1
|
Hajibozorgi M, Hijmans JM, Greve C. The functional popliteal angle test can detect features of hamstring spasticity. Clin Biomech (Bristol, Avon) 2025; 125:106523. [PMID: 40245565 DOI: 10.1016/j.clinbiomech.2025.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Hamstring spasticity is a common impairment in patients with central neurological lesions, and accurate diagnostics is crucial for effective treatment of associated gait abnormalities, such as crouch gait. Current diagnostics, including 3D clinical gait analysis during normal and fast walking, have limitations that may lead to misdiagnosis, possibly explaining the current poor treatment outcomes. To address these limitations, we introduced the functional popliteal angle test-a knee-extension motion with flexed-hip performed while standing on one leg at both slow and fast speeds. This study aimed to assess this test's construct validity, showing its capacity to detect features of hamstring spasticity. METHODS Kinematics and hamstring EMG data from patients with central neurological lesions and healthy participants were retrospectively extracted. Two criteria-EMG-Velocity and Peak Muscle Length ratios-were defined to capture key spasticity components: a disproportionately large increase in muscle activity with higher muscle-tendon lengthening velocities and a shorter maximum muscle length during fast vs. slow lengthening. Ratios were calculated individually for patients' and healthy participants' limbs, with values above one indicating spasticity. FINDINGS Eight out of nine healthy limbs scored below one on both criteria. Among 35 patient limbs (age: 16 ± 12 years), 18 scored below one on both criteria (categorized as non-spastic), while 14 scored above one on both criteria (categorized as spastic). Discrepancies arose in three limbs. INTERPRETATION The results suggest that the functional popliteal angle test can detect features of hamstring spasticity and holds potential for enhancing clinical diagnostics of hamstring spasticity.
Collapse
Affiliation(s)
- Mahdieh Hajibozorgi
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, The Netherlands.
| | - Juha M Hijmans
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, The Netherlands
| | - Christian Greve
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands
| |
Collapse
|
2
|
Davis JF, Khan T, Thornton M, Reeves ND, DeLuca M, Mohagheghi AA. High Velocity Passive Stretching Mimics Eccentric Exercise in Cerebral Palsy and May Be Used to Increase Spastic Muscle Fascicle Length. Bioengineering (Basel) 2024; 11:608. [PMID: 38927844 PMCID: PMC11200552 DOI: 10.3390/bioengineering11060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Muscle fascicles are shorter and stiffer than normal in spastic Cerebral Palsy (CP). Increasing fascicle length (FL) has been attempted in CP, the outcomes of which have been unsatisfactory. In healthy muscles, FL can be increased using eccentric exercise at high velocities (ECC). Three conditions are possibly met during such ECC: muscle micro-damage, positive fascicle strain, and momentary muscle deactivation during lengthening. Participants with and without CP underwent a single bout of passive stretching at (appropriately) high velocities using isokinetic dynamometry, during which we examined muscle and fascicle behaviour. Vastus lateralis (VL) FL change was measured using ultrasonography and showed positive fascicle strain. Measures of muscle creatine kinase were used to establish whether micro-damage occurred in response to stretching, but the results did not confirm damage in either group. Vastus medialis (VM) and biceps femoris muscle activity were measured using electromyography in those with CP. Results supported momentary spastic muscle deactivation during lengthening: all participants experienced at least one epoch (60 ms) of increased activation followed by activation inhibition/deactivation of the VM during knee flexion. We argue that high-velocity passive stretching in CP provides a movement context which mimics ECC and could be used to increase spastic FL with training.
Collapse
Affiliation(s)
- Jessica F. Davis
- Centre of Health, Physical Activity, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK; (J.F.D.); (M.D.)
| | - Tahir Khan
- The Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK (M.T.)
| | - Matt Thornton
- The Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK (M.T.)
| | - Neil D. Reeves
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Stanmore HA7 4LP, UK;
| | - Mara DeLuca
- Centre of Health, Physical Activity, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK; (J.F.D.); (M.D.)
| | - Amir A. Mohagheghi
- Centre for Cognitive and Clinical Neuroscience, Brunel University London, London UB8 3PH, UK
| |
Collapse
|
3
|
Koussou A, Dumas R, Desailly E. A Velocity Stretch Reflex Threshold Based on Muscle-Tendon Unit Peak Acceleration to Detect Possible Occurrences of Spasticity during Gait in Children with Cerebral Palsy. SENSORS (BASEL, SWITZERLAND) 2023; 24:41. [PMID: 38202903 PMCID: PMC10780611 DOI: 10.3390/s24010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Spasticity might affect gait in children with cerebral palsy. Quantifying its occurrence during locomotion is challenging. One approach is to determine kinematic stretch reflex thresholds, usually on the velocity, during passive assessment and to search for their exceedance during gait. These thresholds are determined through EMG-Onset detection algorithms, which are variable in performance and sensitive to noisy data, and can therefore lack consistency. This study aimed to evaluate the feasibility of determining the velocity stretch reflex threshold from maximal musculotendon acceleration. Eighteen children with CP were recruited and underwent clinical gait analysis and a full instrumented assessment of their soleus, gastrocnemius lateralis, semitendinosus, and rectus femoris spasticity, with EMG, kinematics, and applied forces being measured simultaneously. Using a subject-scaled musculoskeletal model, the acceleration-based stretch reflex velocity thresholds were determined and compared to those based on EMG-Onset determination. Their consistencies according to physiological criteria, i.e., if the timing of the threshold was between the beginning of the stretch and the spastic catch, were evaluated. Finally, two parameters designed to evaluate the occurrence of spasticity during gait, i.e., the proportion of the gait trial time with a gait velocity above the velocity threshold and the number of times the threshold was exceeded, were compared. The proposed method produces velocity stretch reflex thresholds close to the EMG-based ones. For all muscles, no statistical difference was found between the two parameters designed to evaluate the occurrence of spasticity during gait. Contrarily to the EMG-based methods, the proposed method always provides physiologically consistent values, with median electromechanical delays of between 50 and 130 ms. For all subjects, the semitendinosus velocity during gait usually exceeded its stretch reflex threshold, while it was less frequent for the three other muscles. We conclude that a velocity stretch reflex threshold, based on musculotendon acceleration, is a reliable substitute for EMG-based ones.
Collapse
Affiliation(s)
- Axel Koussou
- Pôle Recherche & Innovation, Fondation Ellen Poidatz, 77310 Saint-Fargeau-Ponthierry, France;
- Laboratoire de Biomécanique et Mécanique des Chocs UMR T9406, University Lyon, University Gustave Eiffel, University Claude Bernard Lyon 1, 69622 Lyon, France;
| | - Raphaël Dumas
- Laboratoire de Biomécanique et Mécanique des Chocs UMR T9406, University Lyon, University Gustave Eiffel, University Claude Bernard Lyon 1, 69622 Lyon, France;
| | - Eric Desailly
- Pôle Recherche & Innovation, Fondation Ellen Poidatz, 77310 Saint-Fargeau-Ponthierry, France;
| |
Collapse
|
4
|
Willaert J, Ting LH, Van Campenhout A, Desloovere K, De Groote F. Reduced reciprocal inhibition during clinical tests of spasticity is associated with impaired reactive standing balance control in children with cerebral palsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.07.23298160. [PMID: 37986791 PMCID: PMC10659464 DOI: 10.1101/2023.11.07.23298160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Joint hyper-resistance is a common symptom in cerebral palsy (CP). It is assessed by rotating the joint of a relaxed patient. Joint rotations also occur when perturbing functional movements. Therefore, joint hyper-resistance might contribute to reactive balance impairments in CP. Aim To investigate relationships between altered muscle responses to isolated joint rotations and perturbations of standing balance in children with CP. Methods & procedures 20 children with CP participated in the study. During an instrumented spasticity assessment, the ankle was rotated as fast as possible from maximal plantarflexion towards maximal dorsiflexion. Standing balance was perturbed by backward support-surface translations and toe-up support-surface rotations. Gastrocnemius, soleus, and tibialis anterior electromyography was measured. We quantified reduced reciprocal inhibition by plantarflexor-dorsiflexor co-activation and the neural response to stretch by average muscle activity. We evaluated the relation between muscle responses to ankle rotation and balance perturbations using linear mixed models. Outcomes & results Co-activation during isolated joint rotations and perturbations of standing balance was correlated across all levels. The neural response to stretch during isolated joint rotations and balance perturbations was not correlated. Conclusions & implications Reduced reciprocal inhibition during isolated joint rotations might be a predictor of altered reactive balance control strategies.
Collapse
Affiliation(s)
- Jente Willaert
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Lena H. Ting
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Anja Van Campenhout
- Department of Development and Regeneration, KU Leuven – UZ Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven – UZ Leuven, Leuven, Belgium
| | | |
Collapse
|
5
|
Veerkamp K, Carty CP, Waterval NFJ, Geijtenbeek T, Buizer AI, Lloyd DG, Harlaar J, van der Krogt MM. Predicting Gait Patterns of Children With Spasticity by Simulating Hyperreflexia. J Appl Biomech 2023; 39:334-346. [PMID: 37532263 DOI: 10.1123/jab.2023-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/24/2023] [Accepted: 06/24/2023] [Indexed: 08/04/2023]
Abstract
Spasticity is a common impairment within pediatric neuromusculoskeletal disorders. How spasticity contributes to gait deviations is important for treatment selection. Our aim was to evaluate the pathophysiological mechanisms underlying gait deviations seen in children with spasticity, using predictive simulations. A cluster analysis was performed to extract distinct gait patterns from experimental gait data of 17 children with spasticity to be used as comparative validation data. A forward dynamic simulation framework was employed to predict gait with either velocity- or force-based hyperreflexia. This framework entailed a generic musculoskeletal model controlled by reflexes and supraspinal drive, governed by a multiobjective cost function. Hyperreflexia values were optimized to enable the simulated gait to best match experimental gait patterns. Three experimental gait patterns were extracted: (1) increased knee flexion, (2) increased ankle plantar flexion, and (3) increased knee flexion and ankle plantar flexion when compared with typical gait. Overall, velocity-based hyperreflexia outperformed force-based hyperreflexia. The first gait pattern could mostly be explained by rectus femoris and hamstrings velocity-based hyperreflexia, the second by gastrocnemius velocity-based hyperreflexia, and the third by gastrocnemius, soleus, and hamstrings velocity-based hyperreflexia. This study shows how velocity-based hyperreflexia from specific muscles contributes to different spastic gait patterns, which may help in providing targeted treatment.
Collapse
Affiliation(s)
- Kirsten Veerkamp
- Department of Rehabilitation Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam,The Netherlands
- Rehabilitation & Development, Amsterdam Movement Sciences, Amsterdam,The Netherlands
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD,Australia
- Griffith Centre of Biomedical & Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD,Australia
- Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, QLD,Australia
| | - Christopher P Carty
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD,Australia
- Griffith Centre of Biomedical & Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD,Australia
- Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, QLD,Australia
- Department of Orthopaedics, Children's Health Queensland Hospital and Health Service, Queensland Children's Hospital, Brisbane, QLD,Australia
| | - Niels F J Waterval
- Department of Rehabilitation Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam,The Netherlands
- Rehabilitation & Development, Amsterdam Movement Sciences, Amsterdam,The Netherlands
- Department of Rehabilitation Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam,The Netherlands
| | - Thomas Geijtenbeek
- Department of Biomechanical Engineering, Delft University of Technology, Delft,The Netherlands
| | - Annemieke I Buizer
- Department of Rehabilitation Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam,The Netherlands
- Rehabilitation & Development, Amsterdam Movement Sciences, Amsterdam,The Netherlands
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam,The Netherlands
| | - David G Lloyd
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD,Australia
- Griffith Centre of Biomedical & Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD,Australia
- Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, QLD,Australia
| | - Jaap Harlaar
- Department of Biomechanical Engineering, Delft University of Technology, Delft,The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus Medical Center, Rotterdam,The Netherlands
| | - Marjolein M van der Krogt
- Department of Rehabilitation Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam,The Netherlands
- Rehabilitation & Development, Amsterdam Movement Sciences, Amsterdam,The Netherlands
| |
Collapse
|
6
|
He J, Luo A, Yu J, Qian C, Liu D, Hou M, Ma Y. Quantitative assessment of spasticity: a narrative review of novel approaches and technologies. Front Neurol 2023; 14:1121323. [PMID: 37475737 PMCID: PMC10354649 DOI: 10.3389/fneur.2023.1121323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Spasticity is a complex neurological disorder, causing significant physical disabilities and affecting patients' independence and quality of daily lives. Current spasticity assessment methods are questioned for their non-standardized measurement protocols, limited reliabilities, and capabilities in distinguishing neuron or non-neuron factors in upper motor neuron lesion. A series of new approaches are developed for improving the effectiveness of current clinical used spasticity assessment methods with the developing technology in biosensors, robotics, medical imaging, biomechanics, telemedicine, and artificial intelligence. We investigated the reliabilities and effectiveness of current spasticity measures employed in clinical environments and the newly developed approaches, published from 2016 to date, which have the potential to be used in clinical environments. The new spasticity scales, taking advantage of quantified information such as torque, or echo intensity, the velocity-dependent feature and patients' self-reported information, grade spasticity semi-quantitatively, have competitive or better reliability than previous spasticity scales. Medical imaging technologies, including near-infrared spectroscopy, magnetic resonance imaging, ultrasound and thermography, can measure muscle hemodynamics and metabolism, muscle tissue properties, or temperature of tissue. Medical imaging-based methods are feasible to provide quantitative information in assessing and monitoring muscle spasticity. Portable devices, robotic based equipment or myotonometry, using information from angular, inertial, torque or surface EMG sensors, can quantify spasticity with the help of machine learning algorithms. However, spasticity measures using those devices are normally not physiological sound. Repetitive peripheral magnetic stimulation can assess patients with severe spasticity, which lost voluntary contractions. Neuromusculoskeletal modeling evaluates the neural and non-neural properties and may gain insights into the underlying pathology of spasticity muscles. Telemedicine technology enables outpatient spasticity assessment. The newly developed spasticity methods aim to standardize experimental protocols and outcome measures and enable quantified, accurate, and intelligent assessment. However, more work is needed to investigate and improve the effectiveness and accuracy of spasticity assessment.
Collapse
Affiliation(s)
- Jian He
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Anhua Luo
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Jiajia Yu
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Chengxi Qian
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Dongwei Liu
- School of Information Management and Artificial Intelligence, Zhejiang University of Finance and Economics, Hangzhou, China
| | - Meijin Hou
- National Joint Engineering Research Centre of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Orthopaedics and Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of TCM), Ministry of Education, Fuzhou, China
| | - Ye Ma
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo, China
- National Joint Engineering Research Centre of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Orthopaedics and Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of TCM), Ministry of Education, Fuzhou, China
| |
Collapse
|
7
|
Kruse A, Habersack A, Weide G, Jaspers RT, Svehlik M, Tilp M. Eight weeks of proprioceptive neuromuscular facilitation stretching and static stretching do not affect muscle-tendon properties, muscle strength, and joint function in children with spastic cerebral palsy. Clin Biomech (Bristol, Avon) 2023; 107:106011. [PMID: 37329655 DOI: 10.1016/j.clinbiomech.2023.106011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/05/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND While the effect of static stretching for individuals with cerebral palsy is questionable, recent results suggest that the combination with activation seems promising to improve muscle-tendon properties and function. Therefore, this study analyzed the effects of 8-week proprioceptive neuromuscular facilitation stretching on the gastrocnemius medialis muscle-tendon properties, muscle strength, and the ankle joint in children with spastic cerebral palsy in comparison to static stretching. METHODS Initially, 24 children with spastic cerebral palsy were randomly assigned to a static stretching (10.7 ± 1.8 years) or proprioceptive neuromuscular facilitation stretching group (10.9 ± 2.6 years). Plantar flexors were manually stretched at home for 300 s and ∼ 250-270 s per day four times a week for eight weeks, respectively. Assessments of ankle joint function (e.g., range of motion), muscle-tendon properties, and isometric muscle strength were conducted using 3D motion capture, 2D ultrasound, dynamometry, and electromyography. A mixed analysis of variance was used for the statistical analysis. FINDINGS Stretching adherence was high in the proprioceptive neuromuscular facilitation stretching (93.1%) and static stretching group (94.4%). No significant changes (p > 0.05) were observed in ankle joint function, muscle-tendon properties, and isometric muscle strength after both interventions. Moreover, no differences (p > 0.05) were found between the stretching techniques. INTERPRETATION The findings support the idea that manual stretching (neither proprioceptive neuromuscular facilitation stretching nor static stretching) performed in isolation for eight weeks may not be appropriate to evoke significant changes in muscle-tendon properties, voluntary muscle strength, or joint function in children with spastic cerebral palsy. CLINICAL TRIAL REGISTRATION NUMBER NCT04570358.
Collapse
Affiliation(s)
- Annika Kruse
- Department of Biomechanics, Training and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria.
| | - Andreas Habersack
- Department of Biomechanics, Training and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria; Department of Othopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Guido Weide
- Department of Human Movement Science, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Richard T Jaspers
- Department of Human Movement Science, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Martin Svehlik
- Department of Othopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Markus Tilp
- Department of Biomechanics, Training and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| |
Collapse
|
8
|
Fujimura K, Mukaino M, Itoh S, Miwa H, Itoh R, Narukawa D, Tanikawa H, Kanada Y, Saitoh E, Otaka Y. Requirements for Eliciting a Spastic Response With Passive Joint Movements and the Influence of Velocity on Response Patterns: An Experimental Study of Velocity-Response Relationships in Mild Spasticity With Repeated-Measures Analysis. Front Neurol 2022; 13:854125. [PMID: 35432169 PMCID: PMC9007406 DOI: 10.3389/fneur.2022.854125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background Spasticity is defined as a velocity-dependent increase in tonic stretch reflexes and is manually assessed in clinical practice. However, the best method for the clinical assessment of spasticity has not been objectively described. This study analyzed the clinical procedure to assess spasticity of the elbow joint using an electrogoniometer and investigated the appropriate velocity required to elicit a spastic response and the influence of velocity on the kinematic response pattern. Methods This study included eight healthy individuals and 15 patients with spasticity who scored 1 or 1+ on the modified Ashworth Scale (MAS). Examiners were instructed to manually assess spasticity twice at two different velocities (slow and fast velocity conditions). During the assessment, velocity, deceleration value, and angle [described as the % range of motion (%ROM)] at the moment of resistance were measured using an electrogoniometer. Differences between the slow and fast conditions were evaluated. In addition, variations among the fast condition such as the responses against passive elbow extension at <200, 200–300, 300–400, 400°/s velocities were compared between the MAS 1+, MAS 1, and control groups. Results Significant differences were observed in the angular deceleration value and %ROM in the fast velocity condition (417 ± 80°/s) between patients and healthy individuals, but there was no difference in the slow velocity condition (103 ± 29°/s). In addition, the deceleration values were significantly different between the MAS 1 and MAS 1+ groups in velocity conditions faster than 300°/s. In contrast, the value of %ROM plateaued when the velocity was faster than 200°/s. Conclusion The velocity of the passive motion had a significant effect on the response pattern of the elbow joint. The velocity-response pattern differed between deceleration and the angle at which the catch occurred; the value of deceleration value for passive motion was highly dependent on the velocity, while the %ROM was relatively stable above a certain velocity threshold. These results provide clues for accurate assessment of spasticity in clinical practice.
Collapse
Affiliation(s)
- Kenta Fujimura
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Masahiko Mukaino
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Japan
- *Correspondence: Masahiko Mukaino
| | - Shota Itoh
- Department of Rehabilitation, Fujita Health University Hospital, Toyoake, Japan
| | - Haruna Miwa
- Department of Rehabilitation, Fujita Health University Hospital, Toyoake, Japan
| | - Ryoka Itoh
- Department of Rehabilitation, Fujita Health University Hospital, Toyoake, Japan
| | - Daisuke Narukawa
- Department of Rehabilitation, Fujita Health University Hospital, Toyoake, Japan
| | - Hiroki Tanikawa
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Yoshikiyo Kanada
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Eiichi Saitoh
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Yohei Otaka
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Japan
| |
Collapse
|
9
|
De Beukelaer N, Bar-On L, Hanssen B, Peeters N, Prinsen S, Ortibus E, Desloovere K, Van Campenhout A. Muscle Characteristics in Pediatric Hereditary Spastic Paraplegia vs. Bilateral Spastic Cerebral Palsy: An Exploratory Study. Front Neurol 2021; 12:635032. [PMID: 33716937 PMCID: PMC7952873 DOI: 10.3389/fneur.2021.635032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/26/2021] [Indexed: 01/14/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a neurological, genetic disorder that predominantly presents with lower limb spasticity and muscle weakness. Pediatric pure HSP types with infancy or childhood symptom onset resemble in clinical presentation to children with bilateral spastic cerebral palsy (SCP). Hence, treatment approaches in these patient groups are analogous. Altered muscle characteristics, including reduced medial gastrocnemius (MG) muscle growth and hyperreflexia have been quantified in children with SCP, using 3D-freehand ultrasound (3DfUS) and instrumented assessments of hyperreflexia, respectively. However, these muscle data have not yet been studied in children with HSP. Therefore, we aimed to explore these MG muscle characteristics in HSP and to test the hypothesis that these data differ from those of children with SCP and typically developing (TD) children. A total of 41 children were retrospectively enrolled including (1) nine children with HSP (ages of 9–17 years with gross motor function levels I and II), (2) 17 age-and severity-matched SCP children, and (3) 15 age-matched typically developing children (TD). Clinically, children with HSP showed significantly increased presence and severity of ankle clonus compared with SCP (p = 0.009). Compared with TD, both HSP and SCP had significantly smaller MG muscle volume normalized to body mass (p ≤ 0.001). Hyperreflexia did not significantly differ between the HSP and SCP group. In addition to the observed pathological muscle activity for both the low-velocity and the change in high-velocity and low-velocity stretches in the two groups, children with HSP tended to present higher muscle activity in response to increased stretch velocity compared with those with SCP. This exploratory study is the first to reveal MG muscle volume deficits in children with HSP. Moreover, high-velocity-dependent hyperreflexia and ankle clonus is observed in children with HSP. Instrumented impairment assessments suggested similar altered MG muscle characteristics in pure HSP type with pediatric onset compared to bilateral SCP. This finding needs to be confirmed in larger sample sizes. Hence, the study results might indicate analogous treatment approaches in these two patient groups.
Collapse
Affiliation(s)
- Nathalie De Beukelaer
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Lynn Bar-On
- Department of Rehabilitation Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Britta Hanssen
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Nicky Peeters
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Sandra Prinsen
- Department of Orthopedics, University Hospitals Leuven, Leuven, Belgium
| | - Els Ortibus
- KU Leuven Department of Development and Regeneration, Leuven, Belgium
| | - Kaat Desloovere
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Department of Orthopedics, University Hospitals Leuven, Leuven, Belgium.,KU Leuven Department of Development and Regeneration, Leuven, Belgium
| |
Collapse
|
10
|
Bar-On L, Aertbeliën E, Van Campenhout A, Molenaers G, Desloovere K. Treatment Response to Botulinum Neurotoxin-A in Children With Cerebral Palsy Categorized by the Type of Stretch Reflex Muscle Activation. Front Neurol 2020; 11:378. [PMID: 32581991 PMCID: PMC7280486 DOI: 10.3389/fneur.2020.00378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/14/2020] [Indexed: 11/13/2022] Open
Abstract
While Botulinum NeuroToxin-A (BoNT-A) injections are frequently used to reduce the effects of hyperactive stretch reflexes in children with cerebral palsy (CP), the effects of this treatment vary strongly. Previous research, combining electromyography (EMG) with motion analysis, defined different patterns of stretch reflex muscle activation in muscles, those that reacted more to a change in velocity (velocity dependent -VD), and those that reacted more to a change in length (length dependent -LD). The aim of this study was to investigate the relation between the types of stretch reflex muscle activation in the semitendinosus with post-BoNT-A outcome as assessed passively and with 3D gait analysis in children with spastic CP. Eighteen children with spastic CP (10 bilaterally involved) between the ages of 12 and 18 years were assessed before and on average, 8 weeks post-treatment. EMG and motion analysis were used to assess the degree and type of muscle activation dependency in the semitendinosus during passive knee extensions performed at different joint angular velocities. Three-dimensional gait analysis was used to assess knee gait kinematics as a measure of functional outcome. Pre-treatment, 9 muscles were classified as VD and 9 as LD, but no differences between the groups were evident in the baseline knee gait kinematics. Post-treatment, stretch reflex muscle activation decreased significantly in both groups but the reduction was more pronounced in those muscles classified pre-treatment as VD (-72% vs. -50%, p = 0.005). In the VD group, these changes were accompanied by greater knee extension at initial contact and during the swing phase of gait. In the LD group, there was significantly increased post-treatment knee hyperextension in late stance. Although results vary between patients, the reduction of stretch reflex muscle activation in the semitendinosus generally translated to an improved functional outcome, as assessed with 3D gait analysis. However, results were less positive for those muscles with pre-treatment length-dependent type of stretch reflex muscle activation. The study demonstrates the relevance of categorizing the type of stretch reflex muscle activation as a possible predictor of treatment response.
Collapse
Affiliation(s)
- Lynn Bar-On
- Department of Rehabilitation Medicine, Amsterdam UMC, Amsterdam Movement Sciences, Amsterdam, Netherlands.,Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Erwin Aertbeliën
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.,ROB Core Lab, Flanders Make, Leuven, Belgium
| | - Anja Van Campenhout
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospital Leuven, Leuven, Belgium
| | - Guy Molenaers
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospital Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Viruega H, Gaillard I, Briatte L, Gaviria M. Inter-Day Reliability and Changes of Surface Electromyography on Two Postural Muscles Throughout 12 Weeks of Hippotherapy on Patients with Cerebral Palsy: A Pilot Study. Brain Sci 2020; 10:brainsci10050281. [PMID: 32384678 PMCID: PMC7288184 DOI: 10.3390/brainsci10050281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022] Open
Abstract
Cerebral palsy (CP) is an umbrella term covering a group of permanent developmental disorders of movement and posture characterized by highly variable clinical features. The aim of this study was to assess the short-term and mid-term effects of neurorehabilitation via hippotherapy on the contractile properties of two key postural muscles during functional sitting in such patients. Thirty-minute hippotherapy sessions were conducted biweekly for 12 weeks in 18 patients (18.1 ± 5.7 years old). Surface electromyography (EMG) was implemented bilaterally in rectus abdominis and adductor magnus. We quantitatively analyzed the amplitude of EMG signals in the time domain and its spectral characteristics in the frequency domain. EMGs were recorded at the beginning and end of each session on day one and at week six and week twelve. Statistical analysis revealed a substantial inter-day reliability of the EMG signals for both muscles, validating the methodological approach. To a lesser extent, while beyond the scope of the current study, quantitative changes suggested a more selective recruitment/contractile properties’ shift of the examined muscles. Exploring postural control during functional activities would contribute to understanding the relationship between structural impairment, activity performance and patient capabilities, allowing the design of neurorehabilitation programs aimed at improving postural and functional skills according to each individual’s needs. The present study provides basic quantitative data supporting the body of scientific evidence making hippotherapy an approach of choice for CP neurorehabilitation.
Collapse
|
12
|
Tornberg ÅB, Lauruschkus K. Non-ambulatory children with cerebral palsy: effects of four months of static and dynamic standing exercise on passive range of motion and spasticity in the hip. PeerJ 2020; 8:e8561. [PMID: 32211225 PMCID: PMC7083156 DOI: 10.7717/peerj.8561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/13/2020] [Indexed: 11/20/2022] Open
Abstract
Purpose The aim of this study was to compare the effects of four months of two types of structured training regimes, static standing (StS) versus dynamic standing (DyS), on passive range of motion (PROM) and spasticity in the hip among non-ambulatory children with cerebral palsy. Method Twenty non-ambulatory children with cerebral palsy participated in an exercise intervention study with a crossover design. During StS, the Non-ambulatory children with cerebral palsy were encouraged to exercise according to standard care recommendations, including daily supported StS for 30-90 min. During DyS, daily exercise for at least 30 min at a speed between 30 and 50 rpm in an Innowalk (Made for movement, Norway) was recommended. We assessed adaptive effects from the exercise programs through PROM in the hip assessed with a handheld goniometer, and spasticity in the hip assessed with the Modified Ashworth Scale before and after 30 min of StS or DyS. A trained physiotherapist performed the assessments. The exercise test and exercise training were performed in the children's habitual environment. Non-parametric statistics were used and each leg was used as its own control. Result PROM increased in all directions after 30 min (p < 0.001), and after four months of exercise training (p < 0.001) of DyS. Thirty minutes of DyS lowered the spasticity in the muscles around the hip (p < 0.001) more than 30 min of StS (p < 0.001). Conclusion Thirty minutes of DyS increased PROM and decreased spasticity among non-ambulatory children with CP. Four months of DyS increased PROM but did not decrease spasticity. These results can help inform individualised standing recommendations.
Collapse
Affiliation(s)
- Åsa B Tornberg
- Department of Health Sciences, Lund University, Lund, Sweden
| | | |
Collapse
|
13
|
MUREȘAN DA, PIELMUSI A, PERJU DUMBRAVĂ L, FODOR DM. The effect of stretching exercises as part of the rehabilitation program for patients with spinal cord injury. BALNEO RESEARCH JOURNAL 2019. [DOI: 10.12680/balneo.2019.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction & objectives: Spinal cord injury is a neurological condition with a devastating impact on all aspects of patients’ life. Spasticity, a symptom of the resulting pyramidal syndrome, can be both beneficial and non-beneficial, and requires treatment when it causes significant limitations and complications. The therapeutic approach comprises a wide variety of therapies ranging from non-invasive to invasive procedures. One of the non-invasive procedures is physiotherapy including stretching exercises. There are several studies investigating the effects of stretching on spasticity but with inconclusive results, slightly favoring a positive effect. The aim of this case-control study was to evaluate the effect of a stretching module added to the specific physiotherapy program for patients with SCI.
Material and method: An observational case-control study was conducted which included 20 patients with SCI attending a motor neurorehabilitation program for 10 consecutive days at the Rehabilitation Hospital Cluj-Napoca and “Dorina Palace” Center, Cluj-Napoca, during the years 2016-2017. The patients were divided into 2 groups of 10 patients each: the control group, which received specific physiotherapy and occupational therapy, and the study group, in which a stretching exercise module was added to the rehabilitation program (attended by the control group). The patients were assessed using the Modified Ashworth Scale, the Range of Motion (ROM) test for the lower limb joints, and the Ten Meter Walk Test, both at the beginning and at the end of the 10-days rehabilitation program.
Results & discussions: The patients in the study group had statistically significant improvements in all the assessed scores compared to the control group, in which improvements were also present, but at the limit of statistical significance.
Conclusion: The inclusion of stretching exercises in the specific physiotherapy program for patients with spastic paraparesis after spinal cord injury seems to have a short-term favorable impact, by reducing spasticity and improving ambulation.
Key words: spinal cord injury, spasticity, stretching,
Collapse
Affiliation(s)
- Dorin-Alexandru MUREȘAN
- Rehabilitation Hospital Cluj-Napoca, Romania 2Department of Sport and Physical Education Science, Babes–Bolyai University, Cluj-Napoca, Romania
| | | | | | - Dana Marieta FODOR
- Neuroscience Department, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Houx L, Dubois A, Brochard S, Pons C. Do clowns attenuate pain and anxiety undergoing botulinum toxin injections in children? Ann Phys Rehabil Med 2019; 63:393-399. [PMID: 30708069 DOI: 10.1016/j.rehab.2018.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Botulinum toxin injection (BTI) is the primary treatment for spasticity in children. Anxiety and pain are important concerns to address to attenuate the discomfort of BTI. The aim of this study was to compare the effectiveness of medical clowns and usual distractions, both added to nitrous oxide (N2O) and analgesic cream, on pain and anxiety during BTI sessions in children. METHODS The primary outcome was pain evaluated by the Face, Legs, Activity, Cry, Consolability (FLACC) scale. Secondary criteria were pain rated on a Visual Analog Scale (VAS) by the child and parent, anxiety rated on a VAS before and during BTIs by the child and parent(s), rating of the success of the sessions on a 4-point Likert scale by the physician and parent(s), and rating of the benefits of the distraction by the parent(s). Non-parametric tests were used for between-group comparisons. RESULTS Baseline group characteristics of the clown and control groups did not differ. During 88 BTI sessions (40 with clown distraction and 48 with control distraction) in 59 children (35 boys; 52 with cerebral palsy, 12 with moderate to severe cognitive disorders), median maximal FLACC score was 2.5 (interquartile range [IQR]: 1-4) in the clown group and 3 (IQR: 1-4.3) in the control group. VAS self-reported pain score was 2.5 (IQR: 0-5) and 3 (IQR: 1-6.3) in the clown and control groups (P=0.56), and VAS proxy-reported pain score was 2.5 (IQR: 0.3-3.4) and 3 (IQR: 1-4.5) (P=0.25). After BTI sessions, the 2 groups did not differ in VAS self- and proxy-reported anxiety (P=0.83 and P=0.81). Physician and parent ratings of the success of sessions were similar between the groups (P=0.89 and P=0.11). Parent ratings of the perceived benefits of distraction were higher in the clown than control group (P=0.004). CONCLUSIONS Although clown distraction was particularly appreciated by parents, it did not significantly reduce pain or anxiety in children as compared with usual distraction. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT03149263.
Collapse
Affiliation(s)
- Laetitia Houx
- Department of physical and medical rehabilitation, CHRU MORVAN, 29602 Brest, Bretagne, France; Department of pediatric physical and medical rehabilitation, fondation ILDYS, 29200 Brest, Bretagne, France; Laboratory of medical information processing, Inserm U1101, 29200 Brest, Bretagne, France.
| | - Amandine Dubois
- Department of psychology, university of occidental Brittany, 29200 Brest, Bretagne, France; LP3C, EA 1285, Rennes 2, 35000 Rennes, Bretagne, France
| | - Sylvain Brochard
- Department of physical and medical rehabilitation, CHRU MORVAN, 29602 Brest, Bretagne, France; Department of pediatric physical and medical rehabilitation, fondation ILDYS, 29200 Brest, Bretagne, France; Laboratory of medical information processing, Inserm U1101, 29200 Brest, Bretagne, France
| | - Christelle Pons
- Department of pediatric physical and medical rehabilitation, fondation ILDYS, 29200 Brest, Bretagne, France; Laboratory of medical information processing, Inserm U1101, 29200 Brest, Bretagne, France
| |
Collapse
|
15
|
Effects of backward-downhill treadmill training versus manual static plantarflexor stretching on muscle-joint pathology and function in children with spastic Cerebral Palsy. Gait Posture 2018; 65:121-128. [PMID: 30558918 DOI: 10.1016/j.gaitpost.2018.07.171] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/31/2018] [Accepted: 07/21/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Patients with spastic Cerebral Palsy are prone to equinus deformities, likely affected by short and inextensible plantarflexor muscles. Manual stretching is a popular treatment but its effectiveness concerning joint mobility, muscle-tendon morphometrics and walking function is debated. Eccentric exercise by backward-downhill treadmill training could be a therapeutic alternative for ambulatory patients improving gait and muscle function. RESEARCH QUESTION What are the effects of eccentric training by backward-downhill treadmill training and plantarflexor stretching concerning gait and muscle function in patients with spastic Cerebral Palsy? METHODS 10 independent ambulators with spastic Cerebral Palsy (12 [SD 4] years old, 2 uni- and 8 bilaterally affected) participated in a randomized crossover-study. One group started with manual static stretching, the other one with backward-downhill treadmill training. Each treatment period lasted 9 weeks (3 sessions per week). Pre and post treatments, 3D gait was assessed during comfortable and during fastest possible walking. Ultrasonography and dynamometry were used to test plantarflexor strength, passive joint flexibility, as well as gastrocnemius morphometrics, stiffness and strain on muscle-tendon and joint level. RESULTS When comparing both treatments, backward-downhill treadmill training lead to larger single stance dorsiflexion at comfortable walking speed (+2.9°, P = 0.041) and faster maximally achievable walking velocities ( + 0.10 m/s, P = 0.017). Stretching reduced knee flexion in swing, particularly at faster walking velocities (-5.4°, P = 0.003). Strength, ankle joint flexibility, as well as stiffness on muscle-tendon and joint level were not altered, despite similar increases in passive muscle and fascicle strain with both treatments (P ≤ 0.023). SIGNIFICANCE Backward-downhill treadmill training can be an effective gait treatment, probably improving coordination or reducing dynamic stretch sensitivity. More intense BDTT might be necessary to further alter muscle-tendon properties. Manual static plantarflexor stretching may not be optimal in Cerebral Palsy patients with high ambulatory status.
Collapse
|
16
|
Dynamic spasticity determines hamstring length and knee flexion angle during gait in children with spastic cerebral palsy. Gait Posture 2018; 64:255-259. [PMID: 29960141 DOI: 10.1016/j.gaitpost.2018.06.163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/01/2018] [Accepted: 06/24/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Previous researchers reported that popliteal angle did not correlate well with knee angle during gait in individuals with spastic cerebral palsy (CP). RESEARCH QUESTION To determine if hamstring spasticity, as measured by Modified Tardieu Scale (MTS) at rest, is associated with knee flexion angle at initial contact and midstance during gait. METHODS Thirty ambulatory children (mean age 8.7 ± 2.4 years) diagnosed with spastic CP participated. The hamstrings' spasticity was assessed in the supine position with the MTS, measuring R1 (muscle reaction to passive fast stretch), R2 (passive range of motion), and R2-R1 (dynamic component of spasticity). We conducted 3-dimensional computerized gait analysis and calculated semimembranosus muscle-tendon length and lengthening velocity during gait using musculoskeletal modeling and inverse kinematic analysis by OpenSim. Pearson correlation coefficients were calculated to estimate the association of MTS with biomechanical parameters during gait. RESULTS Knee flexion angle at initial contact and maximal knee extension angle during stance phase significantly positively correlated with both R1 and ㅣR2 - R1ㅣ of MTS, but not with R2 angle. The length of semimembranosus at initial contact, end of swing, and minimal length during stance phase were strongly negatively associated with R1, rather than R2 or ㅣR2 - R1ㅣ angles. SIGNIFICANCE The R1 angle of MTS (muscle reaction to passive fast stretch) is more relevant correlate of knee flexion angle during gait than the R2 (passive range of motion).
Collapse
|
17
|
Van Campenhout A, Bar-On L. Knee contracture in children with cerebral palsy: association with muscle lengths. Dev Med Child Neurol 2018; 60:335-336. [PMID: 29451692 DOI: 10.1111/dmcn.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anja Van Campenhout
- Department of Orthopaedic Surgery, University Hospital Leuven, Leuven, Belgium
| | - Lynn Bar-On
- Department of Rehabilitation Sciences, Catholic University Leuven, Leuven, Belgium.,Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Bar-On L, Kalkman BM, Cenni F, Schless SH, Molenaers G, Maganaris CN, Bass A, Holmes G, Barton GJ, O'Brien TD, Desloovere K. The Relationship Between Medial Gastrocnemius Lengthening Properties and Stretch Reflexes in Cerebral Palsy. Front Pediatr 2018; 6:259. [PMID: 30338247 PMCID: PMC6180247 DOI: 10.3389/fped.2018.00259] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022] Open
Abstract
Stretch reflex hyperactivity in the gastrocnemius of children with spastic cerebral palsy (CP) is commonly evaluated by passively rotating the ankle joint into dorsiflexion at different velocities, such as applied in conventional clinical spasticity assessments. However, surface electromyography (sEMG) collected from the medial gastrocnemius (MG) during such examination reveals unexplained heterogeneity in muscle activation between patients. Recent literature also highlights altered muscle tensile behavior in children with spastic CP. We aimed to document MG muscle and tendon lengthening during passive ankle motion at slow and fast velocity and explore its interdependence with the elicited hyperactive stretch reflex. The ankle of 15 children with CP (11 ± 3 years, GMFCS 9I 6II, 8 bilateral, 7 unilateral) and 16 typically developing children (TDC) was passively rotated over its full range of motion at slow and fast velocity. Ultrasound, synchronized with motion-analysis, was used to track the movement of the MG muscle-tendon junction and extract the relative lengthening of muscle and tendon during joint rotation. Simultaneously, MG sEMG was measured. Outcome parameters included the angular and muscle lengthening velocities 30 ms before EMG onset and the gain in root mean square EMG during stretch, as a measure of stretch reflex activity. Compared to slow rotation, the muscle lengthened less and stretch reflex activity was higher during fast rotation. These velocity-induced changes were more marked in CP compared to TDC. In the CP group, muscle-lengthening velocity had higher correlation coefficients with stretch reflex hyperactivity than joint angular velocity. Muscles with greater relative muscle lengthening during slow rotation had earlier and stronger stretch reflexes during fast rotation. These initial results suggest that ankle angular velocity is not representative of MG muscle lengthening velocity and is less related to stretch reflex hyperactivity than MG muscle lengthening. In addition, muscles that lengthened more during slow joint rotation were more likely to show a velocity-dependent stretch reflex. This interdependence of muscle lengthening and stretch reflexes may be important to consider when administering treatment. However, muscle and tendon lengthening properties alone could not fully explain the variability in stretch reflexes, indicating that other factors should also be investigated.
Collapse
Affiliation(s)
- Lynn Bar-On
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Barbara M Kalkman
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Francesco Cenni
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | | | - Guy Molenaers
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Constantinos N Maganaris
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Alfie Bass
- Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Gill Holmes
- Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Gabor J Barton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Thomas D O'Brien
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
van den Noort JC, Bar-On L, Aertbeliën E, Bonikowski M, Braendvik SM, Broström EW, Buizer AI, Burridge JH, van Campenhout A, Dan B, Fleuren JF, Grunt S, Heinen F, Horemans HL, Jansen C, Kranzl A, Krautwurst BK, van der Krogt M, Lerma Lara S, Lidbeck CM, Lin JP, Martinez I, Meskers C, Metaxiotis D, Molenaers G, Patikas DA, Rémy-Néris O, Roeleveld K, Shortland AP, Sikkens J, Sloot L, Vermeulen RJ, Wimmer C, Schröder AS, Schless S, Becher JG, Desloovere K, Harlaar J. European consensus on the concepts and measurement of the pathophysiological neuromuscular responses to passive muscle stretch. Eur J Neurol 2017; 24:981-e38. [DOI: 10.1111/ene.13322] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 04/06/2017] [Indexed: 12/27/2022]
|
20
|
van der Krogt MM, Bar-On L, Kindt T, Desloovere K, Harlaar J. Neuro-musculoskeletal simulation of instrumented contracture and spasticity assessment in children with cerebral palsy. J Neuroeng Rehabil 2016; 13:64. [PMID: 27423898 PMCID: PMC4947289 DOI: 10.1186/s12984-016-0170-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 06/29/2016] [Indexed: 11/21/2022] Open
Abstract
Background Increased resistance in muscles and joints is an important phenomenon in patients with cerebral palsy (CP), and is caused by a combination of neural (e.g. spasticity) and non-neural (e.g. contracture) components. The aim of this study was to simulate instrumented, clinical assessment of the hamstring muscles in CP using a conceptual model of contracture and spasticity, and to determine to what extent contracture can be explained by altered passive muscle stiffness, and spasticity by (purely) velocity-dependent stretch reflex. Methods Instrumented hamstrings spasticity assessment was performed on 11 children with CP and 9 typically developing children. In this test, the knee was passively stretched at slow and fast speed, and knee angle, applied forces and EMG were measured. A dedicated OpenSim model was created with motion and muscles around the knee only. Contracture was modeled by optimizing the passive muscle stiffness parameters of vasti and hamstrings, based on slow stretch data. Spasticity was modeled using a velocity-dependent feedback controller, with threshold values derived from experimental data and gain values optimized for individual subjects. Forward dynamic simulations were performed to predict muscle behavior during slow and fast passive stretches. Results Both slow and fast stretch data could be successfully simulated by including subject-specific levels of contracture and, for CP fast stretches, spasticity. The RMS errors of predicted knee motion in CP were 1.1 ± 0.9° for slow and 5.9 ± 2.1° for fast stretches. CP hamstrings were found to be stiffer compared with TD, and both hamstrings and vasti were more compliant than the original generic model, except for the CP hamstrings. The purely velocity-dependent spasticity model could predict response during fast passive stretch in terms of predicted knee angle, muscle activity, and fiber length and velocity. Only sustained muscle activity, independent of velocity, was not predicted by our model. Conclusion The presented individually tunable, conceptual model for contracture and spasticity could explain most of the hamstring muscle behavior during slow and fast passive stretch. Future research should attempt to apply the model to study the effects of spasticity and contracture during dynamic tasks such as gait. Electronic supplementary material The online version of this article (doi:10.1186/s12984-016-0170-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marjolein Margaretha van der Krogt
- Department of Rehabilitation Medicine, VU University Medical Center, MOVE Research Institute Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
| | - Lynn Bar-On
- Department of Rehabilitation Medicine, VU University Medical Center, MOVE Research Institute Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.,Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, B-3001, Leuven, Heverlee, Belgium.,Clinical Motion Analysis Laboratory, University Hospital Leuven, Weligerveld 1, 3212, Pellenberg, Belgium
| | - Thalia Kindt
- Clinical Motion Analysis Laboratory, University Hospital Leuven, Weligerveld 1, 3212, Pellenberg, Belgium
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, B-3001, Leuven, Heverlee, Belgium.,Clinical Motion Analysis Laboratory, University Hospital Leuven, Weligerveld 1, 3212, Pellenberg, Belgium
| | - Jaap Harlaar
- Department of Rehabilitation Medicine, VU University Medical Center, MOVE Research Institute Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Hösl M, Böhm H, Arampatzis A, Keymer A, Döderlein L. Contractile behavior of the medial gastrocnemius in children with bilateral spastic cerebral palsy during forward, uphill and backward-downhill gait. Clin Biomech (Bristol, Avon) 2016; 36:32-9. [PMID: 27208665 DOI: 10.1016/j.clinbiomech.2016.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Plantarflexor tightness due to muscle degenerations has been frequently documented in children with spastic cerebral palsy but the contractile behavior of muscles during ambulation is largely unclear. Especially the adaptability of gastrocnemius muscle contraction on sloped surface could be relevant during therapy. METHODS Medial gastrocnemius contractions were measured during flat-forward, uphill (+12% incline) and backward-downhill (-12% decline) treadmill gait in 15 children with bilateral cerebral palsy, walking in crouch, and 17 typically developing controls (age: 7-16years) by means of ultrasound and motion analysis. Tracked fascicle and calculated series elastic element length during gait were normalized on seated rest length. Additionally electromyography of the medial gastrocnemius, soleus and tibialis anterior was collected. FINDINGS During forward gait spastic gastrocnemii reached 10% shorter relative fascicle length, 5% shorter series elastic element length and showed 37% less concentric fascicle excursion than controls. No difference in eccentric fascicle excursion existed. Uphill gait increased concentric fascicle excursion in children with cerebral palsy and controls (by 23% and 41%) and tibialis anterior activity during swing (by 33% and 48%). Backward downhill gait more than doubled (+112%) eccentric fascicle excursion in cerebral palsy patients. INTERPRETATION Apart from having innately shorter fascicles at rest, flat-forward walking showed that spastic gastrocnemius fascicles work at shorter relative length than those of controls. Uphill gait may be useful to concentrically train push-off skills and foot lift. During backward-downhill gait the gastrocnemius functions as a brake and displays more eccentric excursion which could potentially stimulate sarcomere-genesis in series with repeated training.
Collapse
Affiliation(s)
- Matthias Hösl
- Orthopaedic Hospital for Children, Behandlungszentrum Aschau GmbH, Bernauer Str. 18, 83229 Aschau im Chiemgau, Germany; Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 11, 10115 Berlin, Germany.
| | - Harald Böhm
- Orthopaedic Hospital for Children, Behandlungszentrum Aschau GmbH, Bernauer Str. 18, 83229 Aschau im Chiemgau, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 11, 10115 Berlin, Germany
| | - Antonia Keymer
- Department of Biomechanics in Sports, Technische Universität München, Uptown München-Campus D, Georg-Brauchle-Ring 60/62, 80992 München, Germany
| | - Leonhard Döderlein
- Orthopaedic Hospital for Children, Behandlungszentrum Aschau GmbH, Bernauer Str. 18, 83229 Aschau im Chiemgau, Germany
| |
Collapse
|
22
|
Schless SH, Desloovere K, Aertbeliën E, Molenaers G, Huenaerts C, Bar-On L. The Intra- and Inter-Rater Reliability of an Instrumented Spasticity Assessment in Children with Cerebral Palsy. PLoS One 2015; 10:e0131011. [PMID: 26134673 PMCID: PMC4489837 DOI: 10.1371/journal.pone.0131011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/26/2015] [Indexed: 11/19/2022] Open
Abstract
AIM Despite the impact of spasticity, there is a lack of objective, clinically reliable and valid tools for its assessment. This study aims to evaluate the reliability of various performance- and spasticity-related parameters collected with a manually controlled instrumented spasticity assessment in four lower limb muscles in children with cerebral palsy (CP). METHOD The lateral gastrocnemius, medial hamstrings, rectus femoris and hip adductors of 12 children with spastic CP (12.8 years, ±4.13 years, bilateral/unilateral involvement n=7/5) were passively stretched in the sagittal plane at incremental velocities. Muscle activity, joint motion, and torque were synchronously recorded using electromyography, inertial sensors, and a force/torque load-cell. Reliability was assessed on three levels: (1) intra- and (2) inter-rater within session, and (3) intra-rater between session. RESULTS Parameters were found to be reliable in all three analyses, with 90% containing intra-class correlation coefficients >0.6, and 70% of standard error of measurement values <20% of the mean values. The most reliable analysis was intra-rater within session, followed by intra-rater between session, and then inter-rater within session. The Adds evaluation had a slightly lower level of reliability than that of the other muscles. CONCLUSIONS Limited intrinsic/extrinsic errors were introduced by repeated stretch repetitions. The parameters were more reliable when the same rater, rather than different raters performed the evaluation. Standardisation and training should be further improved to reduce extrinsic error when different raters perform the measurement. Errors were also muscle specific, or related to the measurement set-up. They need to be accounted for, in particular when assessing pre-post interventions or longitudinal follow-up. The parameters of the instrumented spasticity assessment demonstrate a wide range of applications for both research and clinical environments in the quantification of spasticity.
Collapse
Affiliation(s)
- Simon-Henri Schless
- Clinical Motion Analysis Laboratory, University Hospital Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Clinical Motion Analysis Laboratory, University Hospital Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Erwin Aertbeliën
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Guy Molenaers
- Clinical Motion Analysis Laboratory, University Hospital Leuven, Leuven, Belgium
- Departments of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Orthopaedic Medicine, University Hospital Leuven, Leuven, Belgium
| | - Catherine Huenaerts
- Clinical Motion Analysis Laboratory, University Hospital Leuven, Leuven, Belgium
| | - Lynn Bar-On
- Clinical Motion Analysis Laboratory, University Hospital Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Van Campenhout A, Bar-On L, Desloovere K, Huenaerts C, Molenaers G. Motor endplate-targeted botulinum toxin injections of the gracilis muscle in children with cerebral palsy. Dev Med Child Neurol 2015; 57:476-83. [PMID: 25557985 DOI: 10.1111/dmcn.12667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2014] [Indexed: 11/30/2022]
Abstract
AIM Intramuscular botulinum toxin-A (BoNT-A) injections reduce spasticity by blocking neurotransmission at the motor endplate (MEP). The goal of this study was to assess the reduction in spasticity achieved by injecting BoNT-A at different sites of the gracilis muscle. METHOD Thirty-four gracilis muscles, in 27 children (10 females and 17 males, mean age of 8.6y [SD 2.5y]) with spastic cerebral palsy (unilateral and bilateral, Gross Motor Function Classification System [GMFCS] levels I-IV), were randomly assigned to one of two groups. In one group BoNT-A was injected proximally (at a site 25% of the distance from the pubic tubercle and the medial epicondyle) and in the other it was injected at the MEP zones (half of the dose was administered at 30% of this distance and half at 60%). Spasticity was assessed before and after BoNT-A injection using simultaneous measurements of surface electromyography (sEMG) and angular velocity during passive muscle stretch applied at different velocities. The primary outcome measure included the velocity-dependent change in average root mean square electromyography (RMS-EMG). Secondary outcome was assessed with the Modified Ashworth Scale (MAS) and Modified Tardieu Scale (MTS). RESULTS Spasticity decreased more in MEP-targeted muscles than in proximally injected muscles, as demonstrated by a larger reduction in average RMS-EMG values (p=0.04), though this difference was not found with the MAS or MTS. INTERPRETATION The results suggest that BoNT-A injection of the gracilis at sites with a high concentration of MEPs is effective at reducing spasticity. These preliminary findings should be confirmed by larger studies. In the case of long muscles, such as the gracilis, the injection site is important.
Collapse
Affiliation(s)
- Anja Van Campenhout
- Department of Orthopaedics, University Hospital Leuven, Leuven, Belgium; KU Leuven Department of Development and Regeneration, Leuven, Belgium
| | | | | | | | | |
Collapse
|
24
|
Spasticity and its contribution to hypertonia in cerebral palsy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:317047. [PMID: 25649546 PMCID: PMC4306250 DOI: 10.1155/2015/317047] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/15/2014] [Indexed: 11/23/2022]
Abstract
Spasticity is considered an important neural contributor to muscle hypertonia in children with cerebral palsy (CP). It is most often treated with antispasticity medication, such as Botulinum Toxin-A. However, treatment response is highly variable. Part of this variability may be due to the inability of clinical tests to differentiate between the neural (e.g., spasticity) and nonneural (e.g., soft tissue properties) contributions to hypertonia, leading to the terms “spasticity” and “hypertonia” often being used interchangeably. Recent advancements in instrumented spasticity assessments offer objective measurement methods for distinction and quantification of hypertonia components. These methods can be applied in clinical settings and their results used to fine-tune and improve treatment. We reviewed current advancements and new insights with respect to quantifying spasticity and its contribution to muscle hypertonia in children with CP. First, we revisit what is known about spasticity in children with CP, including the various definitions and its pathophysiology. Second, we summarize the state of the art on instrumented spasticity assessment in CP and review the parameters developed to quantify the neural and nonneural components of hypertonia. Lastly, the impact these quantitative parameters have on clinical decision-making is considered and recommendations for future clinical and research investigations are discussed.
Collapse
|
25
|
Bar-On L, Molenaers G, Aertbeliën E, Monari D, Feys H, Desloovere K. The relation between spasticity and muscle behavior during the swing phase of gait in children with cerebral palsy. RESEARCH IN DEVELOPMENTAL DISABILITIES 2014; 35:3354-3364. [PMID: 25240217 DOI: 10.1016/j.ridd.2014.07.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
There is much debate about how spasticity contributes to the movement abnormalities seen in children with spastic cerebral palsy (CP). This study explored the relation between stretch reflex characteristics in passive muscles and markers of spasticity during gait. Twenty-four children with CP underwent 3D gait analysis at three walking velocity conditions (self-selected, faster and fastest). The gastrocnemius (GAS) and medial hamstrings (MEHs) were assessed at rest using an instrumented spasticity assessment that determined the stretch-reflex threshold, expressed in terms of muscle lengthening velocity. Muscle activation was quantified with root mean square electromyography (RMS-EMG) during passive muscle stretch and during the muscle lengthening periods in the swing phase of gait. Parameters from passive stretch were compared to those from gait analysis. In about half the children, GAS peak muscle lengthening velocity during the swing phase of gait did not exceed its stretch reflex threshold. In contrast, in the MEHs the threshold was always exceeded. In the GAS, stretch reflex thresholds were positively correlated to peak muscle lengthening velocity during the swing phase of gait at the faster (r = 0.46) and fastest (r = 0.54) walking conditions. In the MEHs, a similar relation was found, but only at the faster walking condition (r = 0.43). RMS-EMG during passive stretch showed moderate correlations to RMS-EMG during the swing phase of gait in the GAS (r = 0.46-0.56) and good correlations in the MEHs (r = 0.69-0.77) at all walking conditions. RMS-EMG during passive stretch showed no correlations to peak muscle lengthening velocity during gait. We conclude that a reduced stretch reflex threshold in the GAS and MEHs constrains peak muscle lengthening velocity during gait in children with CP. With increasing walking velocity, this constraint is more marked in the GAS, but not in the MEHs. Hyper-activation of stretch reflexes during passive stretch is related to muscle activation during the swing phase of gait, but has a limited contribution to reduced muscle lengthening velocity during swing. Larger studies are required to confirm these results, and to investigate the contribution of other impairments such as passive stiffness and weakness to reduced muscle lengthening velocity during the swing phase of gait.
Collapse
Affiliation(s)
- Lynn Bar-On
- KU Leuven Department of Rehabilitation Sciences, Tervuursevest 101, 3001 Leuven, Belgium; Clinical Motion Analysis Laboratory, University Hospital, Pellenberg, Weligerveld 1, 3212 Pellenberg, Belgium.
| | - Guy Molenaers
- Clinical Motion Analysis Laboratory, University Hospital, Pellenberg, Weligerveld 1, 3212 Pellenberg, Belgium; KU Leuven Department of Development and Regeneration, Herestraat 49 box 7003, 3000 Leuven, Belgium; Department of Orthopedics, University Hospital, Pellenberg, Weligerveld 1, 3212 Pellenberg, Belgium.
| | - Erwin Aertbeliën
- KU Leuven Department of Mechanical Engineering, Celestijnenlaan 300b box 2420, 3001 Leuven, Belgium.
| | - Davide Monari
- Clinical Motion Analysis Laboratory, University Hospital, Pellenberg, Weligerveld 1, 3212 Pellenberg, Belgium; KU Leuven Department of Mechanical Engineering, Celestijnenlaan 300b box 2420, 3001 Leuven, Belgium.
| | - Hilde Feys
- KU Leuven Department of Rehabilitation Sciences, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Kaat Desloovere
- KU Leuven Department of Rehabilitation Sciences, Tervuursevest 101, 3001 Leuven, Belgium; Clinical Motion Analysis Laboratory, University Hospital, Pellenberg, Weligerveld 1, 3212 Pellenberg, Belgium.
| |
Collapse
|
26
|
Bar-On L, Desloovere K, Molenaers G, Harlaar J, Kindt T, Aertbeliën E. Identification of the neural component of torque during manually-applied spasticity assessments in children with cerebral palsy. Gait Posture 2014; 40:346-51. [PMID: 24931109 DOI: 10.1016/j.gaitpost.2014.04.207] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/08/2014] [Accepted: 04/29/2014] [Indexed: 02/02/2023]
Abstract
Clinical assessment of spasticity is compromised by the difficulty to distinguish neural from non-neural components of increased joint torque. Quantifying the contributions of each of these components is crucial to optimize the selection of anti-spasticity treatments such as botulinum toxin (BTX). The aim of this study was to compare different biomechanical parameters that quantify the neural contribution to ankle joint torque measured during manually-applied passive stretches to the gastrocsoleus in children with spastic cerebral palsy (CP). The gastrocsoleus of 53 children with CP (10.9 ± 3.7 y; females n = 14; bilateral/unilateral involvement n = 28/25; Gross Motor Functional Classification Score I-IV) and 10 age-matched typically developing (TD) children were assessed using a manually-applied, instrumented spasticity assessment. Joint angle characteristics, root mean square electromyography and joint torque were simultaneously recorded during passive stretches at increasing velocities. From the CP cohort, 10 muscles were re-assessed for between-session reliability and 19 muscles were re-assessed 6 weeks post-BTX. A parameter related to mechanical work, containing both neural and non-neural components, was compared to newly developed parameters that were based on the modeling of passive stiffness and viscosity. The difference between modeled and measured response provided a quantification of the neural component. Both types of parameters were reliable (ICC > 0.95) and distinguished TD from spastic muscles (p < 0.001). However, only the newly developed parameters significantly decreased post-BTX (p = 0.012). Identifying the neural and non-neural contributions to increased joint torque allows for the development of individually tailored tone management.
Collapse
Affiliation(s)
- L Bar-On
- University Hospital Pellenberg, Clinical Motion Analysis Laboratory, University Hospital, Leuven, Belgium; KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium
| | - K Desloovere
- University Hospital Pellenberg, Clinical Motion Analysis Laboratory, University Hospital, Leuven, Belgium; KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium
| | - G Molenaers
- University Hospital Pellenberg, Clinical Motion Analysis Laboratory, University Hospital, Leuven, Belgium; KU Leuven Department of Development and Regeneration, Leuven, Belgium; University Hospital Pellenberg, Department of Orthopedics, Leuven, Belgium
| | - J Harlaar
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - T Kindt
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium
| | - E Aertbeliën
- KU Leuven Department of Mechanical Engineering, Leuven, Belgium
| |
Collapse
|