1
|
Wu Q, Deng M, Zhao X, Long J, Zhang J. Screening and validation of optimal real-time PCR reference genes for Abelmoschus Manihot. Sci Rep 2025; 15:11045. [PMID: 40169838 PMCID: PMC11961658 DOI: 10.1038/s41598-025-96110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/26/2025] [Indexed: 04/03/2025] Open
Abstract
Abelmoschus Manihot is an important medicinal and edible plant known for its functional secondary metabolites. However, little is known about the key genes involved in production of secondary metabolites in A. manihot. This is largely due to the lack of effective gene expression detection systems for A. manihot, making the screening of real-time PCR reference genes a prerequisite. In this study, 11 candidate reference genes were screened and cloned from A. manihot, and their expression stability was evaluated in different tissues under different flowering stages using four algorithms: geNorm, NormFinder, BestKeeper, and RefFinder. The expression stability of eIF and PP2A1 was the highest, while that of tubulin alpha (TUA) was the lowest. The combined use of the two most stable reference genes, eIF and PP2A1, met the experimental requirements for normalizing gene expression in A. manihot. Furthermore, the gene expression of transcription factors bHLH147 and bHLH148 was further validated by data normalization. This study identified potential reference genes in different A. manihot tissues, paving the way for functional gene analysis and dissecting metabolite regulation mechanisms in A. manihot.
Collapse
Affiliation(s)
- Qixuan Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Meixin Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaolan Zhao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianmei Long
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianxia Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Wu B, Sun M, Zhong T, Zhang J, Lei T, Yan Y, Chen X, Nan R, Sun F, Zhang C, Xi Y. Genome-wide identification and expression analysis of two-component system genes in switchgrass (Panicum virgatum L.). BMC PLANT BIOLOGY 2024; 24:1014. [PMID: 39465364 PMCID: PMC11520087 DOI: 10.1186/s12870-024-05687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
The two-component system (TCS) consists of histidine kinase (HK), histidine phosphate transfer protein (HP), and response regulatory factor (RR). It is one of the most crucial components of signal transduction in plants, playing a significant role in regulating plant growth, development, and responses to various abiotic stresses. Although TCS genes have been extensively identified in a variety of plants, the genome-wide recognition and examination of TCS in switchgrass remain unreported. Accordingly, this study identified a total of 87 TCS members in the genome of switchgrass, comprising 20 HK(L)s, 10 HPs, and 57 RRs. Detailed analyses were also conducted on their gene structures, conserved domains, and phylogenetic relationships. Moreover, this study analysed the gene expression profiles across diverse organs and investigated their response patterns to adverse environmental stresses. Results revealed that 87 TCS genes were distributed across 18 chromosomes, with uneven distribution. Expansion of these genes in switchgrass was achieved through both fragment and tandem duplication. PvTCS members are relatively conservative in the evolutionary process, but the gene structure varies significantly. Various cis-acting elements, varying in types and amounts, are present in the promoter region of PvTCSs, all related to plant growth, development, and abiotic stress, due to the TCS gene structure. Protein-protein interaction and microRNA prediction suggest complex interactions and transcriptional regulation among TCS members. Additionally, most TCS members are expressed in roots and stems, with some genes showing organ-specific expression at different stages of leaf and inflorescence development. Under conditions of abiotic stress such as drought, low temperature, high temperature, and salt stress, as well as exogenous abscisic acid (ABA), the expression of most TCS genes is either stimulated or inhibited. Our systematic analysis could offer insight into the characterization of the TCS genes, and further the growth of functional studies in switchgrass.
Collapse
Affiliation(s)
- Baolin Wu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Mengyu Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Tao Zhong
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Jiawei Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Tingshu Lei
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yuming Yan
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Xiaohong Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Rui Nan
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Zhang S, Ma J, Wang W, Zhang C, Sun F, Xi Y. The overexpression of the switchgrass (Panicum virgatum L.) genes PvTOC1-N or PvLHY-K affects circadian rhythm and hormone metabolism in transgenic Arabidopsis seedlings. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:126. [PMID: 39363306 PMCID: PMC11451149 DOI: 10.1186/s13068-024-02574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Switchgrass (Panicum virgatum L.) is a perennial C4 warm-season grass known for its high-biomass yield and wide environmental adaptability, making it an ideal bioenergy crop. Despite its potential, switchgrass seedlings grow slowly, often losing out to weeds in field conditions and producing limited biomass in the first year of planting. Furthermore, during the reproductive growth stage, the above-ground biomass rapidly increases in lignin content, creating a significant saccharification barrier. Previous studies have identified rhythm-related genes TOC1 and LHY as crucial to the slow seedling development in switchgrass, yet the precise regulatory functions of these genes remain largely unexplored. In this study, the genes TOC1 and LHY were characterized within the tetraploid genome of switchgrass. Gene expression analysis revealed that PvTOC1 and PvLHY exhibit circadian patterns under normal growth conditions, with opposing expression levels over time. PvTOC1 genes were predominantly expressed in florets, vascular bundles, and seeds, while PvLHY genes showed higher expression in stems, leaf sheaths, and nodes. Overexpression of PvTOC1 from the N chromosome group (PvTOC1-N) or PvLHY from the K chromosome group (PvLHY-K) in Arabidopsis thaliana led to alterations in circadian rhythm and hormone metabolism, resulting in shorter roots, delayed flowering, and decreased resistance to oxidative stress. These transgenic lines exhibited reduced sensitivity to hormones and hormone inhibitors, and displayed altered gene expression in the biosynthesis and signal transduction pathways of abscisic acid (ABA), gibberellin (GA), 3-indoleacetic acid (IAA), and strigolactone (SL). These findings highlight roles of PvTOC1-N and PvLHY-K in plant development and offer a theoretical foundation for genetic improvements in switchgrass and other crops.
Collapse
Affiliation(s)
- Shumeng Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiayang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weiwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Ebrahimi A, Gharanjik S, Azadvari E, Rashidi-Monfared S. Characterizing reference genes for high-fidelity gene expression analysis under different abiotic stresses and elicitor treatments in fenugreek leaves. PLANT METHODS 2024; 20:40. [PMID: 38491388 PMCID: PMC10943880 DOI: 10.1186/s13007-024-01167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Quantifying gene expression is a critical aspect of applied genomics research across all organisms, and real-time PCR has emerged as a powerful tool for this purpose. However, selecting appropriate internal control genes for data normalization presents specific challenges. This study aimed to identify suitable reference genes for gene expression analysis under various conditions, encompassing salinity, low and high-temperature stresses, and different elicitor treatments. These treatments included titanium dioxide, cold plasma, 24-epibrassinolide, and melatonin, resulting in a total of 13 unique treatments and 148 treatment combinations applied to fenugreek plants. RESULTS As per the analysis performed with the BestKeeper tool, EEF-1α, and GAPDH were recognized as the most stable reference genes under the majority of conditions. Furthermore, the GeNorm and NormFinder tools identified β-tubulin and EEF-1α as the most stable reference genes. The findings of this research demonstrated that, although the stability of three reference genes expression was acceptable in almost all evaluated treatments, fluctuations in their expression were observed under the treatments of cold stress with TiO2 NPs application, cold plasma application with salinity stress, and cold plasma application with high-temperature stress compared to others. Simultaneously, the GeNorm analysis results demonstrated that in the mentioned treatments, relying on only one reference gene is inadequate. To corroborate the results, we examined the expression profile of the SSR gene, a pivotal gene in diosgenin biosynthesis, under all investigated treatments and treatment combinations. The outcomes suggested that employing stable reference genes yielded highly consistent results. CONCLUSIONS The varying expression patterns of the target genes emphasize the crucial need for precise optimization of experimental conditions and selecting stable reference genes to achieve accurate results in gene expression studies utilizing real-time PCR. These findings offer valuable insights into the selection of appropriate reference genes for gene expression analysis under diverse conditions using real-time PCR.
Collapse
Affiliation(s)
- Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| | - Shahrokh Gharanjik
- Department of Plant Breeding and Biotechnology, Faculty of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Elham Azadvari
- Horticultural Sciences Department, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Sajad Rashidi-Monfared
- Plant Breeding and Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Wang X, Shu X, Su X, Xiong Y, Xiong Y, Chen M, Tong Q, Ma X, Zhang J, Zhao J. Selection of Suitable Reference Genes for RT-qPCR Gene Expression Analysis in Centipedegrass under Different Abiotic Stress. Genes (Basel) 2023; 14:1874. [PMID: 37895223 PMCID: PMC10606319 DOI: 10.3390/genes14101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
As a C4 warm-season turfgrass, centipedegrass (Eremochloa ophiuroides (Munro) Hack.) is known for its exceptional resilience to intensive maintenance practices. In this research, the most stably expressed reference genes in the leaves of centipedegrass under different stress treatments, including salt, cold, drought, aluminum (Al), and herbicide, were screened by the quantitative real-time PCR (RT-qPCR) technique. The stability of 13 candidate reference genes was evaluated by software GeNorm V3.4, NormFinder V20, BestKeeper V1.0, and ReFinder V1.0. The results of this experiment demonstrated that the expression of the UBC (ubiquitin-conjugating enzyme) remained the most stable under cold and Al stress conditions. On the other hand, the MD (malate dehydrogenase) gene exhibited the best performance in leaf tissues subjected to salt and drought stresses. Under herbicide stress, the expression level of the RIP (60S ribosomal protein L2) gene ranked the highest. The expression levels of abiotic stress-associated genes such as PIP1, PAL, COR413, ALMT9, and BAR were assessed to validate the reliability of the selected reference genes. This study provides valuable information and reference points for gene expression under abiotic stress conditions in centipedegrass.
Collapse
Affiliation(s)
- Xiaoyun Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xin Shu
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xiaoli Su
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Minli Chen
- Sichuan Academy of Grassland Sciences, Pidu, Chengdu 611731, China
| | - Qi Tong
- Sichuan Academy of Grassland Sciences, Pidu, Chengdu 611731, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jianbo Zhang
- Sichuan Academy of Grassland Sciences, Pidu, Chengdu 611731, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
6
|
Zhou Y, Zhang Y, Mu D, Lu Y, Chen W, Zhang Y, Zhang R, Qin Y, Yuan J, Pan L, Tang Q. Selection of Reference Genes in Evodia rutaecarpa var. officinalis and Expression Patterns of Genes Involved in Its Limonin Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3197. [PMID: 37765365 PMCID: PMC10534417 DOI: 10.3390/plants12183197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
E. rutaecarpa var. officinalis is a traditional Chinese medicinal plant known for its therapeutic effects, which encompass the promotion of digestion, the dispelling of cold, the alleviation of pain, and the exhibition of anti-inflammatory and antibacterial properties. The principal active component of this plant, limonin, is a potent triterpene compound with notable pharmacological activities. Despite its significance, the complete biosynthesis pathway of limonin in E. rutaecarpa var. officinalis remains incompletely understood, and the underlying molecular mechanisms remain unexplored. The main purpose of this study was to screen the reference genes suitable for expression analysis in E. rutaecarpa var. officinalis, calculate the expression patterns of the genes in the limonin biosynthesis pathway, and identify the relevant enzyme genes related to limonin biosynthesis. The reference genes play a pivotal role in establishing reliable reference standards for normalizing the gene expression data, thereby ensuring precision and credibility in the biological research outcomes. In order to identify the optimal reference genes and gene expression patterns across the diverse tissues (e.g., roots, stems, leaves, and flower buds) and developmental stages (i.e., 17 July, 24 August, 1 September, and 24 October) of E. rutaecarpa var. officinalis, LC-MS was used to analyze the limonin contents in distinct tissue samples and developmental stages, and qRT-PCR technology was employed to investigate the expression patterns of the ten reference genes and eighteen genes involved in limonin biosynthesis. Utilizing a comprehensive analysis that integrated three software tools (GeNorm ver. 3.5, NormFinder ver. 0.953 and BestKeeper ver. 1.0) and Delta Ct method alongside the RefFinder website, the best reference genes were selected. Through the research, we determined that Act1 and UBQ served as the preferred reference genes for normalizing gene expression during various fruit developmental stages, while Act1 and His3 were optimal for different tissues. Using Act1 and UBQ as the reference genes, and based on the different fruit developmental stages, qRT-PCR analysis was performed on the pathway genes selected from the "full-length transcriptome + expression profile + metabolome" data in the limonin biosynthesis pathway of E. rutaecarpa var. officinalis. The findings indicated that there were consistent expression patterns of HMGCR, SQE, and CYP450 with fluctuations in the limonin contents, suggesting their potential involvement in the limonin biosynthesis of E. rutaecarpa var. officinalis. This study lays the foundation for further research on the metabolic pathway of limonin in E. rutaecarpa var. officinalis and provides reliable reference genes for other researchers to use for conducting expression analyses.
Collapse
Affiliation(s)
- Yu Zhou
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (Y.Z.); (D.M.); (Y.L.); (W.C.); (Y.Z.); (R.Z.)
| | - Yuxiang Zhang
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (Y.Z.); (D.M.); (Y.L.); (W.C.); (Y.Z.); (R.Z.)
| | - Detian Mu
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (Y.Z.); (D.M.); (Y.L.); (W.C.); (Y.Z.); (R.Z.)
| | - Ying Lu
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (Y.Z.); (D.M.); (Y.L.); (W.C.); (Y.Z.); (R.Z.)
| | - Wenqiang Chen
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (Y.Z.); (D.M.); (Y.L.); (W.C.); (Y.Z.); (R.Z.)
| | - Yao Zhang
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (Y.Z.); (D.M.); (Y.L.); (W.C.); (Y.Z.); (R.Z.)
| | - Ruiying Zhang
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (Y.Z.); (D.M.); (Y.L.); (W.C.); (Y.Z.); (R.Z.)
| | - Ya Qin
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
| | - Jianhua Yuan
- Changsha Hemao Agricultural Development Co., Ltd., Ningxiang County, Changsha 410609, China;
| | - Limei Pan
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
| | - Qi Tang
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (Y.Z.); (D.M.); (Y.L.); (W.C.); (Y.Z.); (R.Z.)
| |
Collapse
|
7
|
Xie K, Guo J, Wang S, Ye W, Sun F, Zhang C, Xi Y. Genome-wide identification, classification, and expression analysis of heat shock transcription factor family in switchgrass (Panicum virgatum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107848. [PMID: 37392668 DOI: 10.1016/j.plaphy.2023.107848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
Switchgrass is one of the most promising bioenergy crops and is generally cultivated in arid climates and poor soils. Heat shock transcription factors (Hsfs) are key regulators of plant responses to abiotic and biotic stressors. However, their role and mechanism of action in switchgrass have not been elucidated. Hence, this study aimed to identify the Hsf family in switchgrass and understand its functional role in heat stress signal transduction and heat tolerance by using bioinformatics and RT-PCR analysis. Forty-eight PvHsfs were identified and divided into three main classes based on their gene structure and phylogenetic relationships: HsfA, HsfB, and HsfC. The results of the bioinformatics analysis showed a DNA-binding domain (DBD) at the N-terminal in PvHsfs, and they were not evenly distributed on all chromosomes except for chromosomes 8 N and 8 K. Many cis-elements related to plant development, stress responses, and plant hormones were identified in the promoter sequence of each PvHsf. Segmental duplication is the primary force underlying Hsf family expansion in switchgrass. The results of the expression pattern of PvHsfs in response to heat stress showed that PvHsf03 and PvHsf25 might play critical roles in the early and late stages of switchgrass response to heat stress, respectively, and HsfB mainly showed a negative response to heat stress. Ectopic expression of PvHsf03 in Arabidopsis significantly increased the heat resistance of seedlings. Overall, our research lays a notable foundation for studying the regulatory network in response to deleterious environments and for further excavating tolerance genes in switchgrass.
Collapse
Affiliation(s)
- Kunliang Xie
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| | - Jinliang Guo
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Shaoyu Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Wenjie Ye
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Draga S, Gabelli G, Palumbo F, Barcaccia G. Genome-Wide Datasets of Chicories ( Cichorium intybus L.) for Marker-Assisted Crop Breeding Applications: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:11663. [PMID: 37511422 PMCID: PMC10380310 DOI: 10.3390/ijms241411663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cichorium intybus L. is the most economically important species of its genus and among the most important of the Asteraceae family. In chicory, many linkage maps have been produced, several sets of mapped and unmapped markers have been developed, and dozens of genes linked to traits of agronomic interest have been investigated. This treasure trove of information, properly cataloged and organized, is of pivotal importance for the development of superior commercial products with valuable agronomic potential in terms of yield and quality, including reduced bitter taste and increased inulin production, as well as resistance or tolerance to pathogens and resilience to environmental stresses. For this reason, a systematic review was conducted based on the scientific literature published in chicory during 1980-2023. Based on the results obtained from the meta-analysis, we created two consensus maps capable of supporting marker-assisted breeding (MAB) and marker-assisted selection (MAS) programs. By taking advantage of the recently released genome of C. intybus, we built a 639 molecular marker-based consensus map collecting all the available mapped and unmapped SNP and SSR loci available for this species. In the following section, after summarizing and discussing all the genes investigated in chicory and related to traits of interest such as reproductive barriers, sesquiterpene lactone biosynthesis, inulin metabolism and stress response, we produced a second map encompassing 64 loci that could be useful for MAS purposes. With the advent of omics technologies, molecular data chaos (namely, the situation where the amount of molecular data is so complex and unmanageable that their use becomes challenging) is becoming far from a negligible issue. In this review, we have therefore tried to contribute by standardizing and organizing the molecular data produced thus far in chicory to facilitate the work of breeders.
Collapse
Affiliation(s)
| | | | - Fabio Palumbo
- Department of Agronomy Food Natural Resources Animals Environment, Campus of Agripolis, University of Padova, 35020 Legnaro, Italy; (S.D.); (G.G.)
| | - Gianni Barcaccia
- Department of Agronomy Food Natural Resources Animals Environment, Campus of Agripolis, University of Padova, 35020 Legnaro, Italy; (S.D.); (G.G.)
| |
Collapse
|
9
|
Zhong Y, Gai Y, Gao J, Nie W, Bao Z, Wang W, Xu X, Wu J, He Y. Selection and validation of reference genes for quantitative real-time PCR normalization in Psoralea corylifolia (Babchi) under various abiotic stress. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153722. [PMID: 35605384 DOI: 10.1016/j.jplph.2022.153722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Psoralea corylifolia L. is a popular herb and has long been used in traditional Ayurvedic and Chinese medicine owing to its extensive pharmacological activities, especially in the treatment of various shin diseases. To date, the systematic evaluation and selection of the optimum reference genes for gene expression analysis of P. corylifolia were not reported. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is a method for gene expression quantification. Selecting appropriate reference genes is the prerequisite for accurate normalization of RT-qPCR results. This study assessed the expression stability of 10 candidate reference genes under different abiotic stresses. First, amplification primers for RT-qPCR were designed and received testing and optimization. Then, expression data from each candidate gene were evaluated based on three statistical algorithms, and their results were further integrated into a comprehensive ranking based on the geometric mean. Additionally, one target gene, i.e., 1-aminocyclopropane-1-carboxylate oxidase (ACO), was used to validate the effectiveness of the selected reference. Our analysis suggested that thioredoxin-like protein YLS8 (YLS8), TIP41-like family protein (TIP41), and cyclophilin 2 (CYP2) genes provided superior expression normalization under different abiotic stresses. Overall, this work constitutes the first effort to select optimal endogenous controls for RT-qPCR studies of gene expression in P. corylifolia. It also provides a reasonable normalization standard and basis for further analysis of the gene expression of bioactive components in P. corylifolia.
Collapse
Affiliation(s)
- Yuan Zhong
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Yanan Gai
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Jiajia Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Weifen Nie
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhenzhen Bao
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Weiqi Wang
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Xiaoqing Xu
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Jie Wu
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Yuedong He
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
10
|
Tiedge K, Destremps J, Solano-Sanchez J, Arce-Rodriguez ML, Zerbe P. Foxtail mosaic virus-induced gene silencing (VIGS) in switchgrass (Panicum virgatum L.). PLANT METHODS 2022; 18:71. [PMID: 35644680 PMCID: PMC9150325 DOI: 10.1186/s13007-022-00903-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/07/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Although the genome for the allotetraploid bioenergy crop switchgrass (Panicum virgatum) has been established, limitations in mutant resources have hampered in planta gene function studies toward crop optimization. Virus-induced gene silencing (VIGS) is a versatile technique for transient genetic studies. Here we report the implementation of foxtail mosaic virus (FoMV)-mediated gene silencing in switchgrass in above- and below-ground tissues and at different developmental stages. RESULTS The study demonstrated that leaf rub-inoculation is a suitable method for systemic gene silencing in switchgrass. For all three visual marker genes, Magnesium chelatase subunit D (ChlD) and I (ChlI) as well as phytoene desaturase (PDS), phenotypic changes were observed in leaves, albeit at different intensities. Gene silencing efficiency was verified by RT-PCR for all tested genes. Notably, systemic gene silencing was also observed in roots, although silencing efficiency was stronger in leaves (~ 63-94%) as compared to roots (~ 48-78%). Plants at a later developmental stage were moderately less amenable to VIGS than younger plants, but also less perturbed by the viral infection. CONCLUSIONS Using FoMV-mediated VIGS could be achieved in switchgrass leaves and roots, providing an alternative approach for studying gene functions and physiological traits in this important bioenergy crop.
Collapse
Affiliation(s)
- Kira Tiedge
- Department of Plant Biology, University of California, Davis, USA.
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | | | | | | | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, USA
| |
Collapse
|
11
|
Liu H, Lu Y, Wang X, Wang X, Li R, Lu C, Lan X, Chen Y. Selection and Validation of Reference Genes for RT-qPCR Analysis in Tibetan Medicinal Plant Saussurea Laniceps Callus under Abiotic Stresses and Hormone Treatments. Genes (Basel) 2022; 13:904. [PMID: 35627289 PMCID: PMC9140610 DOI: 10.3390/genes13050904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Real-time quantitative PCR (RT-qPCR) is an important technique for studying gene expression analysis, but accurate and reliable results depend on the use of a stable reference gene. This study proposes to test the expression stability of candidate reference genes in the callus of Saussurea laniceps, a unique Tibetan medicinal plant. Based on the S. laniceps callus transcriptome, eleven candidate reference genes, including TUA2, TUB3, TUB8, TIF3B1, TIF3H1, ELF5A, PP2AA2, UEV1D, UBL5, UBC36, and SKIP1), were validated for RT-qPCR normalization in the callus under abiotic stress (salt, cold, and UV) and hormone treatments (abscisic acid, MeJA, and salicylic acid). The stability of the candidate genes was evaluated in all the samples of S. laniceps. Comprehensive analysis of all samples showed that the best reference genes were UBC36 and UBL5. ELF5A and TIF3B1 were ranked as the most stable genes in the sample sets under abiotic stress. For hormone stimulation, UBC36 and TIF3H1 genes had the best stability. This study provides useful guidelines and a starting point for reference gene selection for expression analysis using RT-qPCR techniques in S. laniceps.
Collapse
Affiliation(s)
- Huan Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.L.); (Y.L.); (X.W.); (R.L.); (C.L.)
| | - Yaning Lu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.L.); (Y.L.); (X.W.); (R.L.); (C.L.)
| | - Xiaojing Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.L.); (Y.L.); (X.W.); (R.L.); (C.L.)
| | - Xiaowei Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
| | - Rongchen Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.L.); (Y.L.); (X.W.); (R.L.); (C.L.)
| | - Cunfu Lu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.L.); (Y.L.); (X.W.); (R.L.); (C.L.)
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi 860000, China
| | - Yuzhen Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.L.); (Y.L.); (X.W.); (R.L.); (C.L.)
| |
Collapse
|
12
|
Xie K, Wang Y, Bai X, Ye Z, Zhang C, Sun F, Zhang C, Xi Y. Overexpression of PvSTK1 gene from Switchgrass (Panicum virgatum L.) affects flowering time and development of floral organ in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:93-104. [PMID: 35276599 DOI: 10.1016/j.plaphy.2022.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Flowering means that the plant enters the reproductive growth stage, which is a crucial stage in the plant life cycle. Delaying flowering time to prolong vegetative growth is an important method to increase biomass yield and saccharification efficiency in switchgrass, It is of great significance to study the molecular mechanism of plant flowering and regulate the process of plant flowering in the process of biomass production. In this study, we identified 55 serine/threonine-protein kinase genes related to flower development from the switchgrass transcriptome database. Simultaneously, we cloned one of them, PvSTK1, whose expression level and differential fold were significantly higher than other members. PvSTK1 is located on chromosome 8N and its protein was in the cell membrane, cytoplasm, and nucleus. The spatio-temporal expression analysis of the PvSTK1 in switchgrass displayed that the PvSTK1 is crucial in vegetative period, however, not in the transition to reproductive period. Overexpression of PvSTK1 in Arabidopsis resulted in down-regulation of flower-promoting genes and up-regulation of flower-suppressing genes, thereby delaying flowering. In addition, PvSTK1 caused atrophy of the ovules of the florets at the base of the inflorescence, leading to sterility of the florets. The function of PvSTK1 is to inhibit the development of floral organs, and its overexpression can prolong its vegetative period. In the future, overexpression of the PvSTK1 gene in switchgrass will change the flowering time and increase yield and utilization efficiency of biomass.
Collapse
Affiliation(s)
- Kunliang Xie
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yongfeng Wang
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xinchen Bai
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Zi Ye
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Chuqiu Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
13
|
Yoon S, Bragg J, Aucar-Yamato S, Chanbusarakum L, Dluge K, Cheng P, Blumwald E, Gu Y, Tobias CM. Haploidy and aneuploidy in switchgrass mediated by misexpression of CENH3. THE PLANT GENOME 2022:e20209. [PMID: 35470589 DOI: 10.1002/tpg2.20209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Cross bred species such as switchgrass may benefit from advantageous breeding strategies requiring inbred lines. Doubled haploid production methods offer several ways that these lines can be produced that often involve uniparental genome elimination as the rate limiting step. We have used a centromere-mediated genome elimination strategy in which modified CENH3 is expressed to induce the process. Transgenic tetraploid switchgrass lines coexpressed Cas9, a poly-cistronic tRNA-gRNA tandem array containing eight guide RNAs that target two CENH3 genes, and different chimeric versions of CENH3 with alterations to the N-terminal tail region. Genotyping of CENH3 genes in transgenics identified edits including frameshift mutations and deletions in one or both copies of the two CENH3 genes. Flow cytometry of T1 seedlings identified two T0 lines that produced five haploid individuals representing an induction rate of 0.5% and 1.4%. Eight different T0 lines produced aneuploids at rates ranging from 2.1 to 14.6%. A sample of aneuploid lines were sequenced at low coverage and aligned to the reference genome, revealing missing chromosomes and chromosome arms.
Collapse
Affiliation(s)
- Sangwoong Yoon
- USDA-ARS, Western Regional Research Laboratory, Albany, CA, USA
- Dep. of Plant Sciences, Univ. of California, Davis, CA, USA
| | - Jennifer Bragg
- USDA-ARS, Western Regional Research Laboratory, Albany, CA, USA
| | | | | | - Kurtis Dluge
- USDA-ARS, Western Regional Research Laboratory, Albany, CA, USA
| | - Prisca Cheng
- USDA-ARS, Western Regional Research Laboratory, Albany, CA, USA
| | | | - Yong Gu
- USDA-ARS, Western Regional Research Laboratory, Albany, CA, USA
| | | |
Collapse
|
14
|
Zong J, Chen J, Li L, Li J, Li D, Wang J, Liu J, Liu J. Reference gene selection for quantitative RT-PCR in Miscanthus sacchariflorus under abiotic stress conditions. Mol Biol Rep 2022; 49:907-915. [PMID: 35013862 DOI: 10.1007/s11033-021-06902-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 10/29/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Reference genes are necessary for quantitative real-time PCR (qRT-PCR) analysis and their stability can directly influence the accuracy of gene expression result. Miscanthus sacchariflorus, a perennial C4 grass that serves as promising biofuel plant for temperate climates, has not been explored for the identification of stable reference genes yet. MATERIALS AND METHODS Nine potential reference genes (ACT, EF1a, FBOX, GAPDH, PP2A, SAND, TIP41, TUB and UBC) of M. sacchariflorus under different abiotic (salinity, drought and cadmium) stresses, as well as in two tissues (roots and leaves) were evaluated. The expression stability of these genes were analyzed by four commonly used software programs (geNorm, NormFinder, BestKeeper, ΔCt method and RefFinder). RESULTS Our results found that FBOX and SAND are the most stable genes among all tested samples. FBOX and EF1a are suitable for gene expression normalization of cadmium-treated samples and salinity-treated leaves. FBOX and PP2A are appropriate reference genes for salt-stressed roots and PEG-treated leaves. The traditional reference gene ACT and GAPDH exhibited the most variable pattern, which would not be recommended for qRT-PCR analysis under different abiotic stresses. Furthermore, the expression levels of PIP2, NHX1 and MT2a under drought, salt and cadmium treatment were detected with above reference genes. CONCLUSIONS This work identified the appropriate reference genes for qRT-PCR in M. sacchariflorus and FBOX was recommended to be effective internal control for gene expression normalization in M. sacchariflorus in response to different abiotic stresses.
Collapse
Affiliation(s)
- Junqin Zong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Ling Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jianjian Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Dandan Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jingjing Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jun Liu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
15
|
Liu YP, Zhang Y, Liu F, Liu T, Chen JY, Fu G, Zheng CY, Su DD, Wang YN, Zhou HK, Su X, Aj H, Wang XM. Establishment of reference (housekeeping) genes via quantitative real-time PCR for investigation of the genomic basis of abiotic stress resistance in Psammochloa villosa (Poaceae). JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153575. [PMID: 34837885 DOI: 10.1016/j.jplph.2021.153575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Psammochloa villosa is a desert plant growing in Northwest China with considerable resistance to abiotic stress, including drought, cold, and salt. To facilitate future studies of stress resistance in Psammochloa villosa, we sought to establish a suite of reference (or housekeeping) genes for utilization within future gene expression studies. Specifically, we selected nine candidate genes based on prior studies and new transcriptomic data for P. villosa, and we evaluated their expression stability in three different tissues of P. villosa under different treatments simulating abiotic stress conditions using four different bioinformatics assessments. Our results showed that TIP41 (TIP41-like family protein) was the most stable reference gene in drought- and salt-stressed leaves and salt-stressed stems, ELF-1α (elongation factor 1-α) was the most stable in cold-stressed leaves and drought- and salt-stressed roots, ACT (actin) was the most stable in drought-stressed stems, TUA (α-tubulin) was the most stable in cold-stressed stems, and 18S rRNA (18S ribosomal RNA) was the most stable in cold-stressed roots. Additionally, we tested the utility of these candidate reference genes to detect the expression pattern of P5CS (Δ1-pyrroline-5-carboxylate synthetase), which is a drought-related gene. This study is the first report on selecting and validating reference genes of P. villosa under various stress conditions and will benefit future investigations of the genomic mechanisms of stress resistance in this ecologically important species.
Collapse
Affiliation(s)
- Yu Ping Liu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China.
| | - Yu Zhang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Feng Liu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Tao Liu
- School of Geography, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Land Surface Processes and Ecological Conservation of the Qinghai-Tibet Plateau, The Ministry of Education, Qinghai Normal University, Xining, 810008, China
| | - Jin Yuan Chen
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Gui Fu
- School of Geography, Qinghai Normal University, Xining, 810008, China
| | - Chang Yuan Zheng
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Dan Dan Su
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Ya Nan Wang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Hua Kun Zhou
- Key Laboratory of Cold Regions Restoration Ecology in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Xu Su
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Land Surface Processes and Ecological Conservation of the Qinghai-Tibet Plateau, The Ministry of Education, Qinghai Normal University, Xining, 810008, China
| | - Harris Aj
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiu Mei Wang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| |
Collapse
|
16
|
Qiao Z, Yates TB, Shrestha HK, Engle NL, Flanagan A, Morrell‐Falvey JL, Sun Y, Tschaplinski TJ, Abraham PE, Labbé J, Wang Z, Hettich RL, Tuskan GA, Muchero W, Chen J. Towards engineering ectomycorrhization into switchgrass bioenergy crops via a lectin receptor-like kinase. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2454-2468. [PMID: 34272801 PMCID: PMC8633507 DOI: 10.1111/pbi.13671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 05/22/2023]
Abstract
Soil-borne microbes can establish compatible relationships with host plants, providing a large variety of nutritive and protective compounds in exchange for photosynthesized sugars. However, the molecular mechanisms mediating the establishment of these beneficial relationships remain unclear. Our previous genetic mapping and whole-genome resequencing studies identified a gene deletion event of a Populus trichocarpa lectin receptor-like kinase gene PtLecRLK1 in Populus deltoides that was associated with poor-root colonization by the ectomycorrhizal fungus Laccaria bicolor. By introducing PtLecRLK1 into a perennial grass known to be a non-host of L. bicolor, switchgrass (Panicum virgatum L.), we found that L. bicolor colonizes ZmUbipro-PtLecRLK1 transgenic switchgrass roots, which illustrates that the introduction of PtLecRLK1 has the potential to convert a non-host to a host of L. bicolor. Furthermore, transcriptomic and proteomic analyses on inoculated-transgenic switchgrass roots revealed genes/proteins overrepresented in the compatible interaction and underrepresented in the pathogenic defence pathway, consistent with the view that pathogenic defence response is down-regulated during compatible interaction. Metabolomic profiling revealed that root colonization in the transgenic switchgrass was associated with an increase in N-containing metabolites and a decrease in organic acids, sugars, and aromatic hydroxycinnamate conjugates, which are often seen in the early steps of establishing compatible interactions. These studies illustrate that PtLecRLK1 is able to render a plant susceptible to colonization by the ectomycorrhizal fungus L. bicolor and shed light on engineering mycorrhizal symbiosis into a non-host to enhance plant productivity and fitness on marginal lands.
Collapse
Affiliation(s)
- Zhenzhen Qiao
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Timothy B. Yates
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Bredesen Center for Interdisciplinary Research and Graduate EducationUniversity of TennesseeKnoxvilleTNUSA
| | - Him K. Shrestha
- Genome Science and TechnologyUniversity of TennesseeKnoxvilleTNUSA
- Chemical Science DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Nancy L. Engle
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | | | | | - Yali Sun
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | | | - Paul E. Abraham
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Chemical Science DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jessy Labbé
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | | | - Robert L. Hettich
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Chemical Science DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | | | | | - Jin‐Gui Chen
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| |
Collapse
|
17
|
Ray P, Guo Y, Chi MH, Krom N, Boschiero C, Watson B, Huhman D, Zhao P, Singan VR, Lindquist EA, Yan J, Adam C, Craven KD. Serendipita Fungi Modulate the Switchgrass Root Transcriptome to Circumvent Host Defenses and Establish a Symbiotic Relationship. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1128-1142. [PMID: 34260261 DOI: 10.1094/mpmi-04-21-0084-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fungal family Serendipitaceae encompasses root-associated lineages with endophytic, ericoid, orchid, and ectomycorrhizal lifestyles. Switchgrass is an important bioenergy crop for cellulosic ethanol production owing to high biomass production on marginal soils otherwise unfit for food crop cultivation. The aim of this study was to investigate the host plant responses to Serendipita spp. colonization by characterizing the switchgrass root transcriptome during different stages of symbiosis in vitro. For this, we included a native switchgrass strain, Serendipita bescii, and a related strain, S. vermifera, isolated from Australian orchids. Serendipita colonization progresses from thin hyphae that grow between root cells to, finally, the production of large, bulbous hyphae that fill root cells during the later stages of colonization. We report that switchgrass seems to perceive both fungi prior to physical contact, leading to the activation of chemical and structural defense responses and putative host disease resistance genes. Subsequently, the host defense system appears to be quenched and carbohydrate metabolism adjusted, potentially to accommodate the fungal symbiont. In addition, prior to contact, switchgrass exhibited significant increases in root hair density and root surface area. Furthermore, genes involved in phytohormone metabolism such as gibberellin, jasmonic acid, and salicylic acid were activated during different stages of colonization. Both fungal strains induced plant gene expression in a similar manner, indicating a conserved plant response to members of this fungal order. Understanding plant responsiveness to Serendipita spp. will inform our efforts to integrate them into forages and row crops for optimal plant-microbe functioning, thus facilitating low-input, sustainable agricultural practices.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Prasun Ray
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Yingqing Guo
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | | | - Nick Krom
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | | | - Bonnie Watson
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - David Huhman
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Patrick Zhao
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Vasanth R Singan
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | - Erika A Lindquist
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | - Juying Yan
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | - Catherine Adam
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | | |
Collapse
|
18
|
Tian D, Tang J, Luo L, Zhang Z, Du K, Larkin RM, Shi X, Zheng B. Influence of Switchgrass TDIF-like Genes on Arabidopsis Vascular Development. FRONTIERS IN PLANT SCIENCE 2021; 12:737219. [PMID: 34630487 PMCID: PMC8496505 DOI: 10.3389/fpls.2021.737219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
As a member of the CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (CLE) family, the dodecapeptide tracheary element differentiation inhibitory factor (TDIF) has a major impact on vascular development in plants. However, the influence of polymorphisms in the TDIF peptide motif on activity remains poorly understood. The model plant, Arabidopsis provides a fast and effective tool for assaying the activity of TDIF homologs. Five TDIF homologs from a group of 93 CLE genes in switchgrass (Panicum virgatum), a perennial biomass crop, named PvTDIF-like (PvTDIFL) genes were studied. The expression levels of PvTDIFL1, PvTDIFL3 MR3, and PvTDIFL3 MR2 were relatively high and all of them were expressed at the highest levels in the rachis of switchgrass. The precursor proteins for PvTDIFL1, PvTDIFL3MR3, and PvTDIFL3MR2 contained one, three, and two TDIFL motifs, respectively. Treatments with exogenous PvTDIFL peptides increased the number of stele cells in the hypocotyls of Arabidopsis seedlings, with the exception of PvTDIFL_4p. Heterologous expression of PvTDIFL1 in Arabidopsis strongly inhibited plant growth, increased cell division in the vascular tissue of the hypocotyl, and disrupted the cellular organization of the hypocotyl. Although heterologous expression of PvTDIFL3 MR3 and PvTDIFL3 MR2 also affected plant growth and vascular development, PvTDIFL activity was not enhanced by the multiple TDIFL motifs encoded by PvTDIFL3 MR3 and PvTDIFL3 MR2. These data indicate that in general, PvTDIFLs are functionally similar to Arabidopsis TDIF but that the processing and activities of the PvTDIFL peptides are more complex.
Collapse
Affiliation(s)
- Dongdong Tian
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Tobacco Research Institute, Chinese Academy of Agricultural Science, Qingdao, China
| | - Jingwen Tang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Liwen Luo
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhe Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Kebing Du
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, China
| | - Robert M. Larkin
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Xueping Shi
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, China
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Selection and validation of reference genes for RT-qPCR analysis in Desmodium styracifolium Merr. 3 Biotech 2021; 11:403. [PMID: 34458065 DOI: 10.1007/s13205-021-02954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022] Open
Abstract
Gene expression valuated by reverse transcription-quantitative PCR (RT-qPCR) are often applied to study the gene function. To obtain accurate and reliable results, the usage of stable reference genes is essential for RT-qPCR analysis. The traditional southern Chinese medicinal herb, Desmodium styracifolium Merr is well known for its remarkable effect on the treatment of urination disturbance, urolithiasis, edema and jaundice. However, there are no ready-made reference genes identified for D. styracifolium. In this study, 13 novel genes retrieved from transcriptome datasets of four different tissues were reported according to the coefficient of variation (CV) and maximum fold change (MFC) of gene expression. The expression stability of currently used Leguminosae ACT6 was compared to the 13 candidate reference genes in different tissues and 7-day-old seedlings under different experimental conditions, which was evaluated by five statistical algorithms (geNorm/NormFinder/BestKeeper/ΔCT/RefFinder). Our results indicated that the reference gene combinations of PP + UFM1, CCRP4 + BRM and NFD6 + NCLN1 were the most stable reference genes in leaf, stem and root tissues, respectively. The most stable reference gene combination for all tissues was CCRP4 + CUL1. In addition, the most stable reference genes for different experimental conditions were distinct, for instance SMUP1 for MeJA treatment, ERDJ2A + SMUP1 for SA treatment, NCLN1 + ERDJ2A for ABA treatment and SF3B + VAMP721d for salt stress, respectively. Our results lay a foundation for achieving accurate and reliable RT-qPCR results so as to correctly understand the function of genes in D. styracifolium. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02954-x.
Collapse
|
20
|
Sharma S, Vengavasi K, Kumar MN, Yadav SK, Pandey R. Expression of potential reference genes in response to macronutrient stress in rice and soybean. Gene 2021; 792:145742. [PMID: 34051336 DOI: 10.1016/j.gene.2021.145742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023]
Abstract
Given the complexity of nutrient stress responses and the availability of a few validated reference genes, we aimed to identify robust and stable reference genes for macronutrient stress in rice and soybean. Ten potential reference genes were evaluated using geNorm, NormFinder, BestKeeper, Comparative ΔCt method, and RefFinder algorithms under low and completely starved conditions of nitrogen (N), phosphorus (P), potassium (K), and sulphur (S). Results revealed distinct sets of reference gene pairs, showing stable expression under different experimental conditions. The gene pairs TIP41/UBC(9/10/18) and F-box/UBC10 were most stable in rice and soybean, respectively under N stress. Under P stress, UBC9/UBC10 in rice and F-Box/UBC10 in soybean were most stable. Similarly, TIP41/UBC10 in rice and RING FINGER/UBC9 in soybean were the best gene pairs under K stress while F-Box/TIP41 in rice and UBC9/UBC10 in soybean were the most stable gene pairs under S stress. These reference gene pairs were validated by quantifying the expression levels of high-affinity transporters like NRT2.1/NRT2.5, PT1, AKT1, and SULTR1 for N, P, K, and S stress, respectively. This study reiterates the importance of choosing reference genes based on crop species and the experimental conditions, in order to obtain concrete answers to missing links of gene regulation in response to macronutrient deficiencies.
Collapse
Affiliation(s)
- Sandeep Sharma
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi 110012, India
| | - Krishnapriya Vengavasi
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi 110012, India
| | - M Nagaraj Kumar
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi 110012, India
| | - Shiv Kumar Yadav
- Division of Seed Science and Technology, ICAR-Indian Agriculture Research Institute, New Delhi 110012, India
| | - Renu Pandey
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi 110012, India.
| |
Collapse
|
21
|
De novo transcriptome in roots of switchgrass (Panicum virgatum L.) reveals gene expression dynamic and act network under alkaline salt stress. BMC Genomics 2021; 22:82. [PMID: 33509088 PMCID: PMC7841905 DOI: 10.1186/s12864-021-07368-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022] Open
Abstract
Background Soil salinization is a major limiting factor for crop cultivation. Switchgrass is a perennial rhizomatous bunchgrass that is considered an ideal plant for marginal lands, including sites with saline soil. Here we investigated the physiological responses and transcriptome changes in the roots of Alamo (alkaline-tolerant genotype) and AM-314/MS-155 (alkaline-sensitive genotype) under alkaline salt stress. Results Alkaline salt stress significantly affected the membrane, osmotic adjustment and antioxidant systems in switchgrass roots, and the ASTTI values between Alamo and AM-314/MS-155 were divergent at different time points. A total of 108,319 unigenes were obtained after reassembly, including 73,636 unigenes in AM-314/MS-155 and 65,492 unigenes in Alamo. A total of 10,219 DEGs were identified, and the number of upregulated genes in Alamo was much greater than that in AM-314/MS-155 in both the early and late stages of alkaline salt stress. The DEGs in AM-314/MS-155 were mainly concentrated in the early stage, while Alamo showed greater advantages in the late stage. These DEGs were mainly enriched in plant-pathogen interactions, ubiquitin-mediated proteolysis and glycolysis/gluconeogenesis pathways. We characterized 1480 TF genes into 64 TF families, and the most abundant TF family was the C2H2 family, followed by the bZIP and bHLH families. A total of 1718 PKs were predicted, including CaMK, CDPK, MAPK and RLK. WGCNA revealed that the DEGs in the blue, brown, dark magenta and light steel blue 1 modules were associated with the physiological changes in roots of switchgrass under alkaline salt stress. The consistency between the qRT-PCR and RNA-Seq results confirmed the reliability of the RNA-seq sequencing data. A molecular regulatory network of the switchgrass response to alkaline salt stress was preliminarily constructed on the basis of transcriptional regulation and functional genes. Conclusions Alkaline salt tolerance of switchgrass may be achieved by the regulation of ion homeostasis, transport proteins, detoxification, heat shock proteins, dehydration and sugar metabolism. These findings provide a comprehensive analysis of gene expression dynamic and act network induced by alkaline salt stress in two switchgrass genotypes and contribute to the understanding of the alkaline salt tolerance mechanism of switchgrass and the improvement of switchgrass germplasm. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07368-w.
Collapse
|
22
|
Ding N, Huertas R, Torres‐Jerez I, Liu W, Watson B, Scheible W, Udvardi M. Transcriptional, metabolic, physiological and developmental responses of switchgrass to phosphorus limitation. PLANT, CELL & ENVIRONMENT 2021; 44:186-202. [PMID: 32822068 PMCID: PMC7821211 DOI: 10.1111/pce.13872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 05/10/2023]
Abstract
Knowing how switchgrass (Panicum virgatum L.) responds and adapts to phosphorus (P)-limitation will aid efforts to optimize P acquisition and use in this species for sustainable biomass production. This integrative study investigated the impacts of mild, moderate, and severe P-stress on genome transcription and whole-plant metabolism, physiology and development in switchgrass. P-limitation reduced overall plant growth, increased root/shoot ratio, increased root branching at moderate P-stress, and decreased root diameter with increased density and length of root hairs at severe P-stress. RNA-seq analysis revealed thousands of genes that were differentially expressed under moderate and severe P-stress in roots and/or shoots compared to P-replete plants, with many stress-induced genes involved in transcriptional and other forms of regulation, primary and secondary metabolism, transport, and other processes involved in P-acquisition and homeostasis. Amongst the latter were multiple miRNA399 genes and putative targets of these. Metabolite profiling showed that levels of most sugars and sugar alcohols decreased with increasing P stress, while organic and amino acids increased under mild and moderate P-stress in shoots and roots, although this trend reversed under severe P-stress, especially in shoots.
Collapse
Affiliation(s)
- Na Ding
- Noble Research Institute LLCArdmoreOklahomaUSA
| | | | | | - Wei Liu
- Noble Research Institute LLCArdmoreOklahomaUSA
| | | | | | | |
Collapse
|
23
|
Screening and verification of reference genes for analysis of gene expression in winter rapeseed (Brassica rapa L.) under abiotic stress. PLoS One 2020; 15:e0236577. [PMID: 32941459 PMCID: PMC7498103 DOI: 10.1371/journal.pone.0236577] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 07/08/2020] [Indexed: 02/04/2023] Open
Abstract
Winter rapeseed (Brassica rapa L.) is the main oilseed crop in northern China and can safely overwinter at 35 (i.e., Tianshui, China) to 48 degrees north latitude (i.e., Altai, Heilongjiang, Raohe, and Xinjiang, China). In order to identify stable reference genes to understand the molecular mechanisms of stress tolerance in winter rapeseed, internal reference genes of winter rapeseed under four abiotic stresses were analyzed using GeNorm, NormFinder, BestKeeper, and RefFinder software. The most stable combinations of internal reference genes were β-actin and SAND in cold-stressed leaves, β-actin and EF1a in cold-stressed roots, F-box and SAND in high temperature-stressed leaves, and PP2A and RPL in high temperature-stressed roots, SAND and PP2A in NaCl-stressed leaves, RPL and UBC in NaCl-stressed roots, RPL and PP2A in PEG-stressed leaves, and PP2A and RPL in PEG-stressed roots. Expression profiles of PXG3 were used to verify these results. The stable reference genes identified in this study are useful tools for identifying stress-responsive genes to understand the molecular mechanisms of stress tolerance in winter rapeseed.
Collapse
|
24
|
Selection and Validation of Reference Genes for Quantitative Real-Time PCR in White Clover ( Trifolium repens L.) Involved in Five Abiotic Stresses. PLANTS 2020; 9:plants9080996. [PMID: 32764378 PMCID: PMC7463471 DOI: 10.3390/plants9080996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 01/28/2023]
Abstract
White clover (Trifolium repens L.) is a widely cultivated cool-season perennial forage legume in temperate grassland systems. Many studies have analyzed the gene expression in this grass species using quantitative real-time reverse transcription PCR (qRT-PCR). The selection of stable reference genes for qRT-PCR is crucial. However, there was no detailed study on reference genes in different tissues of white clover under various abiotic stress conditions. Herein, 14 candidate reference genes (ACT7, ACT101, TUA1109, TUB, CYP, 60SrRNA, UBQ, E3, GAPDH1, GAPDH2, PP2A, BAM3, SAMDC, and ABC) were selected and analyzed by four programs (GeNorm, NormFinder, BestKeeper, and RefFinder). Samples were taken from two tissues (leaves and roots) under five different abiotic stresses (drought, salt, heat, cold, and heavy metal stress). Our results showed that 60SrRNA and ACT101 were the two top-ranked genes for all samples. Under various experimental conditions, the most stable gene was different; however, SAMDC, UBQ, 60SrRNA, and ACT101 were always top ranked. The most suitable reference genes should be selected according to different plant tissues and growth conditions. Validation of these reference genes by expression analysis of Cyt-Cu/Zn SOD and CAT confirmed their reliability. Our study will benefit the subsequent research of gene function in this species.
Collapse
|
25
|
Zhao J, Zhou M, Meng Y. Identification and Validation of Reference Genes for RT-qPCR Analysis in Switchgrass under Heavy Metal Stresses. Genes (Basel) 2020; 11:E502. [PMID: 32375288 PMCID: PMC7291066 DOI: 10.3390/genes11050502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 11/22/2022] Open
Abstract
Switchgrass (Panicum Virgatum L.) has been recognized as the new energy plant, which makes it ideal for the development of phytoremediation on heavy metal contamination in soils with great potential. This study aimed to screen the best internal reference genes for the real-time quantitative PCR (RT-qPCR) in leaves and roots of switchgrass for investigating its response to various heavy metals, such as cadmium (Cd), lead (Pb), mercury (Hg), chromium (Cr), and arsenic (As). The stability of fourteen candidate reference genes was evaluated by BestKeeper, GeNorm, NormFinder, and RefFinder software. Our results identified U2AF as the best reference gene in Cd, Hg, Cr, and As treated leaves as well as in Hg, Pb, As, and Cr stressed root tissues. In Pb treated leaf tissues, 18S rRNA was demonstrated to be the best reference gene. CYP5 was determined to be the optimal reference gene in Cd treated root tissues. The least stable reference gene was identified to be CYP2 in all tested samples except for root tissues stressed by Pb. To further validate the initial screening results, we used the different sets of combinatory internal reference genes to analyze the expression of two metal transport associated genes (PvZIP4 and PvPDB8) in young leaves and roots of switchgrass. Our results demonstrated that the relative expression of the target genes consistently changed during the treatment when CYP5/UBQ1, U2AF/ACT12, eEF1a/U2AF, or 18S rRNA/ACT12 were combined as the internal reference genes. However, the time-dependent change pattern of the target genes was significantly altered when CYP2 was used as the internal reference gene. Therefore, the selection of the internal reference genes appropriate for specific experimental conditions is critical to ensure the accuracy and reliability of RT-qPCR. Our findings established a solid foundation to further study the gene regulatory network of switchgrass in response to heavy metal stress.
Collapse
Affiliation(s)
- Junming Zhao
- Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130, China;
| | - Man Zhou
- Zonation Fringe Technology Co., Metro Vancouver, BC V5C 2A0, Canada;
| | - Yu Meng
- College of Science and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| |
Collapse
|
26
|
Li J, Essemine J, Shang C, Zhang H, Zhu X, Yu J, Chen G, Qu M, Sun D. Combined Proteomics and Metabolism Analysis Unravels Prominent Roles of Antioxidant System in the Prevention of Alfalfa ( Medicago sativa L.) against Salt Stress. Int J Mol Sci 2020; 21:E909. [PMID: 32019165 PMCID: PMC7037825 DOI: 10.3390/ijms21030909] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 01/09/2023] Open
Abstract
Alfalfa is the most extensively cultivated forage legume worldwide, and salinity constitutes the main environmental scourge limiting its growth and productivity. To unravel the potential molecular mechanism involved in salt tolerance in alfalfa, we accomplished a combined analysis of parallel reaction monitoring-based proteomic technique and targeted metabolism. Based on proteomic analysis, salt stress induced 226 differentially abundant proteins (DAPs). Among them, 118 DAPs related to the antioxidant system, including glutathione metabolism and oxidation-reduction pathways, were significantly up-regulated. Data are available via ProteomeXchange with identifier PXD017166. Overall, 107 determined metabolites revealed that the tricarboxylic acid (TCA) cycle, especially the malate to oxaloacetate conversion step, was strongly stimulated by salt stress. This leads to an up-regulation by about 5 times the ratio of NADPH/NADP+, as well as about 3 to 5 times in the antioxidant enzymes activities, including those of catalase and peroxidase and proline contents. However, the expression levels of DAPs related to the Calvin-Benson-Bassham (CBB) cycle and photorespiration pathway were dramatically inhibited following salt treatment. Consistently, metabolic analysis showed that the metabolite amounts related to carbon assimilation and photorespiration decreased by about 40% after exposure to 200 mM NaCl for 14 d, leading ultimately to a reduction in net photosynthesis by around 30%. Our findings highlighted also the importance of the supplied extra reducing power, thanks to the TCA cycle, in the well-functioning of glutathione to remove and scavenge the reactive oxygen species (ROS) and mitigate subsequently the oxidative deleterious effect of salt on carbon metabolism including the CBB cycle.
Collapse
Affiliation(s)
- Jikai Li
- Institute of Grass Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150080, China; (J.L.); (C.S.); (H.Z.)
| | - Jemaa Essemine
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.E.); (G.C.)
| | - Chen Shang
- Institute of Grass Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150080, China; (J.L.); (C.S.); (H.Z.)
| | - Hailing Zhang
- Institute of Grass Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150080, China; (J.L.); (C.S.); (H.Z.)
| | - Xiaocen Zhu
- Human Phenome Institute, Fudan University, Shanghai 200438, China;
| | - Jialin Yu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
| | - Genyun Chen
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.E.); (G.C.)
| | - Mingnan Qu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.E.); (G.C.)
| | - Dequan Sun
- Institute of Grass Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150080, China; (J.L.); (C.S.); (H.Z.)
| |
Collapse
|
27
|
Selection and Validation of Reference Genes for Gene Expression Studies in Codonopsis pilosula Based on Transcriptome Sequence Data. Sci Rep 2020; 10:1362. [PMID: 31992780 PMCID: PMC6987187 DOI: 10.1038/s41598-020-58328-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/31/2019] [Indexed: 01/30/2023] Open
Abstract
Relative gene expression analyses by RT-qPCR (reverse transcription-quantitative PCR) are highly dependent on the reference genes in normalizing the expression data of target genes. Therefore, inappropriate endogenous control genes will lead to inaccurate target gene expression profiles, and the selection and validation of suitable internal reference genes becomes essential. In this study, we retrieved the commonly used reference genes in transcriptome datasets of Codonopsis pilosula by RNA-Seq (unpublished data), and selected 15 candidate reference genes according to the coefficient of variation (CV) and fold change (FC) value of gene expression. The expression levels of candidate reference genes, which is at different growth stages, undergoing cold stress and drought stress, was determined by RT-qPCR. The expression stability of these genes was evaluated using software packages and algorithms including ΔCt, geNorm, NormFinder and Bestkeeper. Then appropriate reference genes were screened and validated by target gene-UDGPase (UDP glucose pyrophosphorylase). The optimal RGs combinations of C. pilosula, including PP2A59γ, CPY20-1, UBCE32, RPL5B and UBC18 for developmental stage, RPL5B, RPL13 and PP2A59γ for cold treatment, RPL13 and PP2A59γ for drought treatment, were found and proposed as reference genes for future work. This paper laid foundations for both the selection of reference genes and exploration in metabolic mechanism of C. pilosula.
Collapse
|
28
|
Zhang S, Sun F, Wang W, Yang G, Zhang C, Wang Y, Liu S, Xi Y. Comparative transcriptome analysis provides key insights into seedling development in switchgrass ( Panicum virgatum L.). BIOTECHNOLOGY FOR BIOFUELS 2019; 12:193. [PMID: 31402932 PMCID: PMC6683553 DOI: 10.1186/s13068-019-1534-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.), a warm-season perennial C4 plant, can be used as a forage plant, a soil and water conservation plant, a windbreak plant, and as a good source of biofuels and alternative energy with low planting costs. However, switchgrass exhibits low rates of seedling development compared to other crops, which means it is typically out-competed by weeds. There is a large variation in seedling development rates among different plantlets in switchgrass, which limits its usefulness for large-scale cultivation. Little is currently known about the molecular reasons for slow seedling growth. RESULTS Characterization of the seedling development process via growth indices indicated a relatively stagnant growth stage in switchgrass. A total of 678 differentially expressed genes (DEGs) were identified from the comparison of transcriptomes from slowly developed (sd) and rapidly developed (rd) switchgrass seedlings. Gene ontology and pathway enrichment analysis showed that DEGs were enriched in diterpenoid biosynthesis, thiamine metabolism, and circadian rhythm. Transcription factor enrichment and expression analyses showed MYB-related, bHLH and NAC family genes were essential for seedling growth. The transcriptome results were consistent with those of quantitative real-time polymerase chain reaction. Then, the expression profiles of maize and switchgrass were compared during seedling leaf development. A total of 128 DEGs that play key roles in seedling growth were aligned to maize genes. Transcriptional information and physiological indices suggested that several genes involved in the circadian rhythm, thiamine metabolism, energy metabolism, gibberellic acid biosynthesis, and signal transduction played important roles in seedling development. CONCLUSIONS The seedling development process of switchgrass was characterized, and the molecular differences between slowly developed and rapidly developed seedlings were discussed. This study provides new insights into the reasons for slow seedling development in switchgrass and will be useful for the genetic improvement of switchgrass and other crops.
Collapse
Affiliation(s)
- Shumeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Weiwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Guoyu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yongfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shudong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
29
|
Guan C, Huang YH, Cen HF, Cui X, Tian DY, Zhang YW. Overexpression of the Lolium perenne L. delta1-pyrroline 5-carboxylate synthase (LpP5CS) gene results in morphological alterations and salinity tolerance in switchgrass (Panicum virgatum L.). PLoS One 2019; 14:e0219669. [PMID: 31310632 PMCID: PMC6634860 DOI: 10.1371/journal.pone.0219669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
In plants, Δ1-pyrroline- 5-carboxylate synthase (P5CS) is the rate-limiting enzyme in proline biosynthesis. In this study, we introduced the LpP5CS (Lolium perenne L.) gene into switchgrass by Agrobacterium-mediated transformation. The transgenic lines (TG) were classified into two groups based on their phenotypes and proline levels. The group I lines (TG4 and TG6) had relatively high proline levels and improved biomass yield. The group II lines (TG1 and TG2) showed low proline levels, severely delayed flowering, stunted growth and reduced biomass yield. Additionally, we used RNA-seq analysis to detect the most significant molecular changes, and we analyzed differentially expressed genes, such as flowering-related and CYP450 family genes. Moreover, the biomass yield, physiological parameters, and expression levels of reactive oxygen species scavenger-related genes under salt stress all indicated that the group I plants exhibited significantly increased salt tolerance compared with that of the control plants, in contrast to the group II plants. Thus, genetic improvement of switchgrass by overexpressing LpP5CS to increase proline levels is feasible for increasing plant stress tolerance.
Collapse
Affiliation(s)
- Cong Guan
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan-Hua Huang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hui-Fang Cen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xin Cui
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan-Yang Tian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yun-Wei Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Grassland Science, China Agricultural University, Beijing, China
- National Energy R&D Center for Biomass (NECB), Beijing, China
| |
Collapse
|
30
|
Wang G, Tian C, Wang Y, Wan F, Hu L, Xiong A, Tian J. Selection of reliable reference genes for quantitative RT-PCR in garlic under salt stress. PeerJ 2019; 7:e7319. [PMID: 31341748 PMCID: PMC6640627 DOI: 10.7717/peerj.7319] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/18/2019] [Indexed: 12/21/2022] Open
Abstract
Quantitative real-time reverse-transcriptase PCR (qRT-PCR) has been frequently used for detecting gene expression. To obtain reliable results, selection of suitable reference genes is a fundamental and necessary step. Garlic (Allium sativum), a member from Alliaceae family, has been used both as a food flavoring and as a traditional medicine. In the present study, garlic plants were exposed to salt stress (200 mM NaCl) for 0, 1, 4 and 12 h, and garlic roots, bulbs, and leaves were harvested for subsequent analysis. The expression stability of eight candidate reference genes, eukaryotic translation initiation factor 4α (eIF-4α), actin (ACTIN), tubulin β-7 (TUB7), TAP42-interacting protein of 41 kDa (TIP41), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), SAND family protein (SAND), elongation factor 1 alpha (EF-1α), and protein phosphatase 2A (PP2A) were evaluated by geNorm, NormFinder, and BestKeeper. All genes tested displayed variable expression profiles under salt stress. In the leaf and root group, ACTIN was the best reference gene for normalizing gene expression. In garlic clove, ACTIN and SAND were the least variable, and were suitable for gene expression studies under salt stress; these two genes also performed well in all samples tested. Based on our results, we recommend that it is essential to use specific reference genes in different situations to obtain accurate results. Using a combination of multiple stable reference genes, such as ACTIN and SAND, to normalize gene expression is encouraged. The results from the study will be beneficial for accurate determination of gene expression in garlic and other plants.
Collapse
Affiliation(s)
- Guanglong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Chang Tian
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yunpeng Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Faxiang Wan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Laibao Hu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Aisheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jie Tian
- Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Qinghai Key Laboratory of Vegetable Genetics and Physiology, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai, China
| |
Collapse
|
31
|
Selection and validation of reference genes for quantitative real-time PCR in Rosmarinus officinalis L. in various tissues and under elicitation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Validation of Reference Genes for Gene Expression Normalization in RAW264.7 Cells under Different Conditions. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6131879. [PMID: 31223620 PMCID: PMC6541955 DOI: 10.1155/2019/6131879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/03/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
RAW264.7 is a macrophage strain derived from mice tumour and shows a significant ability in antigen uptake. Real-time quantitative PCR (RT-qPCR) is one of the most commonly used methods in gene studies and requires suitable reference genes to normalize and quantitate the expression of gene of interest with sensitivity and specificity. However, suitable reference genes in RAW264.7 cells have not yet been identified for accurate gene expression quantification. In the current study, we evaluated expression levels of ten candidate reference genes in RAW264.7 cells under different conditions. RT-qPCR results indicated significant differences in the expression levels among the ten reference genes. Statistical analyses were carried out using geNorm, NormFinder, and BestKeeper software to further investigate the stability of the reference genes. Integrating the results from the three analytical methods, cytochrome c-1 and hydroxymethylbilane synthase were found to be the most stable and therefore more suitable reference genes, while ribosomal protein L4 and cyclophilin A were the least stable. This study emphasises the importance of identifying and selecting the most stable reference genes for normalization and provides a basis for future gene expression studies using RAW264.7 cells.
Collapse
|
33
|
Selection of suitable reference genes for quantitive real-time PCR normalization in Miscanthus lutarioriparia. Mol Biol Rep 2019; 46:4545-4553. [PMID: 31228041 DOI: 10.1007/s11033-019-04910-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/07/2019] [Indexed: 12/18/2022]
Abstract
Miscanthus lutarioriparia, which is found widespread in China, has attracted great attention as a most potential bioenergy plant for years. The quantitative real time PCR (RT-qPCR) has appeared as a sensitive and powerful technique to measure gene expression in living organisms during different development stages. In this study, we evaluated ten candidate genes, including 25S ribosomal RNA gene (25S rRNA), actin1 gene (ACT1), carotenoid-binding protein 20 gene (CBP20), glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH), Ubiquitin gene (UBQ), eukaryotic elongation factor 1-αgene (eEF-1α), α-tubulin gene (α-TUB), β-tubulin gene (β-TUB), eukaryotic translation initiation factor 4α-1 gene (eIF-4α) and NAC domain protein gene(NAC) in a series of 30 M. lutarioriparia samples followed by statistical algorithms geNorm and Normfinder to analyze the gene expression stability. The results indicated that eIF-4αand UBQ were the most stable expressed genes while CBP20 showed as the least stable among all the samples. Based on above research, we recommend that at least two top-ranked reference genes should be employed for expression data normalization. The best genes selected in this study will provide a starting point to select reference genes in the future in other tissues and under other experimental conditions in this energy crop candidate.
Collapse
|
34
|
Reference gene selection for real-time quantitative PCR normalization in Hemarthria compressa and Hemarthria altissima leaf tissue. Mol Biol Rep 2019; 46:4763-4769. [PMID: 31228043 DOI: 10.1007/s11033-019-04922-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
Hemarthria compressa and Hemarthria altissima are widely used as livestock forage and play important roles in tropical and subtropical grassland agricultural systems promoting healthy ecological environment and the development of animal husbandry. Leaf tissue of "Yaan" limpograss (H. compressa) and "H255" whip grass (H. altissima) were used to test the mRNA expression levels of 12 reference genes using RT-qPCR. The Delta-Ct method, BestKeeper (ver. 1.0), Genorm (ver. 3.5), Normfinder (ver. 0.953) and RefFinder were used to analyze the expression stability of the 12 reference genes under drought, salt, acid-aluminum and cold stresses to provide significant technical support for the study of gene expression under various abiotic stresses in Hemarthria. The results showed that the candidate reference genes showed divergent expression levels under various abiotic stresses. Among the genes that were selected, CL18892 showed the highest expression stability under salt stress in the leaf tissue. eEF-1α was the most stable gene under cold and acid-aluminum stresses and CL16384 was comparatively the most suitable genes under drought stress. As a whole, according to RefFinder analysis, CYP5, BMK.74327 and CL21527 were the most suitable reference genes for studying the effects of abiotic stress in Hemarthria. In general, CL16812 and CL18038 were not suitable reference genes under abiotic stress conditions that were examined in this study.
Collapse
|
35
|
Tang F, Chu L, Shu W, He X, Wang L, Lu M. Selection and validation of reference genes for quantitative expression analysis of miRNAs and mRNAs in Poplar. PLANT METHODS 2019; 15:35. [PMID: 30996729 PMCID: PMC6451301 DOI: 10.1186/s13007-019-0420-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) is a rapid and sensitive approach to identify miRNA and protein-coding gene expression in plants. However, because of the specially designated reverse transcription and shorter PCR products, very few reference genes have been identified for the quantitative analysis of miRNA expression in plants, and different internal reference genes are needed to normalize the expression of miRNAs and mRNA genes respectively. Therefore, it is particularly important to select the suitable common reference genes for normalization of quantitative PCR of miRNA and mRNA. RESULTS In this study, a modified reverse transcription PCR protocol was adopted for selecting and validating universal internal reference genes of mRNAs and miRNAs. Eight commonly used reference genes, four stably expressed novel genes in Populus tremula, three small noncoding RNAs and three conserved miRNAs were selected as candidate genes, and the stability of their expression was examined across a set of 38 tissue samples from four developmental stages of poplar clone 84K (Populus alba × Populus glandulosa). The expression stability of these candidate genes was evaluated systematically by four algorithms: geNorm, NormFinder, Bestkeeper and DeltaCt. The results showed that Eukaryotic initiation factor 4A III (EIF4A) and U6-2 were suitable for samples of the callus stage; U6-1 and U6-2 were best for the seedling stage; Protein phosphatase 2A-2 (PP2A-2) and U6-1 were best for the plant stage; and Protein phosphatase 2A-2 (PP2A-2) and Oligouridylate binding protein 1B (UBP) were the best reference genes in the adventitious root (AR) regeneration stage. CONCLUSIONS The purpose of this study was to identify the most appropriate reference genes for qRT-PCR of miRNAs and mRNAs in different tissues at several developmental stages in poplar. U6-1, EIF4A and PP2A-2 were the three most appropriate reference genes for qRT-PCR normalization of miRNAs and mRNAs during the plant regeneration process, and PP2A-2 and UBP represent the best reference genes in the AR regeneration stage of poplar. This work will benefit future studies of expression and function analysis of miRNAs and their target genes in poplar.
Collapse
Affiliation(s)
- Fang Tang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Liwei Chu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Wenbo Shu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xuejiao He
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Lijuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| |
Collapse
|
36
|
Ashrafi M, Azimi Moqadam MR, Moradi P, Mohsenifard E, Shekari F. Evaluation and validation of housekeeping genes in two contrast species of thyme plant to drought stress using real-time PCR. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:54-60. [PMID: 30172853 DOI: 10.1016/j.plaphy.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
To decrease errors and increase accuracy and reliability of quantitative real-time PCR (qRT-PCR) results, the use of a reference gene is inevitable. Despite the industrial importance of genus Thymus, not any validated reference gene has not been reported for T. kotschyanus and T. vulgaris which could limit such investigations. In this study, the expression stability of seven housekeeping genes including Actin, Cyclophilin-18, elongation factor-1A, glyceraldehyde-3-phosphate dehydrogenase, 18S ribosomal RNA, Cullin, and Polypyrimidine tract-binding protein were evaluated in T. kotschyanus and T. vulgaris which grown at four levels of drought stress using geNorm, NormFinder, and BestKeeper algorithms. Histone deacetylase-6 (HDA-6) gene was also used for validation of evaluated reference genes. In T. vulgaris, all of the algorithms similarly ranked elongation factor-1A and glyceraldehyde-3-phosphate dehydrogenase as the two most stably expressed genes. In T. kotschyanus, only NormFinder and BestKeeper had a similar ranking and identified Actin and glyceraldehyde-3-phosphate dehydrogenase as the two most stably expressed genes, but geNorm algorithm ranked elongation factor-1A and glyceraldehyde-3-phosphate dehydrogenase as the best two reference genes. On the other hand, all algorithms ranked 18S rRNA and Cyclophilin-18 as the least stable genes in T. kotschyanus and T. vulgaris, respectively. Validation results indicated that there was a significant change (0.53-3.19 fold change) in relative expression of HDA-6 normalized by the best stable gene compare to the least ranked gene. Our study presented the first systematic validation of reference gene(s) selection in T. kotschyanus and T. vulgaris and provided useful information to obtain more accurate qRT-PCR results in these species.
Collapse
Affiliation(s)
- Mohsen Ashrafi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | | | - Parviz Moradi
- Research Division of Natural Resources, Zanjan Agricultural and Natural Resources Research and Education Centre, AREEO, Zanjan, Iran
| | - Ehsan Mohsenifard
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Farid Shekari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| |
Collapse
|
37
|
Taylor M, Tornqvist CE, Zhao X, Grabowski P, Doerge R, Ma J, Volenec J, Evans J, Ramstein GP, Sanciangco MD, Buell CR, Casler MD, Jiang Y. Genome-Wide Association Study in Pseudo-F 2 Populations of Switchgrass Identifies Genetic Loci Affecting Heading and Anthesis Dates. FRONTIERS IN PLANT SCIENCE 2018; 9:1250. [PMID: 30271414 PMCID: PMC6146286 DOI: 10.3389/fpls.2018.01250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 08/06/2018] [Indexed: 06/01/2023]
Abstract
Switchgrass (Panicum virgatum) is a native prairie grass and valuable bio-energy crop. The physiological change from juvenile to reproductive adult can draw important resources away from growth into producing reproductive structures, thereby limiting the growth potential of early flowering plants. Delaying the flowering of switchgrass is one approach by which to increase total biomass. The objective of this research was to identify genetic variants and candidate genes for controlling heading and anthesis in segregating switchgrass populations. Four pseudo-F2 populations (two pairs of reciprocal crosses) were developed from lowland (late flowering) and upland (early flowering) ecotypes, and heading and anthesis dates of these populations were collected in Lafayette, IN and DeKalb, IL in 2015 and 2016. Across 2 years, there was a 34- and 73-day difference in heading and a 52- and 75-day difference in anthesis at the Lafayette and DeKalb locations, respectively. A total of 37,901 single nucleotide polymorphisms obtained by exome capture sequencing of the populations were used in a genome-wide association study (GWAS) that identified five significant signals at three loci for heading and two loci for anthesis. Among them, a homolog of FLOWERING LOCUS T on chromosome 5b associated with heading date was identified at the Lafayette location across 2 years. A homolog of ARABIDOPSIS PSEUDO-RESPONSE REGULATOR 5, a light modulator in the circadian clock associated with heading date was detected on chromosome 8a across locations and years. These results demonstrate that genetic variants related to floral development could lend themselves to a long-term goal of developing late flowering varieties of switchgrass with high biomass yield.
Collapse
Affiliation(s)
- Megan Taylor
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Carl-Erik Tornqvist
- U.S. Department of Energy, Great Lakes Bioenergy Research Center and Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Xiongwei Zhao
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Paul Grabowski
- U.S. Dairy Forage Research Center, United States Department of Agriculture-Agricultural Research Service, Madison, WI, United States
| | - Rebecca Doerge
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
- Department of Biology and Department of Statistics, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Jeffrey Volenec
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Joseph Evans
- U.S. Department of Energy, Great Lakes Bioenergy Research Center and Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Guillaume P. Ramstein
- U.S. Department of Energy, Great Lakes Bioenergy Research Center and Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Millicent D. Sanciangco
- U.S. Department of Energy, Great Lakes Bioenergy Research Center and Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - C. Robin Buell
- U.S. Department of Energy, Great Lakes Bioenergy Research Center and Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Michael D. Casler
- U.S. Department of Energy, Great Lakes Bioenergy Research Center and Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
- U.S. Dairy Forage Research Center, United States Department of Agriculture-Agricultural Research Service, Madison, WI, United States
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
38
|
Pelot KA, Chen R, Hagelthorn DM, Young CA, Addison JB, Muchlinski A, Tholl D, Zerbe P. Functional Diversity of Diterpene Synthases in the Biofuel Crop Switchgrass. PLANT PHYSIOLOGY 2018; 178:54-71. [PMID: 30008447 PMCID: PMC6130043 DOI: 10.1104/pp.18.00590] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/05/2018] [Indexed: 05/06/2023]
Abstract
Diterpenoids constitute a diverse class of metabolites with critical functions in plant development, defense, and ecological adaptation. Major monocot crops, such as maize (Zea mays) and rice (Oryza sativa), deploy diverse blends of specialized diterpenoids as core components of biotic and abiotic stress resilience. Here, we describe the genome-wide identification and functional characterization of stress-related diterpene synthases (diTPSs) in the dedicated bioenergy crop switchgrass (Panicum virgatum). Mining of the allotetraploid switchgrass genome identified an expansive diTPS family of 31 members, and biochemical analysis of 11 diTPSs revealed a modular metabolic network producing a diverse array of diterpenoid metabolites. In addition to ent-copalyl diphosphate (CPP) and ent-kaurene synthases predictably involved in gibberellin biosynthesis, we identified syn-CPP and ent-labda-13-en-8-ol diphosphate (LPP) synthases as well as two diTPSs forming (+)-labda-8,13E-dienyl diphosphate (8,13-CPP) and ent-neo-cis-trans-clerodienyl diphosphate (CT-CLPP) scaffolds not observed previously in plants. Structure-guided mutagenesis of the (+)-8,13-CPP and ent-neo-CT-CLPP synthases revealed residue substitutions in the active sites that altered product outcome, representing potential neofunctionalization events that occurred during diversification of the switchgrass diTPS family. The conversion of ent-CPP, ent-LPP, syn-CPP, and ent-neo-CT-CLPP by promiscuous diTPSs further yielded distinct labdane-type diterpene olefins and alcohols. Of these metabolites, the formation of 9β-hydroxy-syn-pimar-15-ene and the expression of the corresponding genes were induced in roots and leaves in response to oxidative stress and ultraviolet irradiation, indicating their possible roles in abiotic stress adaptation. Together, these findings expand the known chemical space of diterpenoid metabolism in monocot crops toward systematically investigating and ultimately improving stress resilience traits in crop species.
Collapse
Affiliation(s)
- Kyle A Pelot
- Department of Plant Biology, University of California, Davis, California 95616
| | - Ruibing Chen
- Department of Plant Biology, University of California, Davis, California 95616
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, 200433 Shanghai, China
| | - David M Hagelthorn
- Department of Plant Biology, University of California, Davis, California 95616
| | - Cari A Young
- Department of Plant Biology, University of California, Davis, California 95616
| | - J Bennett Addison
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182
| | - Andrew Muchlinski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, California 95616
| |
Collapse
|
39
|
Expression of endogenous proteins in maize hybrids in a multi-location field trial in India. Transgenic Res 2018; 27:331-342. [PMID: 29777501 DOI: 10.1007/s11248-018-0077-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/27/2018] [Indexed: 10/16/2022]
Abstract
Genetically modified (GM) crops undergo large scale multi-location field trials to characterize agronomics, composition, and the concentration of newly expressed protein(s) [herein referred to as transgenic protein(s)]. The concentration of transgenic proteins in different plant tissues and across the developmental stages of the plant is considered in the safety assessment of GM crops. Reference or housekeeping proteins are expected to maintain a relatively stable expression pattern in healthy plants given their role in cellular functions. Understanding the effects of genotype, growth stage and location on the concentration of endogenous housekeeping proteins may provide insight into the contribution these factors could have on transgenic protein concentrations in GM crops. The concentrations of three endogenous proteins (actin, elongation factor 1-alpha, and glyceraldehyde 3-phosphate dehydrogenase) were measured in several different maize hybrids grown across multiple field locations over 2 years. Leaf samples were collected from healthy plants at three developmental stages across the growing seasons, and protein concentrations were quantified by indirect enzyme-linked immunosorbent assay (ELISA) for each protein. In general, the concentrations of these three endogenous proteins were relatively consistent across hybrid backgrounds, when compared within one growth stage and location (2-26%CV), whereas the concentrations of proteins in the same hybrid and growth stage across different locations were more variable (12-64%CV). In general, the protein concentrations in 2013 and 2014 show similar trends in variability. Some degree of variability in protein concentrations should be expected for both transgenic and endogenous plant-expressed proteins. In the case of GM crops, the potential variation in protein concentrations due to location effects is captured in the current model of multi-location field testing.
Collapse
|
40
|
Zhang C, Tang G, Peng X, Sun F, Liu S, Xi Y. Long non-coding RNAs of switchgrass (Panicum virgatum L.) in multiple dehydration stresses. BMC PLANT BIOLOGY 2018; 18:79. [PMID: 29728055 PMCID: PMC5936019 DOI: 10.1186/s12870-018-1288-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/22/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in plant growth and stress responses. Studies of lncRNAs in non-model plants are quite limited, especially those investigating multiple dehydration stresses. In this study, we identified novel lncRNAs and analyzed their functions in dehydration stress memory in switchgrass, an excellent biofuel feedstock and soil-conserving plant in the Gramineae family. RESULTS We analyzed genome-wide transcriptional profiles of leaves of 5-week-old switchgrass plantlets grown via tissue culture after primary and secondary dehydration stresses (D1 and D2) and identified 16,551 novel lncRNAs, including 4554 annotated lncRNAs (targeting 3574 genes), and 11,997 unknown lncRNAs. Gene ontology and pathway enrichment analysis of annotated genes showed that the differentially expressed lncRNAs were related to abscisic acid (ABA) and ethylene (ETH) biosynthesis and signal transduction, and to starch and sucrose metabolism. The upregulated lncRNAs and genes were related to ABA synthesis and its signal transduction, and to trehalose synthesis. Meanwhile, lncRNAs and genes related to ETH biosynthesis and signal transduction were suppressed. LncRNAs and genes involved in ABA metabolism were verified using quantitative real-time PCR, and the endogenous ABA content was determined via high performance liquid chromatography mass spectrometry (HPLC-MS). These results showed that ABA accumulated significantly during dehydration stress, especially in D2. Furthermore, we identified 307 dehydration stress memory lncRNAs, and the ratios of different memory types in switchgrass were similar to those in Arabidopsis and maize. CONCLUSIONS The molecular responses of switchgrass lncRNAs to multiple dehydration stresses were researched systematically, revealing novel information about their transcriptional regulatory behavior. This study provides new insights into the response mechanism to dehydration stress in plants. The lncRNAs and pathways identified in this study provide valuable information for genetic modification of switchgrass and other crops.
Collapse
Affiliation(s)
- Chao Zhang
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| | - Gaijuan Tang
- College of Plant Protection, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Xi Peng
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Fengli Sun
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| | - Shudong Liu
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| | - Yajun Xi
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| |
Collapse
|
41
|
Tsotetsi TN, Collins NE, Oosthuizen MC, Sibeko-Matjila KP. Selection and evaluation of housekeeping genes as endogenous controls for quantification of mRNA transcripts in Theileria parva using quantitative real-time polymerase chain reaction (qPCR). PLoS One 2018; 13:e0196715. [PMID: 29727459 PMCID: PMC5935388 DOI: 10.1371/journal.pone.0196715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/18/2018] [Indexed: 12/30/2022] Open
Abstract
The reliability of any quantitative real-time polymerase chain reaction (qPCR) experiment can be seriously compromised by variations between samples as well as between PCR runs. This usually result from errors in sample quantification, especially with samples that are obtained from different individuals and tissues and have been collected at various time intervals. Errors also arise from differences in qPCR efficiency between assays performed simultaneously to target multiple genes on the same plate. Consequently, the derived quantitative data for the target genes become distorted. To avoid this grievous error, an endogenous control, with relatively constant transcription levels in the target individual or tissue, is included in the qPCR assay to normalize target gene expression levels in the analysis. Several housekeeping genes (HKGs) have been used as endogenous controls in quantification studies of mRNA transcripts; however, there is no record in the literature of the evaluation of these genes for the tick-borne protozoan parasite, Theileria parva. Importantly, the expression of these genes should be invariable between different T. parva stocks, ideally under different experimental conditions, to gain extensive application in gene expression studies of this parasite. Thus, the expression of several widely used HKGs was evaluated in this study, including the genes encoding β-actin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 28S rRNA, cytochrome b and fructose-2.6-biphosphate aldolase (F6P) proteins. The qPCR analysis revealed that the expression of genes encoding cytochrome b, F6P and GAPDH varied considerably between the two T. parva stocks investigated, the cattle-derived T. parva Muguga and the buffalo-derived T. parva 7014. 28S rRNA and β-actin gene expression was the most stable; thus, these genes were considered suitable candidates to be used as endogenous control genes for mRNA quantification studies in T. parva.
Collapse
Affiliation(s)
- Teboho N. Tsotetsi
- Department of Veterinary Tropical Diseases, Vectors and Vector-borne Diseases Research Programme, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Gauteng Province, South Africa
| | - Nicola E. Collins
- Department of Veterinary Tropical Diseases, Vectors and Vector-borne Diseases Research Programme, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Gauteng Province, South Africa
| | - Marinda C. Oosthuizen
- Department of Veterinary Tropical Diseases, Vectors and Vector-borne Diseases Research Programme, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Gauteng Province, South Africa
| | - Kgomotso P. Sibeko-Matjila
- Department of Veterinary Tropical Diseases, Vectors and Vector-borne Diseases Research Programme, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Gauteng Province, South Africa
| |
Collapse
|
42
|
Liu X, Guan H, Song M, Fu Y, Han X, Lei M, Ren J, Guo B, He W, Wei Y. Reference gene selection for qRT-PCR assays in Stellera chamaejasme subjected to abiotic stresses and hormone treatments based on transcriptome datasets. PeerJ 2018; 6:e4535. [PMID: 29632740 PMCID: PMC5888148 DOI: 10.7717/peerj.4535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/06/2018] [Indexed: 11/20/2022] Open
Abstract
Background Stellera chamaejasme Linn, an important poisonous plant of the China grassland, is toxic to humans and livestock. The rapid expansion of S. chamaejasme has greatly damaged the grassland ecology and, consequently, seriously endangered the development of animal husbandry. To draft efficient prevention and control measures, it has become more urgent to carry out research on its adaptive and expansion mechanisms in different unfavorable habitats at the genetic level. Quantitative real-time polymerase chain reaction (qRT-PCR) is a widely used technique for studying gene expression at the transcript level; however, qRT-PCR requires reference genes (RGs) as endogenous controls for data normalization and only through appropriate RG selection and qRT-PCR can we guarantee the reliability and robustness of expression studies and RNA-seq data analysis. Unfortunately, little research on the selection of RGs for gene expression data normalization in S. chamaejasme has been reported. Method In this study, 10 candidate RGs namely, 18S, 60S, CYP, GAPCP1, GAPDH2, EF1B, MDH, SAND, TUA1, and TUA6, were singled out from the transcriptome database of S. chamaejasme, and their expression stability under three abiotic stresses (drought, cold, and salt) and three hormone treatments (abscisic acid, ABA; gibberellin, GA; ethephon, ETH) were estimated with the programs geNorm, NormFinder, and BestKeeper. Result Our results showed that GAPCP1 and EF1B were the best combination for the three abiotic stresses, whereas TUA6 and SAND, TUA1 and CYP, GAPDH2 and 60S were the best choices for ABA, GA, and ETH treatment, respectively. Moreover, GAPCP1 and 60S were assessed to be the best combination for all samples, and 18S was the least stable RG for use as an internal control in all of the experimental subsets. The expression patterns of two target genes (P5CS2 and GI) further verified that the RGs that we selected were suitable for gene expression normalization. Discussion This work is the first attempt to comprehensively estimate the stability of RGs in S. chamaejasme. Our results provide suitable RGs for high-precision normalization in qRT-PCR analysis, thereby making it more convenient to analyze gene expression under these experimental conditions.
Collapse
Affiliation(s)
- Xin Liu
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Huirui Guan
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Min Song
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Yanping Fu
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Xiaomin Han
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Meng Lei
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Jingyu Ren
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Bin Guo
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Wei He
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Yahui Wei
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
43
|
MIR ISHFAQNAZIR, SRIVASTAVA PP, BHAT IA, MURALIDHAR AP, P GIREESHBABU, VARGHESE TINCY, CHANU THONGAMIBEMCHA, JAIN KK. Reference gene selection for quantitative real-time RT-PCR normalization in Clarias magur at different larval developmental stages. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i3.78386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Reference genes employed for normalizing quantitative PCR data are important for the accurate analysis of gene expression. To date, no reference genes have been screened for developmental gene expression studies in Clarias magur. In the present study, three commonly used and constitutively expressed genes viz. beta actin (β- actin), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and elongation factor-alpha 1 (EFa1) were examined for their efficacy as internal control to avoid any variation during qRT-PCR expression analysis at different developmental stages of C. magur. All the selected housekeeping genes showed a variable level of mRNA expression during the developmental stages of C. magur. Using three independent statistical algorithms (delta-CT, BestKeeper and NormFinder), β-actin and GAPDH were identified as the suitable genes at different developmental stages. However, comprehensive gene stability evaluation denoted β-actin to be the most stable gene for carrying any gene expression studies. The present results, recommend β-actin as the optimal housekeeping gene for qRT-PCR analysis during different developmental stages of C. magur.
Collapse
|
44
|
Identification and validation of reference genes for qRT-PCR analysis in mulberry (Morus alba L.). PLoS One 2018; 13:e0194129. [PMID: 29543877 PMCID: PMC5854264 DOI: 10.1371/journal.pone.0194129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 02/26/2018] [Indexed: 11/19/2022] Open
Abstract
Mulberry (Morus alba L.) is an important economic tree species in many countries. Quantitative real time PCR (qRT-PCR) has become a widely used method for gene expression studies in plants. A suitable reference gene is essential to ensure accurate and reliable results for qRT-PCR analyses. However, no reports describing the selection of reference genes have been published for mulberry. In this work, we evaluated the stability of twenty candidate reference genes in different plant tissues and under different stress conditions by qRT-PCR in mulberry using algorithms in two programs—geNorm and NormFinder. The results revealed that TUB2, UBI4, ACTIN3 and RPL4 were ranked as the most stable reference genes in the samples subsets, whereas EF1α4 and TUB3showed the least stability with both algorithms. To further validate the stability of the reference genes, the expression patterns of six genes of mulberry were analyzed by normalization with the selected reference genes. Our study will benefit future analyses of gene expression in mulberry.
Collapse
|
45
|
Selection and validation of reference genes for quantitative real-time PCR in Artemisia sphaerocephala based on transcriptome sequence data. Gene 2018; 657:39-49. [PMID: 29505835 DOI: 10.1016/j.gene.2018.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 11/24/2022]
Abstract
Artemisia sphaerocephala, a dicotyledonous perennial semi-shrub belonging to the Artemisia genus of the Compositae family, is widely distributed in northwestern China. This shrub is one of the most important pioneer plants which is capable of protecting rangelands from wind erosion. It therefore plays a vital role in maintaining desert ecosystem stability. In addition, to its use as a forage grass, it has excellent prospective applications as a source of plant oil and as a plant-based fuel. The use of internal genes is the basis for accurately assessing Real time quantitative PCR. In this study, based on transcriptome data of A. sphaerocephala, we analyzed 21 candidate internal genes to determine the optimal internal genes in this shrub. The stabilities of candidate genes were evaluated in 16 samples of A. sphaerocephala. Finally, UBC9 and TIP41-like were determined as the optimal reference genes in A. sphaerocephala by Delta Ct and three various programs. There were GeNorm, NormFinder and BestKeeper.
Collapse
|
46
|
Validation of house-keeping genes for normalization of gene expression data during diurnal/circadian studies in rice by RT-qPCR. Sci Rep 2018; 8:3203. [PMID: 29453432 PMCID: PMC5816630 DOI: 10.1038/s41598-018-21374-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 02/01/2018] [Indexed: 11/25/2022] Open
Abstract
The circadian clock in plants is the intrinsic rhythmic expression of thousands of genes in a 24 h period, which is set by the day-night cycles in the environment. The study of the circadian clock often requires expression profiling of genes over a large number of samples for which RT-qPCR is invariably used. Reliability of the results depends largely on the house-keeping genes, which serve as control and thus should be chosen carefully to prevent erroneous results. In this study, ten house-keeping genes were chosen from rice for stability analysis with 48 tissue samples harvested from plants subjected to diurnal/circadian cycles. Although, all the genes were found to be stable, however, six of them showed cyclic expression patterns and caused major changes in the expression profiles of the target genes when used to normalize their expression data, thereby making them poor candidates for diurnal/circadian studies. In conclusion, reference genes need to be selected for diurnal/circadian studies with extra caution as more than 80% of transcriptome in plants undergoes cycling, which remains undetected by the gene stability assessment software and can severely affect the RT-qPCR based gene expression profiling. The geometric mean of two or more most stable reference genes is hence recommended for diurnal/circadian studies in plants.
Collapse
|
47
|
Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nat Biotechnol 2018; 36:249-257. [DOI: 10.1038/nbt.4067] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/02/2018] [Indexed: 01/17/2023]
|
48
|
Liang W, Zou X, Carballar-Lejarazú R, Wu L, Sun W, Yuan X, Wu S, Li P, Ding H, Ni L, Huang W, Zou S. Selection and evaluation of reference genes for qRT-PCR analysis in Euscaphis konishii Hayata based on transcriptome data. PLANT METHODS 2018; 14:42. [PMID: 29881443 PMCID: PMC5985561 DOI: 10.1186/s13007-018-0311-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/29/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Quantitative real-time reverse transcription-polymerase chain reaction has been widely used in gene expression analysis, however, to have reliable and accurate results, reference genes are necessary to normalize gene expression under different experimental conditions. Several reliable reference genes have been reported in plants of Traditional Chinese Medicine, but none have been identified for Euscaphis konishii Hayata. RESULTS In this study, 12 candidate reference genes, including 3 common housekeeping genes and 9 novel genes based on E. konishii Hayata transcriptome data were selected and analyzed in different tissues (root, branch, leaf, capsule and seed), capsule and seed development stages. Expression stability was calculated using geNorm and NormFinder, the minimal number of reference genes required for accurate normalization was calculated by Vn/Vn + 1 using geNorm. EkEEF-5A-1 and EkADF2 were the two most stable reference genes for all samples, while EkGSTU1 and EkGAPDH were the most stable reference genes for tissue samples. For seed development stages, EkGAPDH and EkEEF-5A-1 were the most stable genes, whereas EkGSTU1 and EkGAPDH were identified as the two most stable genes in the capsule development stages. Two reference genes were sufficient to normalize gene expression across all sample sets. CONCLUSION Results of this study revealed that suitable reference genes should be selected for different experimental samples, and not all the common reference genes are suitable for different tissue samples and/or experimental conditions. In this study, we present the first data of reference genes selection for E. konishii Hayata based on transcriptome data, our data will facilitate further studies in molecular biology and gene function on E. konishii Hayata and other closely related species.
Collapse
Affiliation(s)
- Wenxian Liang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoxing Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Lingjiao Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weihong Sun
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueyuan Yuan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengfei Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Ding
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lin Ni
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Huang
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuangquan Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
49
|
Zhang C, Peng X, Guo X, Tang G, Sun F, Liu S, Xi Y. Transcriptional and physiological data reveal the dehydration memory behavior in switchgrass ( Panicum virgatum L.). BIOTECHNOLOGY FOR BIOFUELS 2018; 11:91. [PMID: 29619087 PMCID: PMC5879616 DOI: 10.1186/s13068-018-1088-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 03/21/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.) is a model biofuel plant because of its high biomass, cellulose-richness, easy degradation to ethanol, and the availability of extensive genomic information. However, a little is currently known about the molecular responses of switchgrass plants to dehydration stress, especially multiple dehydration stresses. RESULTS Studies on the transcriptional profiles of 35-day-old tissue culture plants revealed 741 dehydration memory genes. Gene Ontology and pathway analysis showed that these genes were enriched in phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction. Further analysis of specific pathways combined with physiological data suggested that switchgrass improved its dehydration resistance by changing various aspects of its responses to secondary dehydration stress (D2), including the regulation of abscisic acid (ABA) and jasmonic acid (JA) biosynthesis and signal transduction, the biosynthesis of osmolytes (l-proline, stachyose and trehalose), energy metabolism (i.e., metabolic process relating to photosynthetic systems, glycolysis, and the TCA cycle), and lignin biosynthesis. The transcriptional data and chemical substance assays showed that ABA was significantly accumulated during both primary (D1) and secondary (D2) dehydration stresses, whereas JA accumulated during D1 but became significantly less abundant during D2. This suggests the existence of a complicated signaling network of plant hormones in response to repeated dehydration stresses. A homology analysis focusing on switchgrass, maize, and Arabidopsis revealed the conservation and species-specific distribution of dehydration memory genes. CONCLUSIONS The molecular responses of switchgrass plants to successive dehydration stresses have been systematically characterized, revealing a previously unknown transcriptional memory behavior. These results provide new insights into the mechanisms of dehydration stress responses in plants. The genes and pathways identified in this study will be useful for the genetic improvement of switchgrass and other crops.
Collapse
Affiliation(s)
- Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xi Peng
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaofeng Guo
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Gaijuan Tang
- College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shudong Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
50
|
Yongfeng W, Aiquan Z, Fengli S, Mao L, Kaijie X, Chao Z, Shudong L, Yajun X. Using Transcriptome Analysis to Identify Genes Involved in Switchgrass Flower Reversion. FRONTIERS IN PLANT SCIENCE 2018; 9:1805. [PMID: 30564266 PMCID: PMC6288819 DOI: 10.3389/fpls.2018.01805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/20/2018] [Indexed: 05/06/2023]
Abstract
Floral reversion is a process in which differentiated floral organs revert back to vegetative organs. Although this phenomenon has been described for decades, the underlying molecular mechanisms remain unclear. In this study, we found that immature switchgrass (Panicum virgatum) inflorescences can revert to neonatal shoots when incubated on a basal medium with benzylaminopurine. We used anatomical and histological methods to verify that these shoots were formed from floret primordia through flower reversion. To further explore the gene regulation of floral reversion in switchgrass, the transcriptome of reversed, unreversed, and uncultured immature inflorescences were analyzed and 517 genes were identified as participating in flower reversion. Annotation using non-redundant databases revealed that these genes are involved in plant hormone biosynthesis and signal transduction, starch and sucrose metabolism, DNA replication and modification, and other processes crucial for switchgrass flower reversion. When four of the genes were overexpressed in Arabidopsis thaliana, vegetative growth was facilitated and reproductive growth was inhibited in transgenic plants. This study provides a basic understanding of genes regulating the floral transition in switchgrass and will promote the research of floral reversion and flower maintenance.
Collapse
Affiliation(s)
- Wang Yongfeng
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Zheng Aiquan
- College of Agronomy, Northwest A&F University, Yangling, China
- Yangling Vocational & Technical College, Yangling, China
| | - Sun Fengli
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Li Mao
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Xu Kaijie
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhang Chao
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Liu Shudong
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Xi Yajun
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- *Correspondence: Xi Yajun,
| |
Collapse
|