evidence for an OM in planctomycetes, no biochemical verification has been reported. We attempted to detect and characterize LPS in the planctomycete Gemmata obscuriglobus. We obtained direct evidence for LPS and lipid A using electrophoresis and differential staining. Gas chromatography-mass spectrometry (GC-MS) compositional analysis of LPS extracts identified eight different 3-hydroxy fatty acids (3-HOFAs), 2-keto 3-deoxy-d-manno-octulosonic acid (Kdo), glucosamine, and hexose and heptose sugars, a chemical profile unique to Gram-negative LPS. Combined with molecular/structural information collected from matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS analysis of putative intact lipid A, these data led us to propose a heterogeneous hexa-acylated lipid A structure (multiple-lipid A species). We also confirmed previous reports of G. obscuriglobus whole-cell fatty acid (FA) and sterol compositions and detected a novel polyunsaturated FA (PUFA). Our confirmation of LPS, and by implication an OM, in G. obscuriglobus raises the possibility that other planctomycetes possess an OM. The pursuit of this question, together with studies of the structural connections between planctomycete LPS and peptidoglycans, will shed more light on what appears to be a planctomycete variation on the Gram-negative cell plan. IMPORTANCE Bacterial species are classified as Gram positive or negative based on their cell envelope structure. For 25 years, the envelope of planctomycete bacteria has been considered a unique exception, as it lacks peptidoglycan and an outer membrane (OM). However, the very recent detection of peptidoglycan in planctomycete species has provided evidence for a more conventional cell wall and raised questions about other elements of the cell envelope. Here, we report direct evidence of lipopolysaccharide in the planctomycete G. obscuriglobus, suggesting the presence of an OM and supporting the proposal that the planctomycete cell envelope is an extension of the canonical Gram-negative plan. This interpretation features a convoluted cytoplasmic membrane and expanded periplasmic space, the functions of which provide an intriguing avenue for future investigation.
Collapse
Affiliation(s)
- Rajendra Mahat
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| | - Corrine Seebart
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | - Franco Basile
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| | - Naomi L Ward
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
27
|
Kamneva OK, Poudel S, Ward NL. Proteins Related to the Type I Secretion System Are Associated with Secondary SecA_DEAD Domain Proteins in Some Species of Planctomycetes, Verrucomicrobia, Proteobacteria, Nitrospirae and Chlorobi. PLoS One 2015; 10:e0129066. [PMID: 26030905 PMCID: PMC4452313 DOI: 10.1371/journal.pone.0129066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 05/04/2015] [Indexed: 01/09/2023] Open
Abstract
A number of bacteria belonging to the PVC (Planctomycetes-Verrucomicrobia-Chlamydiae) super-phylum contain unusual ribosome-bearing intracellular membranes. The evolutionary origins and functions of these membranes are unknown. Some proteins putatively associated with the presence of intracellular membranes in PVC bacteria contain signal peptides. Signal peptides mark proteins for translocation across the cytoplasmic membrane in prokaryotes, and the membrane of the endoplasmic reticulum in eukaryotes, by highly conserved Sec machinery. This suggests that proteins might be targeted to intracellular membranes in PVC bacteria via the Sec pathway. Here, we show that canonical signal peptides are significantly over-represented in proteins preferentially present in PVC bacteria possessing intracellular membranes, indicating involvement of Sec translocase in their cellular targeting. We also characterized Sec proteins using comparative genomics approaches, focusing on the PVC super-phylum. While we were unable to detect unique changes in Sec proteins conserved among membrane-bearing PVC species, we identified (1) SecA ATPase domain re-arrangements in some Planctomycetes, and (2) secondary SecA_DEAD domain proteins in the genomes of some Planctomycetes, Verrucomicrobia, Proteobacteria, Nitrospirae and Chlorobi. This is the first report of potentially duplicated SecA in Gram-negative bacteria. The phylogenetic distribution of secondary SecA_DEAD domain proteins suggests that the presence of these proteins is not related to the occurrence of PVC endomembranes. Further genomic analysis showed that secondary SecA_DEAD domain proteins are located within genomic neighborhoods that also encode three proteins possessing domains specific for the Type I secretion system.
Collapse
Affiliation(s)
- Olga K. Kamneva
- Department of Biology, Stanford University, Stanford, CA, 94305–5020, United States of America
| | - Saroj Poudel
- Computer Science Department, Montana State University, Bozeman, MT, 59717, United States of America
| | - Naomi L. Ward
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, United States of America
- Department of Botany, University of Wyoming, Laramie, WY, 82071, United States of America
- Program in Ecology, University of Wyoming, Laramie, WY, 82071, United States of America
| |
Collapse
|
28
|
van Teeseling MCF, Mesman RJ, Kuru E, Espaillat A, Cava F, Brun YV, VanNieuwenhze MS, Kartal B, van Niftrik L. Anammox Planctomycetes have a peptidoglycan cell wall. Nat Commun 2015; 6:6878. [PMID: 25962786 PMCID: PMC4432595 DOI: 10.1038/ncomms7878] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/09/2015] [Indexed: 12/11/2022] Open
Abstract
Planctomycetes are intriguing microorganisms that apparently lack peptidoglycan, a structure that controls the shape and integrity of almost all bacterial cells. Therefore, the planctomycetal cell envelope is considered exceptional and their cell plan uniquely compartmentalized. Anaerobic ammonium-oxidizing (anammox) Planctomycetes play a key role in the global nitrogen cycle by releasing fixed nitrogen back to the atmosphere as N2. Here using a complementary array of state-of-the-art techniques including continuous culturing, cryo-transmission electron microscopy, peptidoglycan-specific probes and muropeptide analysis, we show that the anammox bacterium Kuenenia stuttgartiensis contains peptidoglycan. On the basis of the thickness, composition and location of peptidoglycan in K. stuttgartiensis, we propose to redefine Planctomycetes as Gram-negative bacteria. Our results demonstrate that Planctomycetes are not an exception to the universal presence of peptidoglycan in bacteria. Planctomycetes are unusual bacteria with complex intracellular compartments and an apparent lack of peptidoglycan in their cell walls. Here, van Teeseling et al. show that the cell wall of an anammox planctomycete does contain peptidoglycan, and propose to redefine planctomycetes as Gram-negative bacteria.
Collapse
Affiliation(s)
- Muriel C F van Teeseling
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Rob J Mesman
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Erkin Kuru
- Interdisciplinary Biochemistry Program, Indiana University, Bloomington, Indiana 47405, USA
| | - Akbar Espaillat
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå SE-90187, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå SE-90187, Sweden
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | - Boran Kartal
- 1] Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen 6525AJ, The Netherlands [2] Department of Biochemistry and Microbiology, Laboratory of Microbiology, Gent University, Gent 9000, Belgium
| | - Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen 6525AJ, The Netherlands
| |
Collapse
|
29
|
Kletzin A, Heimerl T, Flechsler J, van Niftrik L, Rachel R, Klingl A. Cytochromes c in Archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis. Front Microbiol 2015; 6:439. [PMID: 26029183 PMCID: PMC4429474 DOI: 10.3389/fmicb.2015.00439] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/23/2015] [Indexed: 01/25/2023] Open
Abstract
Cytochromes c (Cytc) are widespread electron transfer proteins and important enzymes in the global nitrogen and sulfur cycles. The distribution of Cytc in more than 300 archaeal proteomes deduced from sequence was analyzed with computational methods including pattern and similarity searches, secondary and tertiary structure prediction. Two hundred and fifty-eight predicted Cytc (with single, double, or multiple heme c attachment sites) were found in some but not all species of the Desulfurococcales, Thermoproteales, Archaeoglobales, Methanosarcinales, Halobacteriales, and in two single-cell genome sequences of the Thermoplasmatales, all of them Cren- or Euryarchaeota. Other archaeal phyla including the Thaumarchaeota are so far free of these proteins. The archaeal Cytc sequences were bundled into 54 clusters of mutual similarity, some of which were specific for Archaea while others had homologs in the Bacteria. The cytochrome c maturation system I (CCM) was the only one found. The highest number and variability of Cytc were present in those species with known or predicted metal oxidation and/or reduction capabilities. Paradoxical findings were made in the haloarchaea: several Cytc had been purified biochemically but corresponding proteins were not found in the proteomes. The results are discussed with emphasis on cell morphologies and envelopes and especially for double-membraned Archaea-like Ignicoccus hospitalis. A comparison is made with compartmentalized bacteria such as the Planctomycetes of the Anammox group with a focus on the putative localization and roles of the Cytc and other electron transport proteins.
Collapse
Affiliation(s)
- Arnulf Kletzin
- Department of Biology, Sulfur Biochemistry and Microbial Bioenergetics, Technische Universität Darmstadt Darmstadt, Germany
| | - Thomas Heimerl
- Fakultät für Biologie und Vorklinische Medizin, Zentrum für Elektronenmikroskopie, Universität Regensburg Regensburg, Germany
| | - Jennifer Flechsler
- Fakultät für Biologie und Vorklinische Medizin, Zentrum für Elektronenmikroskopie, Universität Regensburg Regensburg, Germany
| | - Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen Nijmegen, Netherlands
| | - Reinhard Rachel
- Fakultät für Biologie und Vorklinische Medizin, Zentrum für Elektronenmikroskopie, Universität Regensburg Regensburg, Germany
| | - Andreas Klingl
- Department of Biology I, Plant Development, Biocenter LMU Munich Planegg-Martinsried, Germany
| |
Collapse
|
30
|
Lyons NA, Kolter R. On the evolution of bacterial multicellularity. Curr Opin Microbiol 2015; 24:21-8. [PMID: 25597443 DOI: 10.1016/j.mib.2014.12.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/10/2014] [Accepted: 12/30/2014] [Indexed: 01/17/2023]
Abstract
Multicellularity is one of the most prevalent evolutionary innovations and nowhere is this more apparent than in the bacterial world, which contains many examples of multicellular organisms in a surprising array of forms. Due to their experimental accessibility and the large and diverse genomic data available, bacteria enable us to probe fundamental aspects of the origins of multicellularity. Here we discuss examples of multicellular behaviors in bacteria, the selective pressures that may have led to their evolution, possible origins and intermediate stages, and whether the ubiquity of apparently convergent multicellular forms argues for its inevitability.
Collapse
Affiliation(s)
- Nicholas A Lyons
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Roberto Kolter
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| |
Collapse
|
31
|
Spatially segregated transcription and translation in cells of the endomembrane-containing bacterium Gemmata obscuriglobus. Proc Natl Acad Sci U S A 2014; 111:11067-72. [PMID: 25024214 DOI: 10.1073/pnas.1409187111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dogma of coupled transcription and translation in bacteria has been challenged by recent reports of spatial segregation of these processes within the relatively simple cellular organization of the model organisms Escherichia coli and Bacillus subtilis. The bacterial species Gemmata obscuriglobus possesses an extensive endomembrane system. The membranes generate a very convoluted intracellular architecture in which some of the cell's ribosomes appear to have less direct access to the cell's nucleoid(s) than others. This observation prompted us to test the hypothesis that a substantial proportion of G. obscuriglobus translation may be spatially segregated from transcription. Using immunofluorescence and immunoelectron microscopy, we showed that translating ribosomes are localized throughout the cell, with a quantitatively greater proportion found in regions distal to nucleoid(s). Our results extend information about the phylogenetic and morphological diversity of bacteria in which the spatial organization of transcription and translation has been studied. These findings also suggest that endomembranes may provide an obstacle to colocated transcription and translation, a role for endomembranes that has not been reported previously for a prokaryotic organism. Our studies of G. obscuriglobus may provide a useful background for consideration of the evolutionary development of eukaryotic cellular complexity and how it led to decoupled processes of gene expression in eukaryotes.
Collapse
|