1
|
Kupczyk D, Bilski R, Szeleszczuk Ł, Mądra-Gackowska K, Studzińska R. The Role of Diet in Modulating Inflammation and Oxidative Stress in Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis. Nutrients 2025; 17:1603. [PMID: 40362911 PMCID: PMC12073256 DOI: 10.3390/nu17091603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Rheumatic diseases such as rheumatoid arthritis (RA), ankylosing spondylitis (AS), and psoriatic arthritis (PsA) are chronic autoimmune disorders characterized by persistent inflammation and oxidative stress, leading to joint damage and reduced quality of life. In recent years, increasing attention has been given to diet as a modifiable environmental factor that can complement pharmacological therapy. This review summarizes current evidence on how key dietary components-such as omega-3 fatty acids, fiber, polyphenols, and antioxidant vitamins-affect inflammatory pathways and oxidative balance. Special emphasis is placed on the Mediterranean diet, low-starch diets, and hypocaloric regimens, which have shown potential in improving disease activity. The gut microbiota emerges as a critical mediator between diet and immune function, with dietary interventions capable of restoring eubiosis and strengthening the intestinal barrier. Additionally, this paper discusses challenges in the clinical implementation of diet therapy, the need for personalized nutritional strategies, and the importance of integrating diet into holistic patient care. Collectively, findings suggest that dietary interventions may reduce disease activity, mitigate systemic inflammation, and enhance patients' overall well-being.
Collapse
Affiliation(s)
- Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Rafał Bilski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-093 Warsaw, Poland;
| | - Katarzyna Mądra-Gackowska
- Department of Geriatrics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 Skłodowskiej Curie Str., 85-094 Bydgoszcz, Poland;
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland;
| |
Collapse
|
2
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Hosseini NM, Valian N, Esfahaniani M, Nabi Afjadi M. Promising potential effects of resveratrol on oral and dental health maintenance: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1367-1389. [PMID: 39305330 DOI: 10.1007/s00210-024-03457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/24/2024] [Indexed: 02/14/2025]
Abstract
Resveratrol (RV-3, 5, 4'-trihydroxystilbene) is a natural compound found in plants like red grapes, berries, and peanuts, with promising effects on dental health. It helps strengthen tooth enamel by promoting remineralization, making the teeth more resistant to decay caused by acid-producing bacteria. RV also shields dentin, a vulnerable layer beneath the enamel, from erosion and sensitivity. Its anti-inflammatory properties can reduce inflammation associated with dental conditions such as pulpitis and endodontic diseases. Moreover, RV's antimicrobial activity inhibits the growth of bacteria involved in dental plaque and biofilm formation, preventing their accumulation on the tooth surface. This contributes to a healthier oral environment and prolongs the lifespan of dental restorative materials. However, the research on RV's impact on dental health is in its early stages, and further studies are needed to confirm potential benefits. Important factors such as determining the optimal dosage, understanding its bioavailability, and assessing potential side effects require further investigation. This review focuses on the important role of RV in promoting dental health. It delves into various aspects, including its impact on root health, maintenance of the dental pulp, care for tooth enamel, effectiveness of dental restorative materials, and health of dentin.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Narges Mohammad Hosseini
- Faculty of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Neda Valian
- Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Ioannidis O, Cheva A, Varnalidis I, Koutelidakis I, Papaziogas V, Christidis P, Anestiadou E, Aggelopoulos K, Mantzoros I, Pramateftakis MG, Kotidis E, Driagka B, Aggelopoulos S, Giamarellos-Bourboulis EJ. The Combined Administration of Eicosapentaenoic Acid (EPA) and Gamma-Linolenic Acid (GLA) in Experimentally Induced Colitis: An Experimental Study in Rats. J Clin Med 2024; 13:6661. [PMID: 39597805 PMCID: PMC11594508 DOI: 10.3390/jcm13226661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Ulcerative colitis (UC) is a chronic inflammatory bowel disease with limited effective treatments, prompting the need for investigation of novel therapeutic approaches. Eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) have demonstrated potential anti-inflammatory properties, but their combined effects on UC have not been thoroughly investigated. This study aimed to evaluate the effect of the combined administration of EPA and GLA on clinical and histopathologic features of experimental UC models. Methods: Thirty-six male Wistar rats were randomized in three groups (DSS group, Ensure Plus group, and Oxepa group), with twelve rats in each group. Experimental colitis was induced by administrating dextran sulfate sodium (DSS) 8%. The DSS group received tap water, the Ensure Plus group was given a high caloric diet, and the Oxepa group received a special diet containing high levels of EPA and GLA. Disease activity index (DAI) and microscopic activity index (MAI) were measured. Inflammatory markers were calculated both in blood and large intestine, liver, spleen, and lung tissue samples. Neutrophil and macrophage populations were assessed with immunohistochemistry. Results: No significant differences in the DAI index were found between the groups, but the MAI revealed statistically significant differences (p < 0.001). While no significant differences were observed in tumor necrosis factor-alpha (TNF-α) levels, interleukin-17 (IL-17) levels in the large intestine showed statistically significant differences (p = 0.05), with the Ensure Plus and Oxepa groups displaying lower levels compared to the DSS group (p = 0.021 and p = 0.043, respectively). Significant differences in neutrophil infiltration were found in both the large intestine (p < 0.001) and lungs (p = 0.002), with the Oxepa group showing fewer cells. Similarly, significant differences in macrophage infiltration were observed in the large intestine (p = 0.038) and spleen (p < 0.001), with the Oxepa group having lower macrophage counts. Conclusions: In conclusion, the combination of EPA and GLA demonstrates local anti-inflammatory effects and improves the histopathological outcomes in UC.
Collapse
Affiliation(s)
- Orestis Ioannidis
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (I.V.); (P.C.); (E.A.); (K.A.); (I.M.); (M.G.P.); (E.K.); (B.D.); (S.A.)
| | - Angeliki Cheva
- Pathology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioannis Varnalidis
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (I.V.); (P.C.); (E.A.); (K.A.); (I.M.); (M.G.P.); (E.K.); (B.D.); (S.A.)
| | - Ioannis Koutelidakis
- 2nd Department of Surgery, G.Gennimatas General Hospital, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (I.K.); (V.P.)
| | - Vasileios Papaziogas
- 2nd Department of Surgery, G.Gennimatas General Hospital, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (I.K.); (V.P.)
| | - Panagiotis Christidis
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (I.V.); (P.C.); (E.A.); (K.A.); (I.M.); (M.G.P.); (E.K.); (B.D.); (S.A.)
| | - Elissavet Anestiadou
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (I.V.); (P.C.); (E.A.); (K.A.); (I.M.); (M.G.P.); (E.K.); (B.D.); (S.A.)
| | - Konstantinos Aggelopoulos
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (I.V.); (P.C.); (E.A.); (K.A.); (I.M.); (M.G.P.); (E.K.); (B.D.); (S.A.)
| | - Ioannis Mantzoros
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (I.V.); (P.C.); (E.A.); (K.A.); (I.M.); (M.G.P.); (E.K.); (B.D.); (S.A.)
| | - Manousos George Pramateftakis
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (I.V.); (P.C.); (E.A.); (K.A.); (I.M.); (M.G.P.); (E.K.); (B.D.); (S.A.)
| | - Efstathios Kotidis
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (I.V.); (P.C.); (E.A.); (K.A.); (I.M.); (M.G.P.); (E.K.); (B.D.); (S.A.)
| | - Barbara Driagka
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (I.V.); (P.C.); (E.A.); (K.A.); (I.M.); (M.G.P.); (E.K.); (B.D.); (S.A.)
| | - Stamatios Aggelopoulos
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (I.V.); (P.C.); (E.A.); (K.A.); (I.M.); (M.G.P.); (E.K.); (B.D.); (S.A.)
| | - Evangelos J. Giamarellos-Bourboulis
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, “Attikon” Hospital, 12462 Athens, Greece;
| |
Collapse
|
4
|
Miteva D, Kitanova M, Velikova T. Biomacromolecules as Immunomodulators: Utilizing Nature’s Tools for Immune Regulation. MACROMOL 2024; 4:610-633. [DOI: 10.3390/macromol4030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Although there are numerous available immunomodulators, those of natural origin would be preferable based on their safety profile and effectiveness. The research and clinical interest in immunomodulators have increased in the last decades, especially in the immunomodulatory properties of plant-based therapies. Innovative technologies and extensive study on immunomodulatory natural products, botanicals, extracts, and active moieties with immunomodulatory potential could provide us with valuable entities to develop as novel immunomodulatory medicines to enhance current chemotherapies. This review focuses on plant-based immunomodulatory drugs that are currently in clinical studies. However, further studies in this area are of utmost importance to obtain complete information about the positive effects of medicinal plants and their chemical components and molecules as an alternative to combatting various diseases and/or prevention.
Collapse
Affiliation(s)
- Dimitrina Miteva
- Faculty of Biology, Sofia University St. Kliment Ohridski, Dragan Tzankov 8 blv., 1164 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria
| | - Meglena Kitanova
- Faculty of Biology, Sofia University St. Kliment Ohridski, Dragan Tzankov 8 blv., 1164 Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria
| |
Collapse
|
5
|
Loos JA, Franco M, Chop M, Rodriguez Rodrigues C, Cumino AC. Resveratrol against Echinococcus sp.: Discrepancies between In Vitro and In Vivo Responses. Trop Med Infect Dis 2023; 8:460. [PMID: 37888588 PMCID: PMC10610609 DOI: 10.3390/tropicalmed8100460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
In an attempt to find new anti-echinococcal drugs, resveratrol (Rsv) effectiveness against the larval stages of Echinococcus granulosus and E. multilocularis was evaluated. The in vitro effect of Rsv on parasites was assessed via optical and electron microscopy, RT-qPCR and immunohistochemistry. In vivo efficacy was evaluated in murine models of cystic (CE) and alveolar echinococcosis (AE). The impact of infection and drug treatment on the mouse bone marrow hematopoietic stem cell (HSC) population and its differentiation into dendritic cells (BMDCs) was investigated via flow cytometry and RT-qPCR. In vitro treatment with Rsv reduced E. granulosus metacestode and protoscolex viability in a concentration-dependent manner, caused ultrastructural damage, increased autophagy gene transcription, and raised Eg-Atg8 expression while suppressing Eg-TOR. However, the intraperitoneal administration of Rsv was not only ineffective, but also promoted parasite development in mice with CE and AE. In the early infection model of AE treated with Rsv, an expansion of HSCs was observed followed by their differentiation towards BMCDs. The latter showed an anti-inflammatory phenotype and reduced LPS-stimulated activation compared to control BMDCs. We suggest that Rsv ineffectiveness could have been caused by the low intracystic concentration achieved in vivo and the drug's hormetic effect, with opposite anti-parasitic and immunomodulatory responses in different doses.
Collapse
Affiliation(s)
- Julia A. Loos
- Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, Mar del Plata 7600, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina; (M.C.); (C.R.R.)
| | - Micaela Franco
- Hospital Interzonal General de Agudos “Dr. Oscar E Alende”, Mar del Plata 7600, Argentina;
| | - Maia Chop
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina; (M.C.); (C.R.R.)
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, Mar del Plata 7600, Argentina
| | - Christian Rodriguez Rodrigues
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina; (M.C.); (C.R.R.)
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, Mar del Plata 7600, Argentina
| | - Andrea C. Cumino
- Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, Mar del Plata 7600, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina; (M.C.); (C.R.R.)
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, Mar del Plata 7600, Argentina
| |
Collapse
|
6
|
Zhang W, Zhang R, Chang Z, Wang X. Resveratrol activates CD8+ T cells through IL-18 bystander activation in lung adenocarcinoma. Front Pharmacol 2022; 13:1031438. [PMCID: PMC9630476 DOI: 10.3389/fphar.2022.1031438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Resveratrol, a natural product, has demonstrated anti-tumor effects in various kinds of tumor types, including colon, breast, and pancreatic cancers. Most research has focused on the inhibitory effects of resveratrol on tumor cells themselves rather than resveratrol’s effects on tumor immunology. In this study, we found that resveratrol inhibited the growth of lung adenocarcinoma in a subcutaneous tumor model by using the β-cyclodextrin-resveratrol inclusion complex. After resveratrol treatment, the proportion of M2-like tumor-associated macrophages (TAMs) was reduced and tumor-infiltrating CD8T cells showed significantly increased activation. The results of co-culture and antibody neutralization experiments suggested that macrophage-derived IL-18 may be a key cytokine in the resveratrol anti-tumor effect of CD8T cell activation. The results of this study demonstrate a novel view of the mechanisms of resveratrol tumor suppression. This natural product could reprogram TAMs and CD8T effector cells for tumor treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Emergency and Disaster Medical Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Ruohao Zhang
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Zhiguang Chang, ; Xiaobo Wang,
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Zhiguang Chang, ; Xiaobo Wang,
| |
Collapse
|
7
|
Chawla U, Kashyap MK, Husain A. Aging and diabetes drive the COVID-19 forwards; unveiling nature and existing therapies for the treatment. Mol Cell Biochem 2021; 476:3911-3922. [PMID: 34169437 PMCID: PMC8224992 DOI: 10.1007/s11010-021-04200-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Human SARS Coronavirus-2 (SARS-CoV-2) has infected more than 170 million people worldwide and resulted in more than 3.5 million deaths so far. The infection causes Coronavirus disease (COVID-19) in people of all age groups, notably diabetic and old age people, at a higher risk of infectivity and fatality. Around 35% of the patients who have died of the disease were diabetic. The infection is associated with weakening immune response, chronic inflammation, and potential direct pancreatic impairment. There seems to be a three-way association of the SARS-CoV-2 infection with diabetes and aging. The COVID-19 infection causes metabolism complications, which may induce diabetes and accelerate aging in healthy individuals. How does diabetes elevate the likelihood of the infection is not clearly understood. we summarize mechanisms of accelerated aging in COVID-19 and diabetes, and the possible correlation of these three diseases. Various drug candidates under different stages of pre-clinical or clinical developments give us hope for the development of COVID-19 therapeutics, but there is no approved drug so far to treat this disease. Here, we explored the potential of anti-diabetic and anti-aging natural compounds for the COVID-19 treatment. We have also reviewed different therapeutic strategies with plant-based natural products that may be used to cure patients infected with SARS-CoV-2 and post-infection syndrome.
Collapse
Affiliation(s)
- Udeep Chawla
- Department of Chemistry and Biochemistry, The University of Arizona, Old Chemistry 226, Tucson, AZ, 85721, USA
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Amity Education Valley Panchgaon, Manesar (Gurugram), Haryana, India
| | - Amjad Husain
- Centre for Science & Society, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India.
- Innovation and Incubation Centre for Entrepreneurship, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India.
| |
Collapse
|
8
|
A Novel Competitive Binding Screening Assay Reveals Sennoside B as a Potent Natural Product Inhibitor of TNF-α. Biomedicines 2021; 9:biomedicines9091250. [PMID: 34572435 PMCID: PMC8465676 DOI: 10.3390/biomedicines9091250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Natural products (NPs) have played a significant role in drug discovery for diverse diseases, and numerous attempts have been made to discover promising NP inhibitors of tumor necrosis factor α (TNF-α), a major therapeutic target in autoimmune diseases. However, NP inhibitors of TNF-α, which have the potential to be developed as new drugs, have not been reported for over a decade. To facilitate the search for new promising inhibitors of TNF-α, we developed an efficient competitive binding screening assay based on analytical size exclusion chromatography coupled with liquid chromatography-tandem mass spectrometry. Application of this screening method to the NP library led to the discovery of a potent inhibitor of TNF-α, sennoside B, with an IC50 value of 0.32 µM in TNF-α induced HeLa cell toxicity assays. Surprisingly, the potency of sennoside B was 5.7-fold higher than that of the synthetic TNF-α inhibitor SPD304. Molecular docking was performed to determine the binding mode of sennoside B to TNF-α. In conclusion, we successfully developed a novel competition binding screening method to discover small molecule TNF-α inhibitors and identified the natural compound sennoside B as having exceptional potency.
Collapse
|
9
|
Hogenkamp A, Ehlers A, Garssen J, Willemsen LEM. Allergy Modulation by N-3 Long Chain Polyunsaturated Fatty Acids and Fat Soluble Nutrients of the Mediterranean Diet. Front Pharmacol 2020; 11:1244. [PMID: 32973501 PMCID: PMC7472571 DOI: 10.3389/fphar.2020.01244] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The Mediterranean diet, containing valuable nutrients such as n-3 long chain poly-unsaturated fatty acids (LCPUFAs) and other fat-soluble micronutrients, is known for its health promoting and anti-inflammatory effects. Its valuable elements might help in the battle against the rising prevalence of non-communicable diseases (NCD), including the development of allergic diseases and other (chronic) inflammatory diseases. The fat fraction of the Mediterranean diet contains bioactive fatty acids but can also serve as a matrix to dissolve and increase the uptake of fat-soluble vitamins and phytochemicals, such as luteolin, quercetin, resveratrol and lycopene with known immunomodulatory and anti-inflammatory capacities. Especially n-3 LCPUFAs such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derived from marine oils can target specific receptors or signaling cascades, act as eicosanoid precursors and/or alter membrane fluidity and lipid raft formation, hereby exhibiting anti-inflammatory properties. Beyond n-3 LCPUFAs, fat-soluble vitamins A, D, E, and K1/2 have the potential to affect pro-inflammatory signaling cascades by interacting with receptors or activating/inhibiting signaling proteins or phosphorylation in immune cells (DCs, T-cells, mast cells) involved in allergic sensitization or the elicitation/effector phase of allergic reactions. Moreover, fat-soluble plant-derived phytochemicals can manipulate signaling cascades, mostly by interacting with other receptors or signaling proteins compared to those modified by fat-soluble vitamins, suggesting potential additive or synergistic actions by applying a combination of these nutrients which are all part of the regular Mediterranean diet. Research concerning the effects of phytochemicals such as polyphenols has been hampered due to their poor bio-availability. However, their solubility and uptake are improved by applying them within the dietary fat matrix. Alternatively, they can be prepared for targeted delivery by means of pharmaceutical approaches such as encapsulation within liposomes or even unique nanoparticles. This review illuminates the molecular mechanisms of action and possible immunomodulatory effects of n-3 LCPUFAs and fat-soluble micronutrients from the Mediterranean diet in allergic disease development and allergic inflammation. This will enable us to further appreciate how to make use of the beneficial effects of n-3 LCPUFAs, fat-soluble vitamins and a selection of phytochemicals as active biological components in allergy prevention and/or symptom reduction.
Collapse
Affiliation(s)
- Astrid Hogenkamp
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Ehlers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Global Centre of Excellence Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
TNF-alpha-induced microglia activation requires miR-342: impact on NF-kB signaling and neurotoxicity. Cell Death Dis 2020; 11:415. [PMID: 32488063 PMCID: PMC7265562 DOI: 10.1038/s41419-020-2626-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/07/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022]
Abstract
Growing evidences suggest that sustained neuroinflammation, caused by microglia overactivation, is implicated in the development and aggravation of several neurological and psychiatric disorders. In some pathological conditions, microglia produce increased levels of cytotoxic and inflammatory mediators, such as tumor necrosis factor alpha (TNF-α), which can reactivate microglia in a positive feedback mechanism. However, specific molecular mediators that can be effectively targeted to control TNF-α-mediated microglia overactivation, are yet to be uncovered. In this context, we aim to identify novel TNF-α-mediated micro(mi)RNAs and to dissect their roles in microglia activation, as well as to explore their impact on the cellular communication with neurons. A miRNA microarray, followed by RT-qPCR validation, was performed on TNF-α-stimulated primary rat microglia. Gain- and loss-of-function in vitro assays and proteomic analysis were used to dissect the role of miR-342 in microglia activation. Co-cultures of microglia with hippocampal neurons, using a microfluidic system, were performed to understand the impact on neurotoxicity. Stimulation of primary rat microglia with TNF-α led to an upregulation of Nos2, Tnf, and Il1b mRNAs. In addition, ph-NF-kB p65 levels were also increased. miRNA microarray analysis followed by RT-qPCR validation revealed that TNF-α stimulation induced the upregulation of miR-342. Interestingly, miR-342 overexpression in N9 microglia was sufficient to activate the NF-kB pathway by inhibiting BAG-1, leading to increased secretion of TNF-α and IL-1β. Conversely, miR-342 inhibition led to a strong decrease in the levels of these cytokines after TNF-α activation. In fact, both TNF-α-stimulated and miR-342-overexpressing microglia drastically affected neuron viability. Remarkably, increased levels of nitrites were detected in the supernatants of these co-cultures. Globally, our findings show that miR-342 is a crucial mediator of TNF-α-mediated microglia activation and a potential target to tackle microglia-driven neuroinflammation.
Collapse
|
11
|
Raimondi L, De Luca A, Giavaresi G, Barone A, Tagliaferri P, Tassone P, Amodio N. Impact of Natural Dietary Agents on Multiple Myeloma Prevention and Treatment: Molecular Insights and Potential for Clinical Translation. Curr Med Chem 2020; 27:187-215. [PMID: 29956610 DOI: 10.2174/0929867325666180629153141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/17/2018] [Accepted: 05/08/2018] [Indexed: 01/30/2023]
Abstract
Chemoprevention is based on the use of non-toxic, pharmacologically active agents to prevent tumor progression. In this regard, natural dietary agents have been described by the most recent literature as promising tools for controlling onset and progression of malignancies. Extensive research has been so far performed to shed light on the effects of natural products on tumor growth and survival, disclosing the most relevant signal transduction pathways targeted by such compounds. Overall, anti-inflammatory, anti-oxidant and cytotoxic effects of dietary agents on tumor cells are supported either by results from epidemiological or animal studies and even by clinical trials. Multiple myeloma is a hematologic malignancy characterized by abnormal proliferation of bone marrow plasma cells and subsequent hypercalcemia, renal dysfunction, anemia, or bone disease, which remains incurable despite novel emerging therapeutic strategies. Notably, increasing evidence supports the capability of dietary natural compounds to antagonize multiple myeloma growth in preclinical models of the disease, underscoring their potential as candidate anti-cancer agents. In this review, we aim at summarizing findings on the anti-tumor activity of dietary natural products, focusing on their molecular mechanisms, which include inhibition of oncogenic signal transduction pathways and/or epigenetic modulating effects, along with their potential clinical applications against multiple myeloma and its related bone disease.
Collapse
Affiliation(s)
| | | | | | - Agnese Barone
- Hospice Cascina Brandezzata-Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine Catanzaro, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine Catanzaro, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine Catanzaro, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
12
|
Martin LM, Johnson PJ, Amorim JR, DeClue AE. Effects of Orally Administered Resveratrol on TNF, IL-1β, Leukocyte Phagocytic Activity and Oxidative Burst Function in Horses: A Prospective, Randomized, Double-Blinded, Placebo-Controlled Study. Int J Mol Sci 2020; 21:ijms21041453. [PMID: 32093379 PMCID: PMC7073105 DOI: 10.3390/ijms21041453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/27/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Resveratrol, a phytophenol, is a commonly used equine nutraceutical supplement touted to exert anti-inflammatory effects. The effect of orally administered resveratrol on tumor necrosis factor (TNF), interleukin-1β (IL-1β), leukocyte phagocytic activity or oxidative burst function have not been reported in horses. The objective of this study was to determine the effects of a commercially available, orally administered resveratrol product on innate immune functions in healthy adult horses. Whole blood was collected from 12 horses prior to and following 3 weeks of treatment with either the manufacturer’s recommended dose of resveratrol or placebo. Phagocytosis, oxidative burst and pathogen associated molecular pattern (PAMP) motif-stimulated leukocyte production of TNF and IL-1β were compared pre- and post-treatment between treatment groups. Phagocytosis and oxidative burst capacity were evaluated via flow cytometry. Tumor necrosis factor and IL-1β were measured using cytotoxicity and ELISA assays, respectively. There were no significant differences in phagocytosis, oxidative burst or stimulated TNF or IL-1β production between resveratrol and placebo treatment groups. Orally administered resveratrol at a routinely recommended dose for a duration of 3 weeks did not significantly affect phagocytic activity, oxidative burst function or PAMP-stimulated leukocyte cytokine production.
Collapse
|
13
|
Almeida AR, Bessa-Gonçalves M, Vasconcelos DM, Barbosa MA, Santos SG. Osteoclasts degrade fibrinogen scaffolds and induce mesenchymal stem/stromal osteogenic differentiation. J Biomed Mater Res A 2019; 108:851-862. [PMID: 31845492 DOI: 10.1002/jbm.a.36863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022]
Abstract
Fibrinogen (Fg) is a pro-inflammatory protein with pro-healing properties. Previous work showed that fibrinogen 3D scaffolds (Fg-3D) promote bone regeneration, but the cellular players were not identified. Osteoclasts are bone resorbing cells that promote bone remodeling in close crosstalk with osteoblasts. Herein, the capacity of osteoclasts differentiated on Fg-3D to degrade the scaffolds and promote osteoblast differentiation was evaluated in vitro. Fg-3D scaffolds were prepared by freeze-drying and osteoclasts were differentiated from primary human peripheral blood monocytes. Results obtained showed osteoclasts expressing the enzymes cathepsin K and tartrate resistant acid phosphatase colonizing Fg-3D scaffolds. Osteoclasts were able to significantly degrade Fg-3D, reducing the scaffold's area, and increasing D-dimer concentration, a Fg degradation product, in their culture media. Osteoclast conditioned media from the first week of differentiation promoted significantly stronger human primary mesenchymal stem/stromal cell (MSC) osteogenic differentiation, evaluated by alkaline phosphatase activity. Moreover, week 1 osteoclast conditioned media promoted earlier MSC osteogenic differentiation, than chemical osteogenesis inductors. TGF-β1 was found increased in osteoclast conditioned media from week 1, when compared to week 3 of differentiation. Taken together, our results suggest that osteoclasts are able to differentiate and degrade Fg-3D, producing factors like TGF-β1 that promote MSC osteogenic differentiation.
Collapse
Affiliation(s)
- Ana R Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Mafalda Bessa-Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Daniel M Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Mário A Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| |
Collapse
|
14
|
Pannu N, Bhatnagar A. Combinatorial therapeutic effect of resveratrol and piperine on murine model of systemic lupus erythematosus. Inflammopharmacology 2019; 28:401-424. [PMID: 31732838 DOI: 10.1007/s10787-019-00662-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/29/2019] [Indexed: 01/28/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multi-system inflammatory disease associated with autoantibody formation. Clinical management of lupus is associated with multiple adverse events. Resveratrol is a phytoalexin with several pharmacological properties. This study aimed to evaluate the combinatorial effect of resveratrol (25 mg/kg and 50 mg/kg) and its bio-enhancer piperine (1/10th dose of resveratrol) on pristane-induced SLE murine model. Mice were injected with 0.5 ml of pristane and after 2 months they were orally dosed with resveratrol combinations for 4 months. Determined by indirect immunofluorescence, resveratrol was unable to abrogate autoantibody formation. The increased IFN-α, IL-6 and TNF-α was mitigated by low dose of resveratrol and piperine (RP-1). None of the doses regulated the increase in nitric oxide. Lipogranulomas associated with injected pristane were not observed after RP-1 and high dose of resveratrol (Res-2) treatment. Lupus mice witnessed IgG and IgM immune complexes by direct immunofluorescence assay and associated histopathological observations in kidneys, liver, lung, spleen and skin. None of the treatment regimens were able to regulate the manifestations observed in spleen and skin. RP-1 and Res-2 proved beneficial in kidney, liver and lungs and were able to ameliorate lupus associated manifestations. Renal manifestations (proteinuria and decreased creatinine in urine) were successfully mitigated by RP-1 and Res-2 and high dose combination of resveratrol and piperine. Oxidative stress (reactive oxygen species by flowcytometry and catalase, superoxide dismutase, glutathione peroxidase, reduced glutathione and lipid peroxidation by biochemical analysis) was evident by pristane injection. These were regulated by different doses of resveratrol alone and in combination with piperine. Hence, resveratrol when used in combination with piperine successfully reduces some measures of morbidity with little or no effect on mortality associated with lupus.
Collapse
|
15
|
Jin Y, Long D, Li J, Yu R, Song Y, Fang J, Yang X, Zhou S, Huang S, Zhao Z. Extracellular vesicles in bone and tooth: A state-of-art paradigm in skeletal regeneration. J Cell Physiol 2019; 234:14838-14851. [PMID: 30847902 DOI: 10.1002/jcp.28303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/05/2023]
Abstract
Bone and tooth, fundamental parts of the craniofacial skeleton, are anatomically and developmentally interconnected structures. Notably, pathological processes in these tissues underwent together and progressed in multilevels. Extracellular vesicles (EVs) are cell-released small organelles and transfer proteins and genetic information into cells and tissues. Although EVs have been identified in bone and tooth, particularly EVs have been identified in the bone formation and resorption, the concrete roles of EVs in bone and tooth development and diseases remain elusive. As such, we review the recent progress of EVs in bone and tooth to highlight the novel findings of EVs in cellular communication, tissue homeostasis, and interventions. This will enhance our comprehension on the skeletal biology and shed new light on the modulation of skeletal disorders and the potential of genetic treatment.
Collapse
Affiliation(s)
- Ying Jin
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Long
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Juan Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Ruichao Yu
- Department of Pulmonary, Brigham and Women's Hospital, Harvard Medical School, Massachusetts
| | - Yueming Song
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xi Yang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shu Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Shishu Huang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
16
|
Blázquez-Prunera A, Almeida CR, Barbosa MA. Fibroblast growth factor improves the motility of human mesenchymal stem cells expanded in a human plasma-derived xeno-free medium through αVβ3 integrin. J Tissue Eng Regen Med 2018; 13:36-45. [PMID: 30362664 DOI: 10.1002/term.2766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 08/05/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Human mesenchymal stem cells (MSC) are being explored for cell therapies targeting varied human diseases. For that, cells are being expanded in vitro, many times with fetal bovine serum (FBS) as the main source of growth factors. However, animal-derived components should not be used, to avoid immune rejection from the patient that receives the MSC. To solve this issue, different xeno-free media are being developed, and an industrial-grade human plasma fraction (SCC) is a promising candidate to substitute FBS. Indeed, we have previously shown that MSC expanded in SCC-medium maintain their phenotype and genetic stability. However, a reduction on MSC motility was observed when comparing with MSC motility on FBS-medium. Thus, in this present study, we have tested different factors to improve the motility of MSC in SCC-medium. Time lapse assays and experiments with transwells revealed that supplementation of the xeno-free medium with FGF or PDGF, but not TNF-α or SDF-1, increased MSC motility. Interestingly, FGF and PDGF supplementation also led to alterations on MSC morphology to a shape similar to the one observed when using FBS. The mechanism behind the effect of FGF on MSC motility involved the increased expression of αVβ3 integrin. Furthermore, assays with small molecule inhibitors revealed that the signalling molecule p38 MAPK is important for MSC motility and that MEK/ERK and PI3K/AKT also have a role on FGF-supplemented expanded MSC. Thus, it was found that FGF supplementation can improve the motility of xeno-free-expanded MSC and that the cells motility is regulated by αVβ3 integrin.
Collapse
Affiliation(s)
- Arantxa Blázquez-Prunera
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Catarina R Almeida
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Department of Medical Sciences and Institute for Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Mario A Barbosa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Leitão L, Alves CJ, Alencastre IS, Sousa DM, Neto E, Conceição F, Leitão C, Aguiar P, Almeida-Porada G, Lamghari M. Bone marrow cell response after injury and during early stage of regeneration is independent of the tissue-of-injury in 2 injury models. FASEB J 2018; 33:857-872. [PMID: 30044924 DOI: 10.1096/fj.201800610rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Selectively recruiting bone marrow (BM)-derived stem and progenitor cells to injury sites is a promising therapeutic approach. The coordinated action of soluble factors is thought to trigger the mobilization of stem cells from the BM and recruit them to lesions to contribute to tissue regeneration. Nevertheless, the temporal response profile of the major cellular players and soluble factors involved in priming the BM and recruiting BM-derived cells to promote regeneration is unknown. We show that injury alters the BM cellular composition, introducing population-specific fluctuations during tissue regeneration. We demonstrate that injury causes an immediate, transient response of mesenchymal stromal cells and endothelial cells followed by a nonoverlapping increase in hematopoietic stem and progenitor cells. Moreover, BM reaction is identical whether the injury is inflicted on skin and muscle or also involves a bone defect, but these 2 injury paradigms trigger distinct systemic cytokine responses. Together, our results indicate that the BM response to injury in the early stages of regeneration is independent of the tissue-of-injury based on the 2 models used, but the injured tissue dictates the systemic cytokine response.-Leitão, L., Alves, C. J., Alencastre, I. S., Sousa, D. M., Neto, E., Conceição, F., Leitão, C., Aguiar, P., Almeida-Porada, G., Lamghari, M. Bone marrow cell response after injury and during early stage of regeneration is independent of the tissue-of-injury in 2 injury models.
Collapse
Affiliation(s)
- Luís Leitão
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Cecília J Alves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Inês S Alencastre
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Daniela M Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Estrela Neto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Francisco Conceição
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Catarina Leitão
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal; and
| | - Paulo Aguiar
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
18
|
Dendritic Cell-derived Extracellular Vesicles mediate Mesenchymal Stem/Stromal Cell recruitment. Sci Rep 2017; 7:1667. [PMID: 28490808 PMCID: PMC5431789 DOI: 10.1038/s41598-017-01809-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
Orchestration of bone repair processes requires crosstalk between different cell populations, including immune cells and mesenchymal stem/stromal cells (MSC). Extracellular vesicles (EV) as mediators of these interactions remain vastly unexplored. Here, we aimed to determine the mechanism of MSC recruitment by Dendritic Cells (DC), hypothesising that it would be mediated by EV. Primary human DC-secreted EV (DC-EV), isolated by ultracentrifugation, were characterized for their size, morphology and protein markers, indicating an enrichment in exosomes. DC-EV were readily internalized by human bone marrow-derived MSC, without impacting significantly their proliferation or influencing their osteogenic/chondrogenic differentiation. Importantly, DC-EV significantly and dose-dependently promoted MSC recruitment across a transwell system and enhanced MSC migration in a microfluidic chemotaxis assay. DC-EV content was analysed by chemokine array, indicating the presence of chemotactic mediators. Osteopontin and matrix metalloproteinase-9 were confirmed inside EV. In summary, DC-EV are naturally loaded with chemoattractants and can contribute to cell recruitment, thus inspiring the development of new tissue regeneration strategies.
Collapse
|
19
|
Almeida MI, Silva AM, Vasconcelos DM, Almeida CR, Caires H, Pinto MT, Calin GA, Santos SG, Barbosa MA. miR-195 in human primary mesenchymal stromal/stem cells regulates proliferation, osteogenesis and paracrine effect on angiogenesis. Oncotarget 2016; 7:7-22. [PMID: 26683705 PMCID: PMC4807979 DOI: 10.18632/oncotarget.6589] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/28/2015] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal Stromal/Stem Cells (MSC) are currently being explored in diverse clinical applications, including regenerative therapies. Their contribution to regeneration of bone fractures is dependent on their capacity to proliferate, undergo osteogenesis and induce angiogenesis. This study aimed to uncover microRNAs capable of concomitantly regulate these mechanisms. Following microRNA array results, we identified miR-195 and miR-497 as downregulated in human primary MSC under osteogenic differentiation. Overexpression of miR-195 or miR-497 in human primary MSC leads to a decrease in osteogenic differentiation and proliferation rate. Conversely, inhibition of miR-195 increased alkaline phosphatase expression and activity and cells proliferation. Then, miR-195 was used to study MSC capacity to recruit blood vessels in vivo. We provide evidence that the paracrine effect of MSC on angiogenesis is diminishedwhen cells over-express miR-195. VEGF may partially mediate this effect, as its expression and secreted protein levels are reduced by miR-195, while increased by anti-miR-195, in human MSC. Luciferase reporter assays revealed a direct interaction between miR-195 and VEGF 3′-UTR in bone cancer cells. In conclusion, our results suggest that miR-195 regulates important mechanisms for bone regeneration, specifically MSC osteogenic differentiation, proliferation and control of angiogenesis; therefore, it is a potential target for clinical bone regenerative therapies.
Collapse
Affiliation(s)
- Maria Ines Almeida
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
| | - Andreia Machado Silva
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Daniel Marques Vasconcelos
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Catarina Rodrigues Almeida
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
| | - Hugo Caires
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
| | - Marta Teixeira Pinto
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of University of Porto (Ipatimup), Porto, Portugal
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susana Gomes Santos
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Mário Adolfo Barbosa
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Teixeira JH, Silva AM, Almeida MI, Barbosa MA, Santos SG. Circulating extracellular vesicles: Their role in tissue repair and regeneration. Transfus Apher Sci 2016; 55:53-61. [DOI: 10.1016/j.transci.2016.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Barbosa JP, Neves AR, Silva AM, Barbosa MA, Reis MS, Santos SG. Nanostructured lipid carriers loaded with resveratrol modulate human dendritic cells. Int J Nanomedicine 2016; 11:3501-16. [PMID: 27555771 PMCID: PMC4970450 DOI: 10.2147/ijn.s108694] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) are promising targets for drug delivery, as they can induce immunity or tolerance. The current study aims to examine the potential of using nanostructured lipid carriers (NLC) as delivery systems for human DC by evaluating nanoparticle internalization, cell labeling, and drug activity. NLC were formulated incorporating the fluorochrome fluorescein isothiocyanate (FITC-NLC) or the natural anti-inflammatory molecule resveratrol (rsv-NLC). Primary human DCs were differentiated from peripheral blood monocytes, and the innovative imaging flow cytometry technique was used to examine FITC-NLC internalization. The capacity of rsv-NLC to inhibit DC activation in response to proinflammatory cytokine tumor necrosis factor-α (TNF- α) was investigated by conventional flow cytometry. A combination of imaging and conventional flow cytometry was used to assess NLC cytotoxicity. The results obtained indicate that both NLC formulations were stable over time, with mean diameter <200 nm and highly negative zeta potential (about -30 mV). When DCs were placed in contact with NLC, imaging flow cytometry clearly showed that DCs efficiently internalized FITC-NLC, with nearly 100% of cells internalizing nanoparticles upon 1 hour of incubation. Both immature and mature DCs internalized NLC to high and comparable levels, and without cytotoxicity. Stimulating DC with TNF-α in the presence of rsv-NLC revealed that, using these nanoparticles, very small concentrations of rsv were sufficient to significantly decrease surface expression of activation marker CD83 (5 µM) and major histocompatibility complex-class II molecule human leukocyte antigen - antigen D related (10 µM), both upregulated in response to TNF-α stimulation. Rsv-NLC were compared with free rsv; at 5 µM, rsv-NLC were able to inhibit nuclear factor κ beta phosphorylation and significantly decrease the level of interleukin-12/23, both upregulated in response to TNF-α, while 10 µM free rsv were needed to promote a similar effect. Taken together, the results presented show that NLC are suitable carriers of fluorescent labels or bioactive molecules for human DCs, leading to inflammation modulation.
Collapse
Affiliation(s)
- João P Barbosa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
- UCIBIO, REQUIMTE, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, Portugal
| | - Ana R Neves
- UCIBIO, REQUIMTE, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, Portugal
| | - Andreia M Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Mário A Barbosa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - M Salette Reis
- UCIBIO, REQUIMTE, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, Portugal
| | - Susana G Santos
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
| |
Collapse
|
22
|
Ali MHH, Messiha BAS, Abdel-Latif HAT. Protective effect of ursodeoxycholic acid, resveratrol, and N-acetylcysteine on nonalcoholic fatty liver disease in rats. PHARMACEUTICAL BIOLOGY 2016; 54:1198-1208. [PMID: 26134756 DOI: 10.3109/13880209.2015.1060247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Resveratrol (RSV) and N-acetylcysteine (NAC) are safe representatives of natural and synthetic antioxidants, respectively. OBJECTIVE The objective of this study was to evaluate protective effects of RSV and NAC, compared with ursodeoxycholic acid (UDCA), on experimental NAFLD. MATERIALS AND METHODS NAFLD was induced by feeding rats a methionine choline-deficient diet (MCDD) for four cycles, each of 4 d of MCDD feeding and 3 d of fasting. Animals were divided into normal control, steatosis control, and five treatment groups, receiving UDCA (25 mg/kg/d), RSV (10 mg/kg/d), NAC (20 mg/kg/d), UDCA + RSV, and UDCA + NAC orally for 28 d. Liver integrity markers (liver index and serum transaminases), serum tumor necrosis factor-α (TNF-α), glucose, albumin, renal functions (urea, creatinine), lipid profile (total cholesterol; TC, triglycerides, high density lipoproteins, low density lipoproteins; LDL-C, very low density lipoproteins, leptin), and oxidative stress markers (hepatic malondialdehyde; MDA, glutathione; GSH, glutathione-S-transferase; GST) were measured using automatic analyzer, colorimetric kits, and ELISA kits, supported by a liver histopathological study. RESULTS RSV and NAC administration significantly improved liver index (RSV only), alanine transaminase (52, 52%), TNF-α (70, 70%), glucose (69, 80%), albumin (122, 114%), MDA (55, 63%), GSH (160, 152%), GST (84, 84%), TC (86, 86%), LDL-C (83, 81%), and leptin (59, 70%) levels compared with steatosis control values. A combination of RSV or NAC with UDCA seems to ameliorate their effects. DISCUSSION AND CONCLUSION RSV and NAC are effective on NAFLD through antioxidant, anti-inflammatory, and lipid-lowering potentials, where as RSV seems better than UDCA or NAC.
Collapse
Affiliation(s)
- Mahmoud Hussein Hassan Ali
- a Department of Pharmacology and Toxicology , Faculty of Pharmacy, Beni-Sueif University , Beni-Sueif , Egypt and
| | - Basim Anwar Shehata Messiha
- a Department of Pharmacology and Toxicology , Faculty of Pharmacy, Beni-Sueif University , Beni-Sueif , Egypt and
| | | |
Collapse
|
23
|
Resveratrol reverses morphine-induced neuroinflammation in morphine-tolerant rats by reversal HDAC1 expression. J Formos Med Assoc 2016; 115:445-54. [DOI: 10.1016/j.jfma.2015.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 03/28/2015] [Accepted: 05/08/2015] [Indexed: 01/09/2023] Open
|
24
|
Nurwidya F, Damayanti T, Yunus F. The Role of Innate and Adaptive Immune Cells in the Immunopathogenesis of Chronic Obstructive Pulmonary Disease. Tuberc Respir Dis (Seoul) 2016; 79:5-13. [PMID: 26770229 PMCID: PMC4701795 DOI: 10.4046/trd.2016.79.1.5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/01/2015] [Accepted: 10/12/2015] [Indexed: 01/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic and progressive inflammatory disease of the airways and lungs that results in limitations of continuous airflow and is caused by exposure to noxious gasses and particles. A major cause of morbidity and mortality in adults, COPD is a complex disease pathologically mediated by many inflammatory pathways. Macrophages, neutrophils, dendritic cells, and CD8+ T-lymphocytes are the key inflammatory cells involved in COPD. Recently, the non-coding small RNA, micro-RNA, have also been intensively investigated and evidence suggest that it plays a role in the pathogenesis of COPD. Here, we discuss the accumulated evidence that has since revealed the role of each inflammatory cell and their involvement in the immunopathogenesis of COPD. Mechanisms of steroid resistance in COPD will also be briefly discussed.
Collapse
Affiliation(s)
- Fariz Nurwidya
- Department of Respiratory Medicine, Persahabatan General Hospital, University of Indonesia Faculty of Medicine, Jakarta, Indonesia
| | - Triya Damayanti
- Department of Respiratory Medicine, Persahabatan General Hospital, University of Indonesia Faculty of Medicine, Jakarta, Indonesia
| | - Faisal Yunus
- Department of Respiratory Medicine, Persahabatan General Hospital, University of Indonesia Faculty of Medicine, Jakarta, Indonesia
| |
Collapse
|
25
|
Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, Azmi AS, Lokeshwar BL, Grue B, Panis C, Boosani CS, Poudyal D, Stafforini DM, Bhakta D, Niccolai E, Guha G, Vasantha Rupasinghe HP, Fujii H, Honoki K, Mehta K, Aquilano K, Lowe L, Hofseth LJ, Ricciardiello L, Ciriolo MR, Singh N, Whelan RL, Chaturvedi R, Ashraf SS, Shantha Kumara HMC, Nowsheen S, Mohammed SI, Keith WN, Helferich WG, Yang X. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol 2015; 35 Suppl:S151-S184. [PMID: 25951989 PMCID: PMC4635070 DOI: 10.1016/j.semcancer.2015.03.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes.
Collapse
Affiliation(s)
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL, United States
| | - Asfar S Azmi
- Department of Pathology, Wayne State Univeristy, Karmanos Cancer Center, Detroit, MI, USA
| | - Bal L Lokeshwar
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, United States; Miami Veterans Administration Medical Center, Miami, FL, United States
| | - Brendan Grue
- Department of Environmental Science, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, State University of West Paraná, UNIOESTE, Paraná, Brazil
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Deepak Poudyal
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Diana M Stafforini
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Dipita Bhakta
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Gunjan Guha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture and Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kapil Mehta
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada.
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Richard L Whelan
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - H M C Shantha Kumara
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
26
|
Xishan Z, Bin Z, Haiyue Z, Xiaowei D, Jingwen B, Guojun Z. Jagged-2 enhances immunomodulatory activity in adipose derived mesenchymal stem cells. Sci Rep 2015; 5:14284. [PMID: 26412454 PMCID: PMC4585933 DOI: 10.1038/srep14284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/06/2015] [Indexed: 02/05/2023] Open
Abstract
Adipose derived Mesenchymal stem cells (AMSCs) are able to expand in vitro and undergo differentiation into multiple cell lineages, yet have low immunogenicity while exhibiting several immunoregulatory characteristics. We sought to investigate the immunomodulatory mechanisms of AMSCs to better understand their immunogenic properties. Following 10 days of chondrogenic differentiation or 48 hours of IFN-γ pretreatment, AMSCs retained low level immunogenicity but prominent immunoregulatory activity and AMSC immunogenicity was enhanced by chondrogenic differentiation or IFN-γ treatment. We found Jagged-2 expression was significantly elevated following chondrogenic differentiation or IFN-γ pretreatment. Jagged-2-RNA interference experiments suggested that Jagged-2-siRNA2 suppresses Jagged-2 expression during chondrogenic differentiation and in IFN-γ pretreated AMSCs. Besides, Jagged-2 interference attenuated immunosuppressive activity by mixed lymphocyte culture and mitogen stimulation experiments. So, the immunoregulatory activity of AMSCs, to some extent dependent upon Jagged-2, might be stronger after multilineage differentiation or influence from inflammatory factors. This may also be why rejection does not occur after allogeneic AMSCs differentiate into committed cells.
Collapse
Affiliation(s)
- Zhu Xishan
- The Breast Center, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Zhang Bin
- Institute of Basic medicine. Peking Union Medical College, Chinese Academy of Medical Science, China
| | - Zhao Haiyue
- Clinical department, Capital Medical University
| | - Dou Xiaowei
- The Breast Center, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Bai Jingwen
- The Breast Center, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Zhang Guojun
- The Breast Center, Cancer Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|