1
|
Goto T, Yasui M, Teramoto Y, Nagata Y, Mizushima T, Miyamoto H. Latrophilin-3 as a downstream effector of the androgen receptor induces urothelial tumorigenesis. Mol Carcinog 2024; 63:1847-1854. [PMID: 38925569 DOI: 10.1002/mc.23783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Emerging evidence indicates that androgen receptor (AR) signaling plays a critical role in the pathogenesis of male-dominant urothelial cancer. Meanwhile, latrophilins (LPHNs), a group of the G-protein-coupled receptor to which a spider venom latrotoxin is known to bind, remain largely uncharacterized in neoplastic diseases. The present study aimed to determine the functional role of LPHN3 (encoded by the ADGRL3 gene), in association with AR signaling, in urothelial tumorigenesis. In human normal urothelial SVHUC cells, AR overexpression and androgen treatment considerably increased the expression levels of ADGRL3/LPHN3, while chromatin immunoprecipitation assay revealed the binding of AR to the promoter region of ADGRL3. In SVHUC or SVHUC-AR cells with exposure to a chemical carcinogen 3-methylcholanthrene, LPHN3 activation via ligand (e.g., α-latrotoxin, FLRT3) treatment during the process of the neoplastic/malignant transformation or LPHN3 knockdown via shRNA virus infection induced or reduced, respectively, the oncogenic activity. In N-butyl-N-(4-hydroxybutyl)nitrosamine-treated female mice, α-latrotoxin or FLRT3 injection accelerated the development of bladder tumors. Immunohistochemistry in surgical specimens further showed the significantly elevated expression of LPHN3 in non-muscle-invasive bladder tumors, compared with adjacent normal urothelial tissues, which was associated with a marginally (p = 0.051) higher risk of disease recurrence after transurethral resection. In addition, positivity of LPHN3 and AR in these tumors was strongly correlated. These findings indicate that LPHN3 functions as a downstream effector of AR and promotes urothelial tumorigenesis.
Collapse
MESH Headings
- Humans
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Animals
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/chemically induced
- Urothelium/pathology
- Urothelium/metabolism
- Mice
- Receptors, Peptide/metabolism
- Receptors, Peptide/genetics
- Male
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Female
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/genetics
- Signal Transduction
- Gene Expression Regulation, Neoplastic/drug effects
- Cell Line, Tumor
Collapse
Affiliation(s)
- Takuro Goto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Masato Yasui
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Yuki Teramoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Yujiro Nagata
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Taichi Mizushima
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Urology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Chen D, Cao H, Zheng X, Wang H, Han Z, Wang W. Immune checkpoint gene signature assesses immune infiltration profiles in bladder cancer and identifies KRT23 as an immunotherapeutic target. BMC Cancer 2024; 24:1024. [PMID: 39160525 PMCID: PMC11331755 DOI: 10.1186/s12885-024-12790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND In the past few decades, researchers have made promising progress, including the development of immune checkpoint inhibitors (ICIs) in the therapy of bladder cancer (BLCA). Existing studies mainly focus on single immune checkpoint inhibitors but lack relevant studies on the gene expression profiles of multiple immune checkpoints. METHODS RNA-sequencing profiling data and clinical information of BLCA patients and normal human bladder samples were acquired from the Cancer Genome Atlas and Gene Expression Omnibus databases and analyzed to identify different expression profiles of immune checkpoint genes (ICGs) after consensus clustering analysis. Based on the 526 intersecting differentially expressed genes, the LASSO Cox regression analysis was utilized to construct the ICG signature. RESULTS According to the expression of ICGs, BLCA patients were divided into three subtypes with different phenotypic and mechanistic characteristics. Furthermore, the developed ICG signature were independent predictors of outcome in BLCA patients, and was correlated with the immune infiltration, the expression of ICGs and chemotherapeutic effect. CONCLUSIONS This study systematically and comprehensively analyzed the expression profile of immune checkpoint genes, and established the ICG signature to investigate the differences in ICGs expression and tumor immune microenvironment, which will help risk stratification and accelerate precision medicine. Finally, we identified KRT23 as the most critical model gene, and highlighted KRT23 as a potential target to enhance immunotherapy against BLCA.
Collapse
Affiliation(s)
- Dongshan Chen
- Department of Urology, Beijing Chaoyang Hospital Affiliated Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China
- Department of Urology, Qilu Hospital of Shandong University, Wenhuaxi Road #107, Jinan, 250012, China
| | - Haoyuan Cao
- Department of Urology, Beijing Chaoyang Hospital Affiliated Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China
| | - Xiang Zheng
- Department of Urology, Beijing Chaoyang Hospital Affiliated Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China
| | - Haojun Wang
- Department of Urology, Beijing Chaoyang Hospital Affiliated Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China
| | - Zengchi Han
- Department of Urology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, NO.1 Jingba Road, Shizhong District, Jinan, 250001, China.
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital Affiliated Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
3
|
Montero-Hidalgo AJ, Pérez-Gómez JM, Martínez-Fuentes AJ, Gómez-Gómez E, Gahete MD, Jiménez-Vacas JM, Luque RM. Alternative splicing in bladder cancer: potential strategies for cancer diagnosis, prognosis, and treatment. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1760. [PMID: 36063028 DOI: 10.1002/wrna.1760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 05/13/2023]
Abstract
Bladder cancer is the most common malignancy of the urinary tract worldwide. The therapeutic options to tackle this disease comprise surgery, intravesical or systemic chemotherapy, and immunotherapy. Unfortunately, a wide number of patients ultimately become resistant to these treatments and develop aggressive metastatic disease, presenting a poor prognosis. Therefore, the identification of novel therapeutic approaches to tackle this devastating pathology is urgently needed. However, a significant limitation is that the progression and drug response of bladder cancer is strongly associated with its intrinsic molecular heterogeneity. In this sense, RNA splicing is recently gaining importance as a critical hallmark of cancer since can have a significant clinical value. In fact, a profound dysregulation of the splicing process has been reported in bladder cancer, especially in the expression of certain key splicing variants and circular RNAs with a potential clinical value as diagnostic/prognostic biomarkers or therapeutic targets in this pathology. Indeed, some authors have already evidenced a profound antitumor effect by targeting some splicing factors (e.g., PTBP1), mRNA splicing variants (e.g., PKM2, HYAL4-v1), and circular RNAs (e.g., circITCH, circMYLK), which illustrates new possibilities to significantly improve the management of this pathology. This review represents the first detailed overview of the splicing process and its alterations in bladder cancer, and highlights opportunities for the development of novel diagnostic/prognostic biomarkers and their clinical potential for the treatment of this devastating cancer type. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Antonio J Martínez-Fuentes
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Enrique Gómez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- Urology Service, HURS/IMIBIC, Cordoba, 14004, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| |
Collapse
|
4
|
Timpanaro A, Piccand C, Uldry AC, Bode PK, Dzhumashev D, Sala R, Heller M, Rössler J, Bernasconi M. Surfaceome Profiling of Cell Lines and Patient-Derived Xenografts Confirm FGFR4, NCAM1, CD276, and Highlight AGRL2, JAM3, and L1CAM as Surface Targets for Rhabdomyosarcoma. Int J Mol Sci 2023; 24:2601. [PMID: 36768928 PMCID: PMC9917031 DOI: 10.3390/ijms24032601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. The prognosis for patients with high-grade and metastatic disease is still very poor, and survivors are burdened with long-lasting side effects. Therefore, more effective and less toxic therapies are needed. Surface proteins are ideal targets for antibody-based therapies, like bispecific antibodies, antibody-drug conjugates, or chimeric antigen receptor (CAR) T-cells. Specific surface targets for RMS are scarce. Here, we performed a surfaceome profiling based on differential centrifugation enrichment of surface/membrane proteins and detection by LC-MS on six fusion-positive (FP) RMS cell lines, five fusion-negative (FN) RMS cell lines, and three RMS patient-derived xenografts (PDXs). A total of 699 proteins were detected in the three RMS groups. Ranking based on expression levels and comparison to expression in normal MRC-5 fibroblasts and myoblasts, followed by statistical analysis, highlighted known RMS targets such as FGFR4, NCAM1, and CD276/B7-H3, and revealed AGRL2, JAM3, MEGF10, GPC4, CADM2, as potential targets for immunotherapies of RMS. L1CAM expression was investigated in RMS tissues, and strong L1CAM expression was observed in more than 80% of alveolar RMS tumors, making it a practicable target for antibody-based therapies of alveolar RMS.
Collapse
Affiliation(s)
- Andrea Timpanaro
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Caroline Piccand
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Peter Karl Bode
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Dzhangar Dzhumashev
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Rita Sala
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Manfred Heller
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 3032 Zurich, Switzerland
| |
Collapse
|
5
|
A genome-wide association study with tissue transcriptomics identifies genetic drivers for classic bladder exstrophy. Commun Biol 2022; 5:1203. [PMID: 36352089 PMCID: PMC9646906 DOI: 10.1038/s42003-022-04092-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Classic bladder exstrophy represents the most severe end of all human congenital anomalies of the kidney and urinary tract and is associated with bladder cancer susceptibility. Previous genetic studies identified one locus to be involved in classic bladder exstrophy, but were limited to a restrict number of cohort. Here we show the largest classic bladder exstrophy genome-wide association analysis to date where we identify eight genome-wide significant loci, seven of which are novel. In these regions reside ten coding and four non-coding genes. Among the coding genes is EFNA1, strongly expressed in mouse embryonic genital tubercle, urethra, and primitive bladder. Re-sequence of EFNA1 in the investigated classic bladder exstrophy cohort of our study displays an enrichment of rare protein altering variants. We show that all coding genes are expressed and/or significantly regulated in both mouse and human embryonic developmental bladder stages. Furthermore, nine of the coding genes residing in the regions of genome-wide significance are differentially expressed in bladder cancers. Our data suggest genetic drivers for classic bladder exstrophy, as well as a possible role for these drivers to relevant bladder cancer susceptibility. A genome-wide association study on classic bladder exstrophy reveals eight genome-wide significant loci, most of which contained genes expressed in embryonic developmental bladder stages.
Collapse
|
6
|
Wang T, Ba X, Zhang X, Zhang N, Wang G, Bai B, Li T, Zhao J, Zhao Y, Yu Y, Wang B. Pan-cancer analyses of classical protein tyrosine phosphatases and phosphatase-targeted therapy in cancer. Front Immunol 2022; 13:976996. [PMID: 36341348 PMCID: PMC9630847 DOI: 10.3389/fimmu.2022.976996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/04/2022] [Indexed: 09/23/2023] Open
Abstract
Protein tyrosine phosphatases function in dephosphorylating target proteins to regulate signaling pathways that control a broad spectrum of fundamental physiological and pathological processes. Detailed knowledge concerning the roles of classical PTPs in human cancer merits in-depth investigation. We comprehensively analyzed the regulatory mechanisms and clinical relevance of classical PTPs in more than 9000 tumor patients across 33 types of cancer. The independent datasets and functional experiments were employed to validate our findings. We exhibited the extensive dysregulation of classical PTPs and constructed the gene regulatory network in human cancer. Moreover, we characterized the correlation of classical PTPs with both drug-resistant and drug-sensitive responses to anti-cancer drugs. To evaluate the PTP activity in cancer prognosis, we generated a PTPscore based on the expression and hazard ratio of classical PTPs. Our study highlights the notable role of classical PTPs in cancer biology and provides novel intelligence to improve potential therapeutic strategies based on pTyr regulation.
Collapse
Affiliation(s)
- Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xinlei Ba
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xiaonan Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
- Department of Pathophysiology, Bengbu Medical College, Bengbu, China
| | - Na Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Guowen Wang
- Department of Thoracic surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bin Bai
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tong Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jiahui Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yanjiao Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yang Yu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Bing Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
7
|
Kim B, Jung M, Moon KC, Han D, Kim K, Kim H, Yang S, Lee D, Jun H, Lee K, Lee CH, Nikas IP, Yang S, Lee H, Ryu HS. Quantitative proteomics identifies
TUBB6
as a biomarker of muscle‐invasion and poor prognosis in bladder cancer. Int J Cancer 2022; 152:320-330. [DOI: 10.1002/ijc.34265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Bohyun Kim
- Department of Pathology, Konkuk University Medical Center Konkuk University School of Medicine Seoul Korea
| | - Minsun Jung
- Department of Pathology, Severance Hospital Yonsei University College of Medicine Seoul Republic of Korea
| | - Kyung Chul Moon
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
- Department of Pathology Seoul National University Hospital Seoul Republic of Korea
- Kidney Research Institute, Medical Research Center Seoul National University College of Medicine Seoul Republic of Korea
| | - Dohyun Han
- Transdisciplinary Department of Medicine & Advanced Technology Seoul National University Hospital Seoul South Korea
- Proteomics Core Facility, Biomedical Research Institute Seoul National University Hospital Seoul South Korea
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine & Advanced Technology Seoul National University Hospital Seoul South Korea
| | - Hyeyoon Kim
- Transdisciplinary Department of Medicine & Advanced Technology Seoul National University Hospital Seoul South Korea
- Proteomics Core Facility, Biomedical Research Institute Seoul National University Hospital Seoul South Korea
| | - Sunah Yang
- Transdisciplinary Department of Medicine & Advanced Technology Seoul National University Hospital Seoul South Korea
| | - Dongjoo Lee
- Interdisciplinary Program in Bioengineering Seoul National University Seoul Korea
| | - Hyeji Jun
- Center for Medical Innovation, Biomedical Research Institute Seoul National University Hospital Seoul South Korea
| | - Kyung‐Min Lee
- Center for Medical Innovation, Biomedical Research Institute Seoul National University Hospital Seoul South Korea
| | - Cheng Hyun Lee
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
| | - Ilias P. Nikas
- School of Medicine, European University Cyprus Nicosia Cyprus
| | - Sohyeon Yang
- Department of Pathology Seoul National University Hospital Seoul Republic of Korea
| | - Hyebin Lee
- Department of Radiation Oncology, Kangbuk Samsung Hospital Sungkyunkwan University School of Medicine Seoul Republic of Korea
| | - Han Suk Ryu
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
- Department of Pathology Seoul National University Hospital Seoul Republic of Korea
- Center for Medical Innovation, Biomedical Research Institute Seoul National University Hospital Seoul South Korea
| |
Collapse
|
8
|
Chen L, Tang J, Sheng W, Sun J, Ma Y, Dong M. ATP11A promotes EMT by regulating Numb PRR L in pancreatic cancer cells. PeerJ 2022; 10:e13172. [PMID: 35345586 PMCID: PMC8957272 DOI: 10.7717/peerj.13172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/06/2022] [Indexed: 01/12/2023] Open
Abstract
Purpose The Numb protein plays a vital role in tumor development. The main aim of this study was to identify ATP11A, which is associated with the biological behavior of pancreatic cancer, and elucidate its relationship with Numb and the underlying mechanism behind this relationship. Methods First, data retrieved from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEX) databases was used to investigate the expression of ATP11A mRNA and its relationship with Numb mRNA in pancreatic cancer. Western blot assays on 31 pairs of pancreatic cancer tissues and paracancerous tissues, and immunohistochemical assays on 81 pancreatic cancer specimens were performed in order to verify the expression of ATP11A in pancreatic cancer at the protein level. Next, ATP11A was overexpressed or knocked down to observe its effects on the invasion and migration ability of pancreatic cancer cells and the changes of downstream proteins. Rescue assays were conducted to determine the mechanism through which ATP11A affects Numb, ZEB1, Snail2 and other proteins. Furthermore, immunoprecipitation assays were performed to explore the interaction between ATP11A and Numb. Finally, pancreatic cancer cells were stimulated with TGFB1 and ATP11A expression was examined to explore whether the effect of ATP11A on EMT was TGFB dependent. Results At the mRNA level, the expression of ATP11A in pancreatic cancer tissues was significantly higher than in normal pancreatic tissues (P < 0.001). ATP11A expression was also highly correlated with Numb expression (R = 0.676). At the protein level, ATP11A expression in pancreatic cancer tissues was significantly higher than that in paracancerous tissues (P = 0.0009), and high ATP11A expression was also correlated with a worse prognosis. Moreover, our results showed that ATP11A can promote the invasion and migration of pancreatic cancer cells. Additionally, ATP11A could positively regulate the expression of Numb PRRL, Snail2 and ZEB1 proteins. The rescue experiment results showed that the enhancement effect of ATP11A on ZEB1/Snail2 was suppressed by the specific knockdown of Numb PRRL. In addition, the immunoprecipitation results showed that ATP11A could specifically bind to Numb PRRL. The expression of ATP11A was also upregulated after TGFB stimulation, suggesting that the effect of ATP11A on EMT is TGFB dependent. Conclusion ATP11A is significantly upregulated in pancreatic cancer tissues, where it promotes the invasion and migration ability of pancreatic cancer cells. It is also associated with adverse prognosis in pancreatic cancer. Furthermore, ATP11A affects the epithelial-to-mesenchymal transition (EMT) of pancreatic cancer by regulating the TGFB dependent Numb PRRL-ZEB1/Snail2 pathway.
Collapse
Affiliation(s)
- Lin Chen
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jingtong Tang
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jian Sun
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yuteng Ma
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Gallego-Paez LM, Mauer J. DJExpress: An Integrated Application for Differential Splicing Analysis and Visualization. FRONTIERS IN BIOINFORMATICS 2022; 2:786898. [PMID: 36304260 PMCID: PMC9580925 DOI: 10.3389/fbinf.2022.786898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
RNA-seq analysis of alternative pre-mRNA splicing has facilitated an unprecedented understanding of transcriptome complexity in health and disease. However, despite the availability of countless bioinformatic pipelines for transcriptome-wide splicing analysis, the use of these tools is often limited to expert bioinformaticians. The need for high computational power, combined with computational outputs that are complicated to visualize and interpret present obstacles to the broader research community. Here we introduce DJExpress, an R package for differential expression analysis of transcriptomic features and expression-trait associations. To determine gene-level differential junction usage as well as associations between junction expression and molecular/clinical features, DJExpress uses raw splice junction counts as input data. Importantly, DJExpress runs on an average laptop computer and provides a set of interactive and intuitive visualization formats. In contrast to most existing pipelines, DJExpress can handle both annotated and de novo identified splice junctions, thereby allowing the quantification of novel splice events. Moreover, DJExpress offers a web-compatible graphical interface allowing the analysis of user-provided data as well as the visualization of splice events within our custom database of differential junction expression in cancer (DJEC DB). DJEC DB includes not only healthy and tumor tissue junction expression data from TCGA and GTEx repositories but also cancer cell line data from the DepMap project. The integration of DepMap functional genomics data sets allows association of junction expression with molecular features such as gene dependencies and drug response profiles. This facilitates identification of cancer cell models for specific splicing alterations that can then be used for functional characterization in the lab. Thus, DJExpress represents a powerful and user-friendly tool for exploration of alternative splicing alterations in RNA-seq data, including multi-level data integration of alternative splicing signatures in healthy tissue, tumors and cancer cell lines.
Collapse
Affiliation(s)
| | - Jan Mauer
- *Correspondence: Lina Marcela Gallego-Paez, ; Jan Mauer,
| |
Collapse
|
10
|
Sheng W, Tang J, Cao R, Shi X, Ma Y, Dong M. Numb-PRRL promotes TGF-β1- and EGF-induced epithelial-to-mesenchymal transition in pancreatic cancer. Cell Death Dis 2022; 13:173. [PMID: 35197444 PMCID: PMC8866481 DOI: 10.1038/s41419-022-04609-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
Abstract
Isoform-specific functions of Numb in the development of cancers, especially in the initiation of epithelial-to-mesenchymal transition (EMT) remains controversial. We study the specific function of Numb-PRRL isoform in activated EMT of pancreatic ductal adenocarcinoma (PC), which is distinguished from our previous studies that only focused on the total Numb protein. Numb-PRRL isoform was specifically overexpressed and silenced in PC cells combining with TGF-β1 and EGF stimulus. We systematically explored the potential effect of Numb-PRRL in the activated EMT of PC in vitro and in vivo. The total Numb protein was overexpressed in the normal pancreatic duct and well-differentiated PC by IHC. However, Numb-PRRS isoform but not Numb-PRRL showed dominant expression in PC tissues. Numb-PRRL overexpression promoted TGF-β1-induced EMT in PANC-1 and Miapaca-2 cells. TGF-β1-induced EMT-like cell morphology, cell invasion, and migration were enhanced in Numb-PRRL overexpressing groups following the increase of N-cadherin, Vimentin, Smad2/3, Snail1, Snail2, and cleaved-Notch1 and the decrease of E-cadherin. Numb-PRRL overexpression activated TGFβ1-Smad2/3-Snail1 signaling was significantly reversed by the Notch1 inhibitor RO4929097. Conversely, Numb-PRRL silencing inhibited EGF-induced EMT in AsPC-1 and BxPC-3 cells following the activation of EGFR-ERK/MAPK signaling via phosphorylating EGFR at tyrosine 1045. In vivo, Numb-PRRL overexpression or silencing promoted or inhibited subcutaneous tumor size and distant liver metastases via regulating EMT and Snail signaling, respectively. Numb-PRRL promotes TGF-β1- and EGF-induced EMT in PC by regulating TGF-β1-Smad2/3-Snail and EGF-induced EGFR-ERK/MAPK signaling.
Collapse
Affiliation(s)
- Weiwei Sheng
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, 110001, Shenyang, Liaoning, China
| | - Jingtong Tang
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, 110001, Shenyang, Liaoning, China
| | - Rongxian Cao
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, 110001, Shenyang, Liaoning, China
| | - Xiaoyang Shi
- Department of Hernia and Abdominal Wall Surgery, Chaoyang Hospital, 100043, Beijing, China
| | - Yuteng Ma
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, 110001, Shenyang, Liaoning, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, 110001, Shenyang, Liaoning, China.
| |
Collapse
|
11
|
Li D, Zhen F, Le J, Chen G, Zhu J. Identification of hub genes and pathways in bladder cancer using bioinformatics analysis. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:13-24. [PMID: 35291419 PMCID: PMC8918393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/30/2020] [Indexed: 06/14/2023]
Abstract
Bladder cancer (BC) is the most common malignant tumor of urinary tract system. The aim of this study was to investigate the genetic signatures of bladder cancer (BC) and identify its potential molecular mechanisms. The gene expression profiles of GSE3167 (50 samples, including 41BC and 9 non-cancerous urothelial cells) was downloaded from the GEO database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) were performed to identify enriched pathways, and a protein-protein interaction (PPI) network was used to identify hub genes and for module analysis. Moreover, we conducted expression and survival analyses to screen and validate hub genes. In total, 1528 DEGs were identified in bladder cancer (BC), including 1212 up-regulated genes and 316 down-regulated genes. Up-regulated differentially expressed genes (DEGs) were significantly enriched in negative regulation of macromolecule metabolic process, macromolecule catabolic process, proteolysis and regulation of cell death, while the down-regulated differentially expressed genes (DEGs) were mainly involved in cell surface receptor linked signal transduction, ion transport, cell-cell signaling and defense response. The top 10 hub genes with the highest degrees were selected from the PPI network. These genes included HSP90AA1, MYH11, MYL9, CNN1, ACTC1, RAN, ENO1, HNRNPC, ACTG2 and YWHAZ. From sub-networks, we found these genes were involved in the proteasome, pathways in cancer and cell cycle. Hence, the identified DEGs and hub genes may be beneficial to elucidate the mechanisms underlying BC.
Collapse
Affiliation(s)
- Danhui Li
- Department of ICU, Ningbo First Hospital Ningbo, Zhejiang Province, P. R. China
| | - Fan Zhen
- Department of ICU, Ningbo First Hospital Ningbo, Zhejiang Province, P. R. China
| | - Jianwei Le
- Department of ICU, Ningbo First Hospital Ningbo, Zhejiang Province, P. R. China
| | - Guodong Chen
- Department of ICU, Ningbo First Hospital Ningbo, Zhejiang Province, P. R. China
| | - Jianhua Zhu
- Department of ICU, Ningbo First Hospital Ningbo, Zhejiang Province, P. R. China
| |
Collapse
|
12
|
Abstract
Somatic stem cells are distinguished by their capacity to regenerate themselves and also to produce daughter cells that will differentiate. Self-renewal is achieved through the process of asymmetric cell division which helps to sustain tissue morphogenesis as well as maintain homeostasis. Asymmetric cell division results in the development of two daughter cells with different fates after a single mitosis. Only one daughter cell maintains "stemness" while the other differentiates and achieves a non-stem cell fate. Stem cells also have the capacity to undergo symmetric division of cells that results in the development of two daughter cells which are identical. Symmetric division results in the expansion of the stem cell population. Imbalances and deregulations in these processes can result in diseases such as cancer. Adult mammary stem cells (MaSCs) are a group of cells that play a critical role in the expansion of the mammary gland during puberty and any subsequent pregnancies. Furthermore, given the relatively long lifespans and their capability to undergo self-renewal, adult stem cells have been suggested as ideal candidates for transformation events that lead to the development of cancer. With the possibility that MaSCs can act as the source cells for distinct breast cancer types; understanding their regulation is an important field of research. In this review, we discuss asymmetric cell division in breast/mammary stem cells and implications on further research. We focus on the background history of asymmetric cell division, asymmetric cell division monitoring techniques, identified molecular mechanisms of asymmetric stem cell division, and the role asymmetric cell division may play in breast cancer.
Collapse
Affiliation(s)
| | - Brian W Booth
- Department of Bioengineering, Head-Cellular Engineering Laboratory, 401-1 Rhodes Engineering Research Center, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
13
|
Mo M, Hu X, He W, Zu X, Wang L, Li Y. Identification of key genes and microRNA regulatory network in development and progression of urothelial bladder carcinoma. Transl Androl Urol 2021; 10:438-447. [PMID: 33532331 PMCID: PMC7844517 DOI: 10.21037/tau-20-1124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Bladder cancer as other cancers contains multiple dynamic alterations in progression. Theoretically, large number of genes participates in cancer progression. In the present study, the interconnections of genesets defined by Gene Set Enrichment Analysis (GSEA) and tumor histopathological stages were characterized. In addition, the outcomes with genesets were discussed in bladder cancer. Methods Transcriptome data from 411 tissues of urothelial bladder carcinoma and 19 samples from adjacent tissues were retrieved from The Cancer Genome Atlas (TCGA) database. Single-sample GSEA (ssGSEA), cluster analysis of geneset enrichment scores and genesets as indicators in prognosis were applied to elucidate the correlations between genesets and bladder cancer progression. Results Chemical and genetic perturbations (CGP), canonical pathways (CP), CP:BIOCARTA (BioCarta gene sets), CP:KEGG (KEGG gene sets) and CP:REACTOME (Reactome gene sets) in C2 collection, upstream cis-regulatory motifs serum response factor (SRF) in C3 collection, KRAS in C6 collection and C8+ T cells in C7 collection were observed as enriched by ssGSEA. The cluster 2 identified from cluster analysis shows a more immune active microenvironment which tended to increase in stage II and decreased in stage IV indicating the crucial role in bladder cancer progression. miR-450, miR-518s, transcription factor PAX3, KRAS and PTEN were potential markers for outcomes of urothelial bladder carcinoma. Activating tumor immune microenvironment had deteriorated prognosis of patients with bladder cancer. Conclusions Our findings demonstrated that activating tumor immune microenvironment is a negative factor for outcomes of urothelial bladder carcinoma. These data provided a potential combination strategy for patients with bladder cancer.
Collapse
Affiliation(s)
- Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiheng Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Long Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yangle Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Schiöth HB. Opportunities and challenges for drug discovery in modulating Adhesion G protein-coupled receptor (GPCR) functions. Expert Opin Drug Discov 2020; 15:1291-1307. [DOI: 10.1080/17460441.2020.1791075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrey D. Bondarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Misty M. Attwood
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Vladimir N. Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V. Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B. Schiöth
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
15
|
Park JH, Lee C, Han D, Lee JS, Lee KM, Song MJ, Kim K, Lee H, Moon KC, Kim Y, Jung M, Moon JH, Lee H, Ryu HS. Moesin ( MSN) as a Novel Proteome-Based Diagnostic Marker for Early Detection of Invasive Bladder Urothelial Carcinoma in Liquid-Based Cytology. Cancers (Basel) 2020; 12:cancers12041018. [PMID: 32326232 PMCID: PMC7225967 DOI: 10.3390/cancers12041018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Bladder urothelial carcinoma (BUC) is the most lethal malignancy of the urinary tract. Treatment for the disease highly depends on the invasiveness of cancer cells. Therefore, a predictive biomarker needs to be identified for invasive BUC. In this study, we employed proteomics methods on urine liquid-based cytology (LBC) samples and a BUC cell line library to determine a novel predictive biomarker for invasive BUC. Furthermore, an in vitro three-dimensional (3D) invasion study for biological significance and diagnostic validation through immunocytochemistry (ICC) were also performed. The proteomic analysis suggested moesin (MSN) as a potential biomarker to predict the invasiveness of BUC. The in vitro 3D invasion study showed that inhibition of MSN significantly decreased invasiveness in BUC cell lines. Further validation using ICC ultimately confirmed moesin (MSN) as a potential biomarker to predict the invasiveness of BUC (p = 0.023). In conclusion, we suggest moesin as a potential diagnostic marker for early detection of BUC with invasion in LBC and as a potential therapeutic target.
Collapse
Affiliation(s)
- Jeong Hwan Park
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.P.); (C.L.); (K.C.M.); (M.J.); (J.H.M.)
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul 07061, Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.P.); (C.L.); (K.C.M.); (M.J.); (J.H.M.)
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Dohyun Han
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (D.H.); (K.K.); (H.L.)
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Jae Seok Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea;
| | - Kyung Min Lee
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Korea;
| | - Min Ji Song
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Kwangsoo Kim
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (D.H.); (K.K.); (H.L.)
| | - Heonyi Lee
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (D.H.); (K.K.); (H.L.)
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.P.); (C.L.); (K.C.M.); (M.J.); (J.H.M.)
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Minsun Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.P.); (C.L.); (K.C.M.); (M.J.); (J.H.M.)
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Ji Hye Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.P.); (C.L.); (K.C.M.); (M.J.); (J.H.M.)
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Hyebin Lee
- Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Korea
- Correspondence: (H.L.); (H.S.R.)
| | - Han Suk Ryu
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.P.); (C.L.); (K.C.M.); (M.J.); (J.H.M.)
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
- Correspondence: (H.L.); (H.S.R.)
| |
Collapse
|
16
|
Sui G, Cheng G, Yuan J, Hou X, Kong X, Niu H. Interleukin (IL)-13, Prostaglandin E2 (PGE2), and Prostacyclin 2 (PGI2) Activate Hepatic Stellate Cells via Protein kinase C (PKC) Pathway in Hepatic Fibrosis. Med Sci Monit 2018; 24:2134-2141. [PMID: 29633755 PMCID: PMC5909417 DOI: 10.12659/msm.906442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Protein kinase C (PKC), interleukin (IL)-13, prostaglandin E2 (PGE2), and prostacyclin 2 (PGI2) can all play crucial roles in pulmonary fibrosis. However, their functions remain unclear in hepatic fibrosis mediated by hepatic stellate cells (HSCs), which has been demonstrated to be related to transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF). MATERIAL AND METHODS All the experiments were based on LX-2 Hepatic stellate cells. The expression of TGF-β1 and PDGF were assessed by ELISA, RT-PCR, and Western blotting in human HSCs treated by IL-13, PGE2, and PGI2, respectively. At the same time, bridge assay and CCK8 assay were used to detect the cell proliferation and activity, PKC activity assay was used to test the activity of PKC, and PKC agonist and antagonist were used to verify the results obtained previously. RESULTS We found that IL-13, PGE2, and PGI2 significantly enhanced the expression of TGF-β1 and PDGF in human HSCs, which also clearly improved the proliferation and cell activity of HSCs. Moreover, PKC activity was significantly increased following IL-13, PGE2, and PGI2 treatments. We also found that the expression of TGF-β1 and PDGF, as well as the proliferation and cell activity of HSCs, were significantly enhanced by the PKC agonist phorbol 12-myristate 13-acetate (PMA), but suppressed by the PKC antagonist calphostin C. CONCLUSIONS We found that IL-13, PGE2, and PGI2 stimulated HSCs proliferation and secretion of TGF-β1 and PDGF by activating PKC, which predicted their potential roles in hepatic fibrosis.
Collapse
Affiliation(s)
- Guode Sui
- Department of Emergency General Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Guang Cheng
- Department of Emergency General Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Junjun Yuan
- Department of Emergency General Surgery, Affiliated Hospital of Qingdao University, Shandong, China (mainland)
| | - Xuena Hou
- Department of Emergency General Surgery, Affiliated Hospital of Qingdao University, Shandong, China (mainland)
| | - Xiaochen Kong
- Department of Emergency General Surgery, Affiliated Hospital of Qingdao University, Shandong, China (mainland)
| | - Haitao Niu
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
17
|
Colaluca IN, Basile A, Freiburger L, D'Uva V, Disalvatore D, Vecchi M, Confalonieri S, Tosoni D, Cecatiello V, Malabarba MG, Yang CJ, Kainosho M, Sattler M, Mapelli M, Pece S, Di Fiore PP. A Numb-Mdm2 fuzzy complex reveals an isoform-specific involvement of Numb in breast cancer. J Cell Biol 2018; 217:745-762. [PMID: 29269425 PMCID: PMC5800818 DOI: 10.1083/jcb.201709092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/03/2022] Open
Abstract
Numb functions as an oncosuppressor by inhibiting Notch signaling and stabilizing p53. This latter effect depends on the interaction of Numb with Mdm2, the E3 ligase that ubiquitinates p53 and commits it to degradation. In breast cancer (BC), loss of Numb results in a reduction of p53-mediated responses including sensitivity to genotoxic drugs and maintenance of homeostasis in the stem cell compartment. In this study, we show that the Numb-Mdm2 interaction represents a fuzzy complex mediated by a short Numb sequence encompassing its alternatively spliced exon 3 (Ex3), which is necessary and sufficient to inhibit Mdm2 and prevent p53 degradation. Alterations in the Numb splicing pattern are critical in BC as shown by increased chemoresistance of tumors displaying reduced levels of Ex3-containing isoforms, an effect that could be mechanistically linked to diminished p53 levels. A reduced level of Ex3-less Numb isoforms independently predicts poor outcome in BCs harboring wild-type p53. Thus, we have uncovered an important mechanism of chemoresistance and progression in p53-competent BCs.
Collapse
Affiliation(s)
| | - Andrea Basile
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Lee Freiburger
- Center for Integrated Protein Science Munich, Department of Chemistry, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Veronica D'Uva
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| | | | - Manuela Vecchi
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | | | - Daniela Tosoni
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| | - Valentina Cecatiello
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Maria Grazia Malabarba
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Chun-Jiun Yang
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Masatsune Kainosho
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Michael Sattler
- Center for Integrated Protein Science Munich, Department of Chemistry, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Salvatore Pece
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| | - Pier Paolo Di Fiore
- The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Program of Molecular Medicine, European Institute of Oncology, Milan, Italy
| |
Collapse
|
18
|
Sumbayev VV, Gonçalves Silva I, Blackburn J, Gibbs BF, Yasinska IM, Garrett MD, Tonevitsky AG, Ushkaryov YA. Expression of functional neuronal receptor latrophilin 1 in human acute myeloid leukaemia cells. Oncotarget 2018; 7:45575-45583. [PMID: 27322212 PMCID: PMC5216743 DOI: 10.18632/oncotarget.10039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/29/2016] [Indexed: 12/04/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a blood cancer affecting cells of myeloid lineage. It is characterised by rapid growth of malignant leukocytes that accumulate in the bone marrow and suppress normal haematopoiesis. This systemic disease remains a serious medical burden worldwide. Characterisation of protein antigens specifically expressed by malignant cells, but not by healthy leukocytes, is vital for the diagnostics and targeted treatment of AML. Here we report, for the first time, that the neuronal receptor latrophilin-1 is expressed in human monocytic leukaemia cell lines and in primary human AML cells. However, it is absent in healthy leukocytes. Latrophilin-1 is functional in leukaemia cells tested, and its biosynthesis is controlled through the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways. Our findings demonstrate that latrophilin-1 could be considered as a novel biomarker of human AML, which offers potential new avenues for AML diagnosis and treatment.
Collapse
Affiliation(s)
- Vadim V Sumbayev
- School of Pharmacy, University of Kent, Chatham, Kent, ME4 4TB, United Kingdom
| | | | - Jennifer Blackburn
- School of Pharmacy, University of Kent, Chatham, Kent, ME4 4TB, United Kingdom
| | - Bernhard F Gibbs
- School of Pharmacy, University of Kent, Chatham, Kent, ME4 4TB, United Kingdom
| | - Inna M Yasinska
- School of Pharmacy, University of Kent, Chatham, Kent, ME4 4TB, United Kingdom
| | - Michelle D Garrett
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | - Alexander G Tonevitsky
- Hertsen Moscow Oncology Research Institute, Branch of The National Medical Research Radiological Center, Ministry of Health of The Russian Federation, 125284, Moscow, Russian Federation
| | - Yuri A Ushkaryov
- School of Pharmacy, University of Kent, Chatham, Kent, ME4 4TB, United Kingdom
| |
Collapse
|
19
|
Duhamel S, Goyette MA, Thibault MP, Filion D, Gaboury L, Côté JF. The E3 Ubiquitin Ligase HectD1 Suppresses EMT and Metastasis by Targeting the +TIP ACF7 for Degradation. Cell Rep 2018; 22:1016-1030. [PMID: 29386124 DOI: 10.1016/j.celrep.2017.12.096] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/28/2017] [Accepted: 12/23/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer cells exploit the epithelial-to-mesenchymal transition (EMT) program to become metastatic. Cytoskeletal regulators are required in mesenchymal cells where they promote EMT and EMT-induced migration. In a search for regulators of metastasis, we conducted shRNA screens targeting the microtubule plus-end tracking proteins (+TIPs). We show that the +TIP ACF7 is essential both for the maintenance of the EMT program and to promote migration. We find that the E3 ubiquitin ligase HectD1 promotes ACF7-proteasome-mediated degradation. Depletion of HectD1 stabilized ACF7, and this enhanced EMT and migration. Decreased HectD1 expression increased metastases in mouse models and conferred increased resistance to the cytotoxic drug cisplatin. A retrospective analysis of biopsies from breast cancer patients also reveals a correlation between higher ACF7 or lower HectD1 expression with poor clinical outcomes. Together, these results suggest that the control of ACF7 levels by HectD1 modulates EMT and the efficiency of metastasis.
Collapse
Affiliation(s)
- Stéphanie Duhamel
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Marie-Anne Goyette
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada; Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | | | - Dominic Filion
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Louis Gaboury
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada; Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada.
| |
Collapse
|
20
|
Copy number variations of circulating, cell-free DNA in urothelial carcinoma of the bladder patients treated with radical cystectomy: a prospective study. Oncotarget 2017; 8:56398-56407. [PMID: 28915599 PMCID: PMC5593570 DOI: 10.18632/oncotarget.17657] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/26/2017] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to establish a rapid profiling method using multiplex ligation-dependent probe amplification (MLPA) and characterize copy number variations (CNV) in circulating, cell-free DNA (cfDNA) in 85 urothelial carcinoma of the bladder (UCB) patients treated with radical cystectomy (RC). MLPA was tested for the use of cfDNA extracted from serum and plasma by various commercial extraction kits. Eighteen probes served as reference to control denaturation, ligation and amplification efficiency. MLPA was exclusively suitable for cfDNA extracted from serum. Serum from 72 patients (84.7%) could be analyzed. Thirty-five patients (48.6%) had presence of CNV in cfDNA. The median CNV count in patients with presence of CNV was 2. Predominantly, CNV were located in the genes CDH1, ZFHX3, RIPK2 and PTEN in 15 patients (20.8%), 12 patients (16.7%), 9 patients (12.5%) and 7 patients (9.7%), respectively. CNV in TSG1, RAD21, KIAA0196, ANXA7 and TMPRSS2 were associated with presence of variant UCB histology (p = 0.029, 0.029, 0.029, 0.029, 0.043, respectively). Furthermore, CNV in miR-15a, CDH1 and ZFHX3 were associated with presence of incidental prostate cancer (p = 0.023, 0.003, 0.025, respectively). Patients with CNV in KLF5, ZFHX3 and CDH1 had reduced cancer-specific survival, compared to patients without CNV in these genes (pairwise p = 0.028, 0.026, 0.044, respectively). MLPA represents an efficient method for the detection of CNV among numerous genes on various chromosomal regions. CNV in specific genes seem to be associated with aggressive UCB biologic features and presence of incidental prostate cancer, and may have a negative impact on cancer-specific survival.
Collapse
|
21
|
Li X, Liu S. Suppression of HBXIP Reduces Cell Proliferation, Migration and InvasionIn Vitro, and TumorigenesisIn Vivoin Human Urothelial Carcinoma of the Bladder. Cancer Biother Radiopharm 2016; 31:311-316. [PMID: 27831760 DOI: 10.1089/cbr.2016.2038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Xiaogang Li
- Department of Urology, The Affiliated Hospital of YanBian University, Yanbian, China
| | - Shuangping Liu
- Department of Pathology, YanBian University, Yanbian, China
| |
Collapse
|
22
|
Rajendran D, Zhang Y, Berry DM, McGlade CJ. Regulation of Numb isoform expression by activated ERK signaling. Oncogene 2016; 35:5202-13. [PMID: 27041567 DOI: 10.1038/onc.2016.69] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 12/23/2015] [Accepted: 01/25/2016] [Indexed: 12/29/2022]
Abstract
The endocytic adaptor protein Numb has a major role in development as an intrinsic regulator of cell fate determination and inhibitor of the Notch signaling pathway. In vertebrates, four protein isoforms of Numb are produced through alternative splicing (AS) of two cassette exons (exons 3 and 9). AS of coding exon 9 (E9) produces E9-included (p72/p71) and -excluded (p66/p65) protein products. Expression of Numb isoforms is developmentally regulated and E9-included products are expressed in progenitors, whereas E9-excluded isoforms are dominantly expressed in differentiated cells. Analyses of AS events in multiple cancers previously identified a switch in Numb transcript and protein expression from the E9-excluded to the E9-included isoform, suggesting that misregulation of the mechanisms that control E9 inclusion may have a role in tumorigenesis. Here we identify splicing factors ASF/SF2 and PTBP1 as regulators of E9 splicing and show that activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway promotes E9 inclusion in cancer cells. Our evidence supports a mechanism by which Numb AS is regulated in response to oncogenic signaling pathways, and contributes to activation of downstream pathways to promote tumorigenesis.
Collapse
Affiliation(s)
- D Rajendran
- Program in Cell Biology, and The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital For Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Y Zhang
- Program in Cell Biology, and The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital For Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - D M Berry
- Program in Cell Biology, and The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital For Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - C J McGlade
- Program in Cell Biology, and The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital For Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Ahmed M, Sottnik JL, Dancik GM, Sahu D, Hansel DE, Theodorescu D, Schwartz MA. An Osteopontin/CD44 Axis in RhoGDI2-Mediated Metastasis Suppression. Cancer Cell 2016; 30:432-443. [PMID: 27593345 PMCID: PMC5154333 DOI: 10.1016/j.ccell.2016.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 04/27/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023]
Abstract
RhoGDI2 specifically suppresses bladder cancer metastasis but not primary tumor growth, which involves tumor-associated macrophages. We report that macrophage-secreted osteopontin binds to CD44s on the tumor cells and promotes invasion and clonal growth. These effects are RhoGDI2-sensitive and require CD44s binding to the Rac GEF TIAM1. Osteopontin expression correlates with tumor aggressiveness and poor clinical outcome in patients. Inhibiting this pathway potently blocked lung and lymph node metastasis; however, primary tumors and established metastasis were less sensitive. Osteopontin-CD44s-TIAM1 promotes clonal growth in vitro but not at high cell density. These data identify osteopontin-CD44-TIAM1-Rac1 axis as a RhoGDI2-sensitive pathway and potential therapeutic target in bladder cancer metastasis. They also elucidate the mechanism behind RhoGDI2 specificity for metastasis over established tumors.
Collapse
Affiliation(s)
- Mansoor Ahmed
- Department of Internal Medicine (Cardiology), Yale Cardiovascular Research Center, Yale University, New Haven, CT 06520, USA.
| | - Joseph L Sottnik
- Department of Surgery, University of Colorado, Aurora, CO 80045, USA
| | - Garrett M Dancik
- Mathematics and Computer Science Department, Eastern Connecticut State University, Willimantic, CT 06226, USA
| | - Divya Sahu
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Donna E Hansel
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dan Theodorescu
- Department of Surgery, University of Colorado, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado, Aurora, CO 80045, USA; University of Colorado Comprehensive Cancer Center, Aurora, CO 80045, USA.
| | - Martin A Schwartz
- Department of Internal Medicine (Cardiology), Yale Cardiovascular Research Center, Yale University, New Haven, CT 06520, USA; Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
24
|
Kekeeva T, Tanas A, Kanygina A, Alexeev D, Shikeeva A, Zavalishina L, Andreeva Y, Frank GA, Zaletaev D. Novel fusion transcripts in bladder cancer identified by RNA-seq. Cancer Lett 2016; 374:224-8. [PMID: 26898937 DOI: 10.1016/j.canlet.2016.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 10/25/2022]
Abstract
Urothelial carcinoma (UC) is the most common type of bladder cancer and is the second most frequently diagnosed genitourinary tumor. The identification of fusion genes in bladder cancer might provide new perspectives for its classification and significance. In this study, we present a thorough search on three UC samples for novel fusion transcripts in bladder cancer using high-throughput RNA sequencing. We used stringent requirements for 819 fusion candidates and nominated 10 candidate fusion transcripts. Among them four novel fusion genes SEPT9/CYHR, IGF1R/TTC23, SYT8/TNNI2 and CASZ1/DFFA were validated and characterized in 48 formalin-fixed paraffin-embedded (FFPE) specimens of bladder cancer. Chromosomal rearrangements of regions 17q25, 15q26.3 and 1p36.22 resulting in the fusion transcripts SEPT9/CYHR, IGF1R/TTC23 and CASZ1/DFFA, appeared to be rare or unique events because they were not detected in the 48 UC samples. In contrast, the SYT8/TNNI2 fusion transcript resulting from transcription-induced chimerism by read-through mechanisms was a rather common and tumor-specific event occurring in 37.5% (18/48) of the UC specimens. Further investigation of functional and clinical relevance of novel fusion genes remains to be elucidated to reveal their role in bladder carcinogenesis.
Collapse
Affiliation(s)
- T Kekeeva
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechie st., 1, Moscow, 115478, Russian Federation; Pathology Department, Russian Medical Academy of Postgraduate Education, Polikarpov st., 12, Moscow, 125284, Russian Federation.
| | - A Tanas
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechie st., 1, Moscow, 115478, Russian Federation
| | - A Kanygina
- Department of Molecular Biophysics, Moscow Institute of Physics and Technology, Institutskii Per. 9, Moscow Region, Dolgoprudny, 141700, Russian Federation
| | - D Alexeev
- Medical and Rehabilitation Center of Ministry of Healthcare of Russian Federation, Ivankovskoye, 3, Moscow, 125367, Russian Federation; Department of Molecular Biophysics, Moscow Institute of Physics and Technology, Institutskii Per. 9, Moscow Region, Dolgoprudny, 141700, Russian Federation
| | - A Shikeeva
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechie st., 1, Moscow, 115478, Russian Federation; Pathology Department, Russian Medical Academy of Postgraduate Education, Polikarpov st., 12, Moscow, 125284, Russian Federation
| | - L Zavalishina
- Pathology Department, Russian Medical Academy of Postgraduate Education, Polikarpov st., 12, Moscow, 125284, Russian Federation
| | - Y Andreeva
- Pathology Department, Russian Medical Academy of Postgraduate Education, Polikarpov st., 12, Moscow, 125284, Russian Federation
| | - G A Frank
- Pathology Department, Russian Medical Academy of Postgraduate Education, Polikarpov st., 12, Moscow, 125284, Russian Federation
| | - D Zaletaev
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechie st., 1, Moscow, 115478, Russian Federation; Laboratory of Human Molecular Genetics, I. M. Sechenov First Moscow State Medical University, Trubetskaya Str., 8, Moscow 119991, Russian Federation
| |
Collapse
|
25
|
Abstract
Alterations in the homeostasis of several adhesion GPCRs (aGPCRs) have been observed in cancer. The main cellular functions regulated by aGPCRs are cell adhesion, migration, polarity, and guidance, which are all highly relevant to tumor cell biology. Expression of aGPCRs can be induced, increased, decreased, or silenced in the tumor or in stromal cells of the tumor microenvironment, including fibroblasts and endothelial and/or immune cells. For example, ADGRE5 (CD97) and ADGRG1 (GPR56) show increased expression in many cancers, and initial functional studies suggest that both are relevant for tumor cell migration and invasion. aGPCRs can also impact the regulation of angiogenesis by releasing soluble fragments following the cleavage of their extracellular domain (ECD) at the conserved GPCR-proteolytic site (GPS) or other more distal cleavage sites as typical for the ADGRB (BAI) family. Interrogation of in silico cancer databases suggests alterations in other aGPCR members and provides the impetus for further exploration of their potential role in cancer. Integration of knowledge on the expression, regulation, and function of aGPCRs in tumorigenesis is currently spurring the first preclinical studies to examine the potential of aGPCR or the related pathways as therapeutic targets.
Collapse
Affiliation(s)
- Gabriela Aust
- Department of Surgery, Research Laboratories, University of Leipzig, Liebigstraße 19, Leipzig, 04103, Germany.
| | - Dan Zhu
- Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Erwin G Van Meir
- Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Lei Xu
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| |
Collapse
|
26
|
The Urinary Bladder Transcriptome and Proteome Defined by Transcriptomics and Antibody-Based Profiling. PLoS One 2015; 10:e0145301. [PMID: 26694548 PMCID: PMC4687928 DOI: 10.1371/journal.pone.0145301] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 12/02/2015] [Indexed: 12/19/2022] Open
Abstract
To understand functions and diseases of urinary bladder, it is important to define its molecular constituents and their roles in urinary bladder biology. Here, we performed genome-wide deep RNA sequencing analysis of human urinary bladder samples and identified genes up-regulated in the urinary bladder by comparing the transcriptome data to those of all other major human tissue types. 90 protein-coding genes were elevated in the urinary bladder, either with enhanced expression uniquely in the urinary bladder or elevated expression together with at least one other tissue (group enriched). We further examined the localization of these proteins by immunohistochemistry and tissue microarrays and 20 of these 90 proteins were localized to the whole urothelium with a majority not yet described in the context of the urinary bladder. Four additional proteins were found specifically in the umbrella cells (Uroplakin 1a, 2, 3a, and 3b), and three in the intermediate/basal cells (KRT17, PCP4L1 and ATP1A4). 61 of the 90 elevated genes have not been previously described in the context of urinary bladder and the corresponding proteins are interesting targets for more in-depth studies. In summary, an integrated omics approach using transcriptomics and antibody-based profiling has been used to define a comprehensive list of proteins elevated in the urinary bladder.
Collapse
|
27
|
Song T, Zhang X, Yang G, Song Y, Cai W. Decrement of miR-199a-5p contributes to the tumorigenesis of bladder urothelial carcinoma by regulating MLK3/NF-κB pathway. Am J Transl Res 2015; 7:2786-2794. [PMID: 26885275 PMCID: PMC4731675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 08/18/2015] [Indexed: 06/05/2023]
Abstract
Aberrant miRNA expression is implicated in tumorigenesis. However, the role of miRNAs in bladder urothelial carcinoma still remains largely unknown. In this study, miR-199a-5p was validated to be significantly down-regulated in bladder urothelial carcinoma. In addition, restoring expression of miR-199a-5p inhibited the tumorigenesis of bladder urothelial carcinoma in vitro and in vivo by inducing the apoptosis and suppressing the proliferation of bladder cancerous cells. Further investigation reported that MLK3 was a direct target of miR-199a-5p. Moreover, the expression level of miR-199a-5p was conversely correlated with MLK3 in bladder cancerous cells. In addition, reintroduction of MLK3 was identified to promote the proliferation and inhibit the apoptotic rate of cells, which have been altered by miR-199a-5p through activating the NF-κB pathway. All together, decrement of miR-199a-5p contributes to the tumorigenesis of bladder cancer by directly regulating MLK3/NF-κB pathway and miR-199a-5p might be developed as a therapeutic target for treatment of the bladder urothelial carcinoma.
Collapse
Affiliation(s)
- Tao Song
- Department of Urology, Clinical Division of Surgery, Chinese PLA General Hospital Beijing 100853, China
| | - Xu Zhang
- Department of Urology, Clinical Division of Surgery, Chinese PLA General Hospital Beijing 100853, China
| | - Guoqiang Yang
- Department of Urology, Clinical Division of Surgery, Chinese PLA General Hospital Beijing 100853, China
| | - Yong Song
- Department of Urology, Clinical Division of Surgery, Chinese PLA General Hospital Beijing 100853, China
| | - Wei Cai
- Department of Urology, Clinical Division of Surgery, Chinese PLA General Hospital Beijing 100853, China
| |
Collapse
|
28
|
Lu YY, Xu W, Ji J, Feng D, Sourbier C, Yang Y, Qu J, Zeng Z, Wang C, Chang X, Chen Y, Mishra A, Xu M, Lee MJ, Lee S, Trepel J, Linehan WM, Wang XW, Yang Y, Neckers L. Alternative splicing of the cell fate determinant Numb in hepatocellular carcinoma. Hepatology 2015; 62:1122-31. [PMID: 26058814 PMCID: PMC4589429 DOI: 10.1002/hep.27923] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 06/01/2015] [Indexed: 12/30/2022]
Abstract
UNLABELLED The cell fate determinant Numb is aberrantly expressed in cancer. Numb is alternatively spliced, with one isoform containing a long proline-rich region (PRR(L) ) compared to the other with a short PRR (PRR(S) ). Recently, PRR(L) was reported to enhance proliferation of breast and lung cancer cells. However, the importance of Numb alternative splicing in hepatocellular carcinoma (HCC) remains unexplored. We report here that Numb PRR(L) expression is increased in HCC and associated with early recurrence and reduced overall survival after surgery. In a panel of HCC cell lines, PRR(L) generally promotes and PRR(S) suppresses proliferation, migration, invasion, and colony formation. Knockdown of PRR(S) leads to increased Akt phosphorylation and c-Myc expression, and Akt inhibition or c-Myc silencing dampens the proliferative impact of Numb PRR(S) knockdown. In the cell models explored in this study, alternative splicing of Numb PRR isoforms is coordinately regulated by the splicing factor RNA-binding Fox domain containing 2 (RbFox2) and the kinase serine/arginine protein-specific kinase 2 (SRPK2). Knockdown of the former causes accumulation of PRR(L) , while SRPK2 knockdown causes accumulation of PRR(S) . The subcellular location of SRPK2 is regulated by the molecular chaperone heat shock protein 90, and heat shock protein 90 inhibition or knockdown phenocopies SRPK2 knockdown in promoting accumulation of Numb PRR(S) . Finally, HCC cell lines that predominantly express PRR(L) are differentially sensitive to heat shock protein 90 inhibition. CONCLUSION Alternative splicing of Numb may provide a useful prognostic biomarker in HCC and is pharmacologically tractable.
Collapse
Affiliation(s)
- Yin Ying Lu
- Center for Therapeutic Research of Hepatocarcinoma, Beijing 302 Hospital, 100 Xi Si Huan Middle Road, Beijing 100039, China
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| | - Wanping Xu
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| | - Junfang Ji
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| | - Youfeng Yang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| | - Jianhui Qu
- Center for Therapeutic Research of Hepatocarcinoma, Beijing 302 Hospital, 100 Xi Si Huan Middle Road, Beijing 100039, China
| | - Zhen Zeng
- Center for Therapeutic Research of Hepatocarcinoma, Beijing 302 Hospital, 100 Xi Si Huan Middle Road, Beijing 100039, China
| | - Chunping Wang
- Center for Therapeutic Research of Hepatocarcinoma, Beijing 302 Hospital, 100 Xi Si Huan Middle Road, Beijing 100039, China
| | - Xiujuan Chang
- Center for Therapeutic Research of Hepatocarcinoma, Beijing 302 Hospital, 100 Xi Si Huan Middle Road, Beijing 100039, China
| | - Yan Chen
- Center for Therapeutic Research of Hepatocarcinoma, Beijing 302 Hospital, 100 Xi Si Huan Middle Road, Beijing 100039, China
| | - Alok Mishra
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| | - Max Xu
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Jane Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| | - Xin Wei Wang
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| | - Yongping Yang
- Center for Therapeutic Research of Hepatocarcinoma, Beijing 302 Hospital, 100 Xi Si Huan Middle Road, Beijing 100039, China
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| |
Collapse
|
29
|
Jeon MS, Song SH, Yun J, Kang JY, Kim HP, Han SW, Kim TY. Aberrant Epigenetic Modifications of LPHN2 Function as a Potential Cisplatin-Specific Biomarker for Human Gastrointestinal Cancer. Cancer Res Treat 2015; 48:676-86. [PMID: 26511811 PMCID: PMC4843720 DOI: 10.4143/crt.2015.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/01/2015] [Indexed: 12/22/2022] Open
Abstract
Purpose Epigenetic alterations of specific genes have recently been identified as diagnostic biomarkers for human cancers. However, there are currently no standardized epigenetic biomarkers for drug sensitivity in human gastrointestinal cancer. Therefore, the aim of this study is to identify a novel epigenetic biomarker in gastrointestinal cancer. Materials and Methods Using bisulfite sequencing and pyrosequencing analysis, DNA methylation patterns of gastric, colon primary tissues and their cancer cells were analyzed, and histone modifications were analyzed using chromatin immunoprecipitation assay. In addition, cancer cells were exposed to cisplatin and treated with a DNA methyltransferase inhibitor. Results We report that in human gastric and colon cancers, latrophilin 2 (LPHN2) is silenced by epigenetic modifications, including CpG island methylation and aberrant histone modifications. We also confirmed that LPHN2 was silenced by DNA hypermethylation in primary gastric and colon tumor tissues compared to their normal counterparts. Interestingly, we found that cancer cells with methylated LPHN2 showed higher sensitivity to cisplatin. Also, 5-aza- 2′-deoxycytidine combined with cisplatin decreased the cytotoxicity of cisplatin in cancer cells with methylated LPHN2. In addition, LPHN2 knockdown in cancer cells with high LPHN2 expression sensitized these cells to the anti-proliferative effects of cisplatin. Conclusion In human gastrointestinal cancer, we found that LPHN2 is regulated by epigenetic modifications, and that cancer cells with lower LPHN2 expression show higher sensitivity to cisplatin. Therefore, the methylation status of LPHN2 is a potential novel epigenetic biomarker for cisplatin treatment in human gastric and colon cancers.
Collapse
Affiliation(s)
- Mi-Seong Jeon
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Jiyeon Yun
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Jee-Youn Kang
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Hwang-Phill Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Tae-You Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
30
|
Prochazka L, Tesarik R, Turanek J. Regulation of alternative splicing of CD44 in cancer. Cell Signal 2014; 26:2234-9. [PMID: 25025570 DOI: 10.1016/j.cellsig.2014.07.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 02/07/2023]
Abstract
CD44 is a hyaluronan binding cell surface signal transducing receptor that influences motility, cell survival and proliferation as well as the formation of tumor microenvironment. CD44 contains two variable regions encoded by variable exons. Alternative splicing, which is often deregulated in cancer, can produce various isoforms of CD44 with properties that may have different tissue specific effects and therefore even diverse effects on cancer progression. This review summarizes and puts together all major regulators of alternative splicing of CD44 in cancer that have been documented so far and that have an experimentally proved effect on CD44 isoform switching. It is important to better understand the mechanisms of alternative splicing of CD44, where all the variability of CD44 originates, to be able to explain the isoform switching and occurrence of variant isoforms of CD44 (CD44v) in cancer.
Collapse
Affiliation(s)
- Lubomir Prochazka
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic.
| | - Radek Tesarik
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Jaroslav Turanek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|