1
|
Zhang Y, Zhao Y, Wang N, Wang H, Yang P, Zhai YJ, Hou L, Li W. Characterization of the Biosynthesis of Pimprinine-Type Indolyloxazoles Unravels an Unusual d-Configurational Substrate Metabolic Streamline. J Am Chem Soc 2025; 147:12866-12877. [PMID: 40178231 DOI: 10.1021/jacs.5c01705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Pimprinine-type indolyloxazole alkaloids (PIAs), originally discovered in Streptomyces, show a diverse range of important pharmaceutical and agricultural bioactivities, yet their biosynthesis remains unknown. Herein, we report the identification of the biosynthetic enzymes responsible for the formation of the indolyloxazole structure of PIAs from a rhizosphere-derived Streptomyces netropsis NZY3, which involves three key enzymes, PimA (GCN5-related N-acetyltransferase, GNAT), PimB (pyridoxal 5'-phosphate-dependent tryptophan racemase), and PimC (FeII/α-ketoglutarate-dependent dioxygenase, FeII/αKGD), notably by an unprecedented d-configurational substrate metabolic streamline. First, PimB acts as a gatekeeper to donate the d-tryptophan precursor for the PIA pathway from the l-tryptophan pool of primary metabolism. Subsequently, a unique d-tryptophan GNAT, PimA, catalyzes the formation of N-acyl d-tryptophan. Finally, another novel N-acyl d-tryptophan-specific FeII/αKGD, PimC, finishes the formation of an indolyloxazole structure through a proposed radical rearrangement-mediated ring closure mechanism, which is supported by a series of deuterium- and 18O-labeling experiments in vitro. PimC also catalyzes the formation of the trans-vinyl group containing shunt products 1a to 3a through an oxygen-rebound mechanism followed by dehydration and decarboxylation or a carbocation-involved decarboxylation pathway. Furthermore, comparative genomic mining reveals that PIA biosynthetic gene clusters (PIAs BGCs) are widely distributed in Actinobacteria and Myxobacteria, suggesting the potential for discovering new PIA-producing strains. This work expands our knowledge about the biosynthetic mechanisms of pharmaceutic-valued indolyloxazole alkaloids, laying an important foundation for their future production through synthetic biology and metabolic engineering strategies.
Collapse
Affiliation(s)
- Yuyang Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Yanni Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Ningning Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Haoran Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Pan Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Yi-Jie Zhai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Lukuan Hou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Wenli Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Sun Y, Blattmann TM, Takano Y, Ogawa NO, Isaji Y, Ishikawa NF, Ohkouchi N. Enantiomer-Specific Stable Carbon and Nitrogen Isotopic Analyses of Underivatized Individual l- and d-Amino Acids by HPLC + HPLC Separation and Nano-EA/IRMS. Anal Chem 2024; 96:18664-18671. [PMID: 39546634 DOI: 10.1021/acs.analchem.4c02851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
We developed a new method for stable carbon and nitrogen isotopic (δ13C and δ15N) analysis of underivatized amino acid (AA) enantiomers simultaneously, based on high-performance liquid chromatography (HPLC) separation and off-line isotopic measurement. l- and d-Enantiomers of each AA were isolated using a ReproSil Chiral-AA column, purified by wet chemical procedure, and analyzed for δ13C and δ15N values with a nanomol-scale elemental analyzer/isotope-ratio mass spectrometry (nano-EA/IRMS) system. We successfully achieved the separation of l- and d-enantiomers of 15 proteinogenous AAs, with all l-enantiomers eluting before respective d-enantiomers. The δ13C and δ15N values of AA enantiomers were consistent before and after HPLC separation, demonstrating that this analytical method conserves isotopic information. By coupling this column with a multidimensional HPLC system for isolating individual AAs, we analyzed l- and d-AAs in a natural sample, peptidoglycan isolated from Gram-positive bacterium Bacillus subtilis. Results show a surprisingly large 15N-depletion, up to 20‰, in d-glutamic acid relative to its l-counterpart. The first example, to our knowledge, of δ13C and δ15N analyses of underivatized AA enantiomers is expected to contribute to various research areas in the future.
Collapse
Affiliation(s)
- Yuchen Sun
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 2370061, Japan
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Kashiwa 2778564, Japan
- Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, California 95060, United States
| | - Thomas M Blattmann
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 2370061, Japan
- Geological Institute, ETH Zurich, 8092 Zurich, Switzerland
| | - Yoshinori Takano
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 2370061, Japan
| | - Nanako O Ogawa
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 2370061, Japan
| | - Yuta Isaji
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 2370061, Japan
| | - Naoto F Ishikawa
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 2370061, Japan
| | - Naohiko Ohkouchi
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 2370061, Japan
| |
Collapse
|
3
|
Snyder C, Centlivre JP, Bhute S, Shipman G, Friel AD, Viver T, Palmer M, Konstantinidis KT, Sun HJ, Rossello-Mora R, Nadeau J, Hedlund BP. Microbial Motility at the Bottom of North America: Digital Holographic Microscopy and Genomic Motility Signatures in Badwater Spring, Death Valley National Park. ASTROBIOLOGY 2023; 23:295-307. [PMID: 36625891 DOI: 10.1089/ast.2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Motility is widely distributed across the tree of life and can be recognized by microscopy regardless of phylogenetic affiliation, biochemical composition, or mechanism. Microscopy has thus been proposed as a potential tool for detection of biosignatures for extraterrestrial life; however, traditional light microscopy is poorly suited for this purpose, as it requires sample preparation, involves fragile moving parts, and has a limited volume of view. In this study, we deployed a field-portable digital holographic microscope (DHM) to explore microbial motility in Badwater Spring, a saline spring in Death Valley National Park, and complemented DHM imaging with 16S rRNA gene amplicon sequencing and shotgun metagenomics. The DHM identified diverse morphologies and distinguished run-reverse-flick and run-reverse types of flagellar motility. PICRUSt2- and literature-based predictions based on 16S rRNA gene amplicons were used to predict motility genotypes/phenotypes for 36.0-60.1% of identified taxa, with the predicted motile taxa being dominated by members of Burkholderiaceae and Spirochaetota. A shotgun metagenome confirmed the abundance of genes encoding flagellar motility, and a Ralstonia metagenome-assembled genome encoded a full flagellar gene cluster. This study demonstrates the potential of DHM for planetary life detection, presents the first microbial census of Badwater Spring and brine pool, and confirms the abundance of mobile microbial taxa in an extreme environment.
Collapse
Affiliation(s)
- Carl Snyder
- Department of Physics, Portland State University, Portland, Oregon, USA
| | - Jakob P Centlivre
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Shrikant Bhute
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Gözde Shipman
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Ariel D Friel
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (CSIC-UIB), Esporles, Illes Balears, Spain
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | | | - Henry J Sun
- Desert Research Institute, Las Vegas, Nevada, USA
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (CSIC-UIB), Esporles, Illes Balears, Spain
| | - Jay Nadeau
- Department of Physics, Portland State University, Portland, Oregon, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
- Nevada Institute of Personalized Medicine, Las Vegas, Nevada, USA
| |
Collapse
|
4
|
Co CM, Mulgaonkar A, Zhou N, Harris S, Öz OK, Tang L, Sun X. PET Imaging of Active Invasive Fungal Infections with d-[5- 11C]-Glutamine. ACS Infect Dis 2022; 8:1663-1673. [PMID: 35869564 DOI: 10.1021/acsinfecdis.2c00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The increasing prevalence and severity of invasive fungal infections (IFIs), especially in immunocompromised populations, has amplified the need for rapid diagnosis of fungal pathogens. Radiotracers derived from d-amino acids (DAAs) show promise as bacterial-specific positron emission tomography (PET) imaging agents due to their preferential consumption by bacteria and largely nonutilization by hosts. Unlike mammals, fungi can utilize external DAAs including d-glutamine for their growth by rapidly upregulating DAA oxidases. Additionally, glutamine is essential for fungal nitrogen assimilation, survival, and virulence. We previously validated d-[5-11C]-glutamine (d-[5-11C]-Gln) as an efficient radiotracer targeting live bacterial soft-tissue infections. Here, we further expanded this investigation to evaluate its translational potential for PET imaging of IFIs in immunocompetent mouse models subcutaneously (SubQ) and intramuscularly (IM) infected with Candida albicans (C. albicans), using its l-isomer counterpart (l-[5-11C]-Gln) as a control. Comparative studies between pathogens showed significantly (p < 0.05) higher uptake in fungi (C. albicans and C. tropicalis) versus tested bacterial species for d-[5-11C]-Gln, suggesting that it could potentially serve as a more sensitive radiotracer for detection of fungal infections. Additionally, comparative PET imaging studies in immunocompetent infected mice demonstrated significantly higher infection-to-background ratios for d- versus l-[5-11C]-Gln in both SubQ (ratio = 1.97, p = 0.043) and IM (ratio = 1.97, p = 0.028) infections. Fungal infection imaging specificity was confirmed with no significant difference observed between localized inflammation sites versus untreated muscle background (heat-killed injection site/untreated muscle: ∼1.1). Taken together, this work demonstrates the translational potential of d-[5-11C]-Gln for noninvasive PET imaging of IFIs.
Collapse
Affiliation(s)
- Cynthia M Co
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Ning Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Shelby Harris
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Orhan K Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
5
|
Wang M, Zhang X, Huang H, Qin Z, Liu C, Chen Y. Amino Acid Configuration Affects Volatile Fatty Acid Production during Proteinaceous Waste Valorization: Chemotaxis, Quorum Sensing, and Metabolism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8702-8711. [PMID: 35549463 DOI: 10.1021/acs.est.1c07894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
During proteinaceous waste valorization to produce volatile fatty acids (VFAs), protein needs to be hydrolyzed to amino acids (AAs), but the effects of the configuration of AAs on their biotransformation and VFA production have not been investigated. In this study, more residual d-AAs than their corresponding l-AAs were observed after VFAs were produced from kitchen waste in a pilot-scale bioreactor. For all AAs investigated, the VFA production from d-AAs was lower than that from corresponding l-AAs. The metagenomics and metaproteomics analyses revealed that the l-AA fermentation system exhibited greater bacterial chemotaxis and quorum sensing (QS) than d-AAs, which benefited the establishment of functional microorganisms (such as Clostridium, Sedimentibacter, and Peptoclostridium) and expression of functional proteins (e.g., substrate transportation cofactors, l-AA dehydrogenase, and acidogenic proteins). In addition, d-AAs need to be racemized to l-AAs before being metabolized, and the difference of VFA production between d-AAs and l-AAs decreased with the increase of racemization activity. The findings of the AA configuration affecting bacterial chemotaxis and QS, which altered microorganism communities and functional protein expression, provided a new insight into the reasons for higher l-AA metabolism than d-AAs and more d-AAs left during VFA production from proteinaceous wastes.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhiyi Qin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
6
|
MacKenzie SM, Neveu M, Davila AF, Lunine JI, Cable ML, Phillips-Lander CM, Eigenbrode JL, Waite JH, Craft KL, Hofgartner JD, McKay CP, Glein CR, Burton D, Kounaves SP, Mathies RA, Vance SD, Malaska MJ, Gold R, German CR, Soderlund KM, Willis P, Freissinet C, McEwen AS, Brucato JR, de Vera JPP, Hoehler TM, Heldmann J. Science Objectives for Flagship-Class Mission Concepts for the Search for Evidence of Life at Enceladus. ASTROBIOLOGY 2022; 22:685-712. [PMID: 35290745 PMCID: PMC9233532 DOI: 10.1089/ast.2020.2425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/21/2022] [Indexed: 05/07/2023]
Abstract
Cassini revealed that Saturn's Moon Enceladus hosts a subsurface ocean that meets the accepted criteria for habitability with bio-essential elements and compounds, liquid water, and energy sources available in the environment. Whether these conditions are sufficiently abundant and collocated to support life remains unknown and cannot be determined from Cassini data. However, thanks to the plume of oceanic material emanating from Enceladus' south pole, a new mission to Enceladus could search for evidence of life without having to descend through kilometers of ice. In this article, we outline the science motivations for such a successor to Cassini, choosing the primary science goal to be determining whether Enceladus is inhabited and assuming a resource level equivalent to NASA's Flagship-class missions. We selected a set of potential biosignature measurements that are complementary and orthogonal to build a robust case for any life detection result. This result would be further informed by quantifications of the habitability of the environment through geochemical and geophysical investigations into the ocean and ice shell crust. This study demonstrates that Enceladus' plume offers an unparalleled opportunity for in situ exploration of an Ocean World and that the planetary science and astrobiology community is well equipped to take full advantage of it in the coming decades.
Collapse
Affiliation(s)
| | - Marc Neveu
- Department of Astronomy, University of Maryland, College Park, Maryland, USA
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Alfonso F. Davila
- Division of Space Science and Astrobiology, NASA Ames Research Center, Moffett Field, California, USA
| | - Jonathan I. Lunine
- Department of Astronomy, Cornell University, Ithaca, New York, USA
- Carl Sagan Institute, Cornell University, Ithaca, New York, USA
| | - Morgan L. Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Jennifer L. Eigenbrode
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - J. Hunter Waite
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas, USA
| | - Kate L. Craft
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| | - Jason D. Hofgartner
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Chris P. McKay
- Division of Space Science and Astrobiology, NASA Ames Research Center, Moffett Field, California, USA
| | - Christopher R. Glein
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas, USA
| | - Dana Burton
- Department of Anthropology, George Washington University, Washington, District of Columbia, USA
| | | | - Richard A. Mathies
- Chemistry Department and Space Sciences Laboratory, University of California, Berkeley, Berkeley, California, USA
| | - Steven D. Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Michael J. Malaska
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Robert Gold
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| | - Christopher R. German
- Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Krista M. Soderlund
- Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Peter Willis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Alfred S. McEwen
- Lunar and Planetary Lab, University of Arizona, Tucson, Arizona, USA
| | | | - Jean-Pierre P. de Vera
- Space Operations and Astronaut Training, MUSC, German Aerospace Center (DLR), Cologne, Germany
| | - Tori M. Hoehler
- Division of Space Science and Astrobiology, NASA Ames Research Center, Moffett Field, California, USA
| | - Jennifer Heldmann
- Division of Space Science and Astrobiology, NASA Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
7
|
Woong Yoo S, Young Kwon S, Kang SR, Min JJ. Molecular imaging approaches to facilitate bacteria-mediated cancer therapy. Adv Drug Deliv Rev 2022; 187:114366. [PMID: 35654213 DOI: 10.1016/j.addr.2022.114366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022]
Abstract
Bacteria-mediated cancer therapy is a potential therapeutic strategy for cancer that has unique properties, including broad tumor-targeting ability, various administration routes, the flexibility of delivery, and facilitating the host's immune responses. The molecular imaging of bacteria-mediated cancer therapy allows the therapeutically injected bacteria to be visualized and confirms the accurate delivery of the therapeutic bacteria to the target lesion. Several hurdles make bacteria-specific imaging challenging, including the need to discriminate therapeutic bacterial infection from inflammation or other pathologic lesions. To realize the full potential of bacteria-specific imaging, it is necessary to develop bacteria-specific targets that can be associated with an imaging assay. This review describes the current status of bacterial imaging techniques together with the advantages and disadvantages of several imaging modalities. Also, we describe potential targets for bacterial-specific imaging and related applications.
Collapse
Affiliation(s)
- Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea
| | - Seong Young Kwon
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea; Department of Nuclear Medicine, Chonnam National University Medical School, Hwasun, Jeonnam, Korea
| | - Sae-Ryung Kang
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea; Department of Nuclear Medicine, Chonnam National University Medical School, Hwasun, Jeonnam, Korea.
| |
Collapse
|
8
|
Zhao Y, Liu Y, Li N, Muhammad M, Gong S, Ju J, Cai T, Wang J, Zhao B, Liu D. Significance of broad-spectrum racemases for the viability and pathogenicity of Aeromonas hydrophila. Future Microbiol 2022; 17:251-265. [PMID: 35152710 DOI: 10.2217/fmb-2021-0112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the function of broad-spectrum racemases in Aeromonas hydrophila (BsrA). Results: The A. hydrophila gene encoding BsrA (bsr) mutants (AHΔbsr) exhibited a significant decrease in growth, motility, extracellular protease production and biofilm formation compared with the wild-type. Furthermore, bsr gene knockout instigated cell wall damage compared with the wild-type strains. The survival rate and replication capability in the blood and organs of the AHΔbsr-infected mice were significantly decreased. The degree of tissue injury in the AHΔbsr-infected group was lower than that of the wild-type-infected group. Moreover, there was a significant decrease in the expression of 12 AHΔbsr virulence genes. Conclusion: The bsr gene is essential for the viability and virulence of A. hydrophila.
Collapse
Affiliation(s)
- Yi Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yaoyao Liu
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Na Li
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Murtala Muhammad
- Department of Biochemistry, Kano University of Science and Technology, Wudil, 713281, Nigeria
| | - Siyu Gong
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tongxuan Cai
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jialu Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Dong Liu
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
9
|
Yu Y, Yang J, Teng ZJ, Zheng LY, Sheng Q, Li PY, Fu HH, Li CY, Chen Y, Zhang YZ, Ding JM, Chen XL. d-Alanine Metabolism via d-Ala Aminotransferase by a Marine Gammaproteobacterium, Pseudoalteromonas sp. Strain CF6-2. Appl Environ Microbiol 2022; 88:e0221921. [PMID: 34818098 PMCID: PMC8824272 DOI: 10.1128/aem.02219-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/20/2022] Open
Abstract
As the most abundant d-amino acid (DAA) in the ocean, d-alanine (d-Ala) is a key component of peptidoglycan in the bacterial cell wall. However, the underlying mechanisms of bacterial metabolization of d-Ala through the microbial food web remain largely unknown. In this study, the metabolism of d-Ala by marine bacterium Pseudoalteromonas sp. strain CF6-2 was investigated. Based on genomic, transcriptional, and biochemical analyses combined with gene knockout, d-Ala aminotransferase was found to be indispensable for the catabolism of d-Ala in strain CF6-2. Investigation on other marine bacteria also showed that d-Ala aminotransferase gene is a reliable indicator for their ability to utilize d-Ala. Bioinformatic investigation revealed that d-Ala aminotransferase sequences are prevalent in genomes of marine bacteria and metagenomes, especially in seawater samples, and Gammaproteobacteria represents the predominant group containing d-Ala aminotransferase. Thus, Gammaproteobacteria is likely the dominant group to utilize d-Ala via d-Ala aminotransferase to drive the recycling and mineralization of d-Ala in the ocean. IMPORTANCE As the most abundant d-amino acid in the ocean, d-Ala is a component of the marine DON (dissolved organic nitrogen) pool. However, the underlying mechanism of bacterial metabolization of d-Ala to drive the recycling and mineralization of d-Ala in the ocean is still largely unknown. The results in this study showed that d-Ala aminotransferase is specific and indispensable for d-Ala catabolism in marine bacteria and that marine bacteria containing d-Ala aminotransferase genes are predominantly Gammaproteobacteria widely distributed in global oceans. This study reveals marine d-Ala-utilizing bacteria and the mechanism of their metabolization of d-Ala. The results shed light on the mechanisms of recycling and mineralization of d-Ala driven by bacteria in the ocean, which are helpful in understanding oceanic microbial-mediated nitrogen cycle.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center, Shandong University, Qingdao, China
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jie Yang
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center, Shandong University, Qingdao, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zhao-Jie Teng
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Li-Yuan Zheng
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Qi Sheng
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chun-Yang Li
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yin Chen
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center, Shandong University, Qingdao, China
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun-Mei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Tarvirdipour S, Skowicki M, Schoenenberger CA, Palivan CG. Peptide-Assisted Nucleic Acid Delivery Systems on the Rise. Int J Mol Sci 2021; 22:9092. [PMID: 34445799 PMCID: PMC8396486 DOI: 10.3390/ijms22169092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Concerns associated with nanocarriers' therapeutic efficacy and side effects have led to the development of strategies to advance them into targeted and responsive delivery systems. Owing to their bioactivity and biocompatibility, peptides play a key role in these strategies and, thus, have been extensively studied in nanomedicine. Peptide-based nanocarriers, in particular, have burgeoned with advances in purely peptidic structures and in combinations of peptides, both native and modified, with polymers, lipids, and inorganic nanoparticles. In this review, we summarize advances on peptides promoting gene delivery systems. The efficacy of nucleic acid therapies largely depends on cell internalization and the delivery to subcellular organelles. Hence, the review focuses on nanocarriers where peptides are pivotal in ferrying nucleic acids to their site of action, with a special emphasis on peptides that assist anionic, water-soluble nucleic acids in crossing the membrane barriers they encounter on their way to efficient function. In a second part, we address how peptides advance nanoassembly delivery tools, such that they navigate delivery barriers and release their nucleic acid cargo at specific sites in a controlled fashion.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
11
|
Zhang L, Zeng F, McKay CP, Navarro-González R, Sun HJ. Optimizing Chiral Selectivity in Practical Life-Detection Instruments. ASTROBIOLOGY 2021; 21:505-510. [PMID: 33885325 DOI: 10.1089/ast.2020.2381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Preferential uptake of either levorotatory (L) or dextrorotatory (D) enantiomer of a chiral molecule is a potential planetary life-detection method. On Earth, bacteria, as a rule, metabolize D-sugars and L-amino acids. Here, we use growth experiments to identify exceptions to the rule and their potential impact on the method's reliability. Our experiments involve six strains of Bacillus and collective uptake of the sugars glucose and arabinose, and the amino acids alanine, glutamic acid, leucine, cysteine, and serine-all of which are highly soluble. We find that selective uptake is not evident unless (1) each sugar is tested individually and (2) multiple amino acids are tested together in a mixture. Combining sugars should be avoided because, as we show in Bacillus bacteria, the same organisms may catabolize one sugar, glucose, in D-form and another sugar, arabinose, in L-form. Single amino acids should be avoided because bacteria can access certain proteinogenically incompatible enantiomers using specific racemases. Specifically, bacteria contain an alanine acid racemase and can catabolize D-alanine if no other D-amino acids are present. The proposed improvements would reliably separate nonselective chemical reactions from biological reactions and, if life is indicated, inform whether the selective patterns for amino acids and sugars are the same as on Earth.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Christopher P McKay
- Space Science Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Rafael Navarro-González
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Henry J Sun
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Las Vegas, Nevada, USA
| |
Collapse
|
12
|
Dyakin VV, Wisniewski TM, Lajtha A. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry (Basel) 2021; 13:455. [PMID: 34350031 PMCID: PMC8330555 DOI: 10.3390/sym13030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Center for Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
13
|
Renick PJ, Mulgaonkar A, Co CM, Wu CY, Zhou N, Velazquez A, Pennington J, Sherwood A, Dong H, Castellino L, Öz OK, Tang L, Sun X. Imaging of Actively Proliferating Bacterial Infections by Targeting the Bacterial Metabolic Footprint with d-[5- 11C]-Glutamine. ACS Infect Dis 2021; 7:347-361. [PMID: 33476123 DOI: 10.1021/acsinfecdis.0c00617] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since most d-amino acids (DAAs) are utilized by bacterial cells but not by mammalian eukaryotic hosts, recently DAA-based molecular imaging strategies have been extensively explored for noninvasively differentiating bacterial infections from the host's inflammatory responses. Given glutamine's pivotal role in bacterial survival, cell growth, biofilm formation, and even virulence, here we report a new positron emission tomography (PET) imaging approach using d-5-[11C]glutamine (d-[5-11C]-Gln) for potential clinical assessment of bacterial infection through a comparative study with its l-isomer counterpart, l-[5-11C]-Gln. In both control and infected mice, l-[5-11C]-Gln had substantially higher uptake levels than d-[5-11C]-Gln in most organs except the kidneys, showing the expected higher use of l-[5-11C]-Gln by mammalian tissues and more efficient renal excretion of d-[5-11C]-Gln. Importantly, our work demonstrates that PET imaging with d-[5-11C]-Gln is capable of detecting infections induced by both Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) in a dual-infection murine myositis model with significantly higher infection-to-background contrast than with l-[5-11C]-Gln (in E. coli, 1.64; in MRSA, 2.62, p = 0.0004). This can be attributed to the fact that d-[5-11C]-Gln is utilized by bacteria while being more efficiently cleared from the host tissues. We confirmed the bacterial infection imaging specificity of d-[5-11C]-Gln by comparing its uptake in active bacterial infections versus sterile inflammation and with 2-deoxy-2-[18F]fluoroglucose ([18F]FDG). These results together demonstrate the translational potential of PET imaging with d-[5-11C]-Gln for the noninvasive detection of bacterial infectious diseases in humans.
Collapse
|
14
|
Wang R, Zhang Z, Sun J, Jiao N. Differences in bioavailability of canonical and non-canonical D-amino acids for marine microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139216. [PMID: 32454292 DOI: 10.1016/j.scitotenv.2020.139216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/22/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) accounts for >95% of total marine organic matter, and >95% of marine DOM is refractory to biodegradation. The recalcitrancy of DOM determines its residence time and thus is of great concern regarding to carbon sequestration in the ocean. However, the recalcitrancy of DOM not only varies among different compounds but also within different conformations of a same molecule such as L-amino acids (L-AAs) and D-amino acids (D-AAs). While the former is labile, the latter is refractory and used as a proxy for estimation of bacterial refractory DOM in the ocean. However, some D-AAs are also reported to be bioavailable. To clarify the controversy, we examined the bioavailability of two types of D-AAs: canonical D-AAs, which mainly present as bacterial cell wall components, and non-canonical D-AAs (NCDAAs), which are secreted by various bacteria as signaling molecules in bacterial physiology. Bioassay experiments were conducted with nine marine bacterial strains and a natural microbial community. D-AAs were poorly utilized by the strains as sole carbon or nitrogen sources compared with L-AAs, in addition, NCDAAs were barely used compared with canonical D-AAs. In comparison, the microbial community consumed all three canonical D-AAs (D-alanine, D-aspartic acid and D-glutamic acid) as efficiently as their corresponding L-AAs when supplied separately; however, L-AAs were preferentially used over D-AAs when both forms were provided simultaneously. Remarkably, two NCDAAs, D-methionine and D-leucine, were poorly utilized regardless of the presence of the L-enantiomers. It was found for the first time that NCDAAs are relatively more refractory than canonical D-AAs to microbial utilization. This novel recognition of difference in recalcitrancy between NCDAAs and canonical D-AAs lays the foundation for a better understanding of carbon cycling and more accurate estimation of carbon storage in the ocean.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China; Institute of Marine Microbes and Ecospheres, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, People's Republic of China
| | - Zilian Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China; Institute of Marine Microbes and Ecospheres, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, People's Republic of China.
| | - Jia Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China; Institute of Marine Microbes and Ecospheres, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, People's Republic of China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China; Institute of Marine Microbes and Ecospheres, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, People's Republic of China.
| |
Collapse
|
15
|
Idrees M, Mohammad AR, Karodia N, Rahman A. Multimodal Role of Amino Acids in Microbial Control and Drug Development. Antibiotics (Basel) 2020; 9:E330. [PMID: 32560458 PMCID: PMC7345125 DOI: 10.3390/antibiotics9060330] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Amino acids are ubiquitous vital biomolecules found in all kinds of living organisms including those in the microbial world. They are utilised as nutrients and control many biological functions in microorganisms such as cell division, cell wall formation, cell growth and metabolism, intermicrobial communication (quorum sensing), and microbial-host interactions. Amino acids in the form of enzymes also play a key role in enabling microbes to resist antimicrobial drugs. Antimicrobial resistance (AMR) and microbial biofilms are posing a great threat to the world's human and animal population and are of prime concern to scientists and medical professionals. Although amino acids play an important role in the development of microbial resistance, they also offer a solution to the very same problem i.e., amino acids have been used to develop antimicrobial peptides as they are highly effective and less prone to microbial resistance. Other important applications of amino acids include their role as anti-biofilm agents, drug excipients, drug solubility enhancers, and drug adjuvants. This review aims to explore the emerging paradigm of amino acids as potential therapeutic moieties.
Collapse
Affiliation(s)
- Muhammad Idrees
- Faculty of Science and Technology, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (M.I.); (N.K.)
| | | | - Nazira Karodia
- Faculty of Science and Technology, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (M.I.); (N.K.)
| | - Ayesha Rahman
- Faculty of Science and Technology, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (M.I.); (N.K.)
| |
Collapse
|
16
|
Churchill GC, Strupp M, Galione A, Platt FM. Unexpected differences in the pharmacokinetics of N-acetyl-DL-leucine enantiomers after oral dosing and their clinical relevance. PLoS One 2020; 15:e0229585. [PMID: 32108176 PMCID: PMC7046201 DOI: 10.1371/journal.pone.0229585] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
The enantiomers of many chiral drugs not only exhibit different pharmacological effects in regard to targets that dictate therapeutic and toxic effects, but are also handled differently in the body due to pharmacokinetic effects. We investigated the pharmacokinetics of the enantiomers of N-acetyl-leucine after administration of the racemate (N-acetyl-DL-leucine) or purified, pharmacologically active L-enantiomer (N-acetyl-L-leucine). The results suggest that during chronic administration of the racemate, the D-enantiomer would accumulate, which could have negative effects. Compounds were administered orally to mice. Plasma and tissue samples were collected at predetermined time points (0.25 to 8 h), quantified with liquid chromatography/mass spectrometry, and pharmacokinetic constants were calculated using a noncompartmental model. When administered as the racemate, both the maximum plasma concentration (Cmax) and the area under the plasma drug concentration over time curve (AUC) were much greater for the D-enantiomer relative to the L-enantiomer. When administered as the L-enantiomer, the dose proportionality was greater than unity compared to the racemate, suggesting saturable processes affecting uptake and/or metabolism. Elimination (ke and T1/2) was similar for both enantiomers. These results are most readily explained by inhibition of uptake at an intestinal carrier of the L-enantiomer by the D-enantiomer, and by first-pass metabolism of the L-, but not D-enantiomer, likely by deacetylation. In brain and muscle, N-acetyl-L-leucine levels were lower than N-acetyl-D-leucine, consistent with rapid conversion into L-leucine and utilization by normal leucine metabolism. In summary, the enantiomers of N-acetyl-leucine exhibit large, unexpected differences in pharmacokinetics due to both unique handling and/or inhibition of uptake and metabolism of the L-enantiomer by the D-enantiomer. Taken together, these results have clinical implications supporting the use of N-acetyl-L-leucine instead of the racemate or N-acetyl-D-leucine, and support the research and development of only N-acetyl-L-leucine.
Collapse
Affiliation(s)
- Grant C. Churchill
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Michael Strupp
- Department of Neurology, German Center for Vertigo and Balance Disorders, Ludwig Maximilians University Hospital Munich, Munich, Germany
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Henríquez T, Salazar JC, Marvasi M, Shah A, Corsini G, Toro CS. SRL pathogenicity island contributes to the metabolism of D-aspartate via an aspartate racemase in Shigella flexneri YSH6000. PLoS One 2020; 15:e0228178. [PMID: 31978153 PMCID: PMC6980539 DOI: 10.1371/journal.pone.0228178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/08/2020] [Indexed: 01/20/2023] Open
Abstract
In recent years, multidrug resistance of Shigella strains associated with genetic elements like pathogenicity islands, have become a public health problem. The Shigella resistance locus pathogenicity island (SRL PAI) of S. flexneri 2a harbors a 16Kbp region that contributes to the multidrug resistance phenotype. However, there is not much information about other functions such as metabolic, physiologic or ecological ones. For that, wild type S. flexneri YSH6000 strain, and its spontaneous SRL PAI mutant, 1363, were used to study the contribution of the island in different growth conditions. Interestingly, when both strains were compared by the Phenotype Microarrays, the ability to metabolize D-aspartic acid as a carbon source was detected in the wild type strain but not in the mutant. When D-aspartate was added to minimal medium with other carbon sources such as mannose or mannitol, the SRL PAI-positive strain was able to metabolize it, while the SRL PAI-negative strain did not. In order to identify the genetic elements responsible for this phenotype, a bioinformatic analysis was performed and two genes belonging to SRL PAI were found: orf8, coding for a putative aspartate racemase, and orf9, coding for a transporter. Thus, it was possible to measure, by an indirect analysis of racemization activity in minimal medium supplemented only with D-aspartate, that YSH6000 strain was able to transform the D-form into L-, while the mutant was impaired to do it. When the orf8-orf9 region from SRL island was transformed into S. flexneri and S. sonnei SRL PAI-negative strains, the phenotype was restored. Although, when single genes were cloned into plasmids, no complementation was observed. Our results strongly suggest that the aspartate racemase and the transporter encoded in the SRL pathogenicity island are important for bacterial survival in environments rich in D-aspartate.
Collapse
Affiliation(s)
- Tania Henríquez
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Biozentrum, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Juan Carlos Salazar
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Ajit Shah
- Middlesex University London, The Burroughs, London, United Kingdom
| | - Gino Corsini
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Cecilia S. Toro
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
18
|
Georgiou CD. Functional Properties of Amino Acid Side Chains as Biomarkers of Extraterrestrial Life. ASTROBIOLOGY 2018; 18:1479-1496. [PMID: 30129781 PMCID: PMC6211371 DOI: 10.1089/ast.2018.1868] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/10/2018] [Indexed: 05/22/2023]
Abstract
The present study proposes to search our solar system (Mars, Enceladus, Europa) for patterns of organic molecules that are universally associated with biological functions and structures. The functions are primarily catalytic because life could only have originated within volume/space-constrained compartments containing chemical reactions catalyzed by certain polymers. The proposed molecular structures are specific groups in the side chains of amino acids with the highest catalytic propensities related to life on Earth, that is, those that most frequently participate as key catalytic groups in the active sites of enzymes such as imidazole, thiol, guanidinium, amide, and carboxyl. Alternatively, these or other catalytic groups can be searched for on non-amino-acid organic molecules, which can be tested for certain hydrolytic catalytic activities. The first scenario assumes that life may have originated in a similar manner as the terrestrial set of α-amino acids, while the second scenario does not set such a requirement. From the catalytic propensity perspective proposed in the first scenario, life must have invented amino acids with high catalytic propensity (His, Cys, Arg) in order to overcome, and be complemented by, the low catalytic propensity of the initially available abiogenic amino acids. The abiogenic and the metabolically invented amino acids with the lowest catalytic propensity can also serve as markers of extraterrestrial life when searching for patterns on the basis of the following functional propensities related to protein secondary/quaternary structure: (1) amino acids that are able to form α-helical intramembrane peptide domains, which can serve as primitive transporters in protocell membrane bilayers and catalysts of simple biochemical reactions; (2) amino acids that tend to accumulate in extremophile proteins of Earth and possibly extraterrestrial life. The catalytic/structural functional propensity approach offers a new perspective in the search for extraterrestrial life and could help unify previous amino acid-based approaches.
Collapse
|
19
|
Neveu M, Hays LE, Voytek MA, New MH, Schulte MD. The Ladder of Life Detection. ASTROBIOLOGY 2018; 18:1375-1402. [PMID: 29862836 PMCID: PMC6211372 DOI: 10.1089/ast.2017.1773] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/23/2018] [Indexed: 05/04/2023]
Abstract
We describe the history and features of the Ladder of Life Detection, a tool intended to guide the design of investigations to detect microbial life within the practical constraints of robotic space missions. To build the Ladder, we have drawn from lessons learned from previous attempts at detecting life and derived criteria for a measurement (or suite of measurements) to constitute convincing evidence for indigenous life. We summarize features of life as we know it, how specific they are to life, and how they can be measured, and sort these features in a general sense based on their likelihood of indicating life. Because indigenous life is the hypothesis of last resort in interpreting life-detection measurements, we propose a small but expandable set of decision rules determining whether the abiotic hypothesis is disproved. In light of these rules, we evaluate past and upcoming attempts at life detection. The Ladder of Life Detection is not intended to endorse specific biosignatures or instruments for life-detection measurements, and is by no means a definitive, final product. It is intended as a starting point to stimulate discussion, debate, and further research on the characteristics of life, what constitutes a biosignature, and the means to measure them.
Collapse
Affiliation(s)
- Marc Neveu
- NASA Postdoctoral Management Program Fellow, Universities Space Research Association, Columbia, Maryland
- NASA Headquarters, Washington, DC
| | - Lindsay E. Hays
- NASA Headquarters, Washington, DC
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | | |
Collapse
|
20
|
Naganuma T, Iinuma Y, Nishiwaki H, Murase R, Masaki K, Nakai R. Enhanced Bacterial Growth and Gene Expression of D-Amino Acid Dehydrogenase With D-Glutamate as the Sole Carbon Source. Front Microbiol 2018; 9:2097. [PMID: 30233558 PMCID: PMC6131576 DOI: 10.3389/fmicb.2018.02097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 08/16/2018] [Indexed: 02/02/2023] Open
Abstract
In a search for life-supporting, not life-assisting, D-amino acid metabolism, an environmental strain that grows better with D-glutamate as the sole carbon source was isolated from an ordinary river. The strain, designated as A25, exhibited a faster growth rate and greater cell yield with D-glutamate than with L-glutamate. Conversely, the D/L ratio of total cellular glutamate was as low as 4/96, which suggests that D-glutamate is more likely catabolized than anabolized. Strain A25 was phylogenetically most closely related to the gamma-proteobacterial species Raoultella ornithinolytica, with a 16S rRNA gene sequence similarity of 100%. A standard strain, R. ornithinolytica JCM 6096T, also showed similarly enhanced growth with D-glutamate, which was proven for the first time. Gene expression of the enzymes involved in D-amino acid metabolism was assayed by reverse-transcription quantitative PCR (RT-qPCR) using specifically designed primers. The targets were the genes encoding D-amino acid dehydrogenase (DAD; EC 1.4.99.1), glutamate racemase (EC 5.1.1.3), D-glutamate oxidase (EC 1.4.3.7 or EC 1.4.3.15), and UDP-N-acetyl-α-D-muramoyl-L-alanyl-D-glutamate ligase (EC 6.3.2.9). As a result, the growth of strains A25 and R. ornithinolytica JCM 6096T on D-glutamate was conspicuously associated with the enhanced expression of the DAD gene (dadA) in the exponential phase compared with the other enzyme genes. Pseudomonas aeruginosa is also known to grow on D-glutamate as the sole carbon source but to a lesser degree than with L-glutamate. A standard strain of P. aeruginosa, JCM 5962T, was tested for gene expression of the relevant enzymes by RT-qPCR and also showed enhanced dadA expression, but in the stationary phase. Reduction of ferricyanide with D-glutamate was detected in cell extracts of the tested strains, implying probable involvement of DAD in the D-glutamate catabolizing activity. DAD-mediated catalysis may have advantages in the one-step production of α-keto acids and non-production of H2O2 over other enzymes such as racemase and D-amino acid oxidase. The physiological and biochemical importance of DAD in D-amino acid metabolism is discussed.
Collapse
Affiliation(s)
- Takeshi Naganuma
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, Japan.,School of Biological Science, Hiroshima University, Higashihiroshima, Japan.,Astrobiology Center, National Institutes of Natural Sciences, Tokyo, Japan
| | - Yoshiakira Iinuma
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, Japan
| | - Hitomi Nishiwaki
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, Japan
| | - Ryota Murase
- School of Biological Science, Hiroshima University, Higashihiroshima, Japan
| | - Kazuo Masaki
- National Research Institute of Brewing, Higashihiroshima, Japan
| | - Ryosuke Nakai
- Microbial and Genetic Resources Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,Applied Molecular Microbiology Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Japan
| |
Collapse
|
21
|
Hener C, Hummel S, Suarez J, Stahl M, Kolukisaoglu Ü. d-Amino Acids Are Exuded by Arabidopsis thaliana Roots to the Rhizosphere. Int J Mol Sci 2018; 19:ijms19041109. [PMID: 29642439 PMCID: PMC5979410 DOI: 10.3390/ijms19041109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/27/2022] Open
Abstract
Proteinogenic l-amino acids (l-AAs) are essential in all kingdoms as building blocks of proteins. Their d-enantiomers are also known to fulfill important functions in microbes, fungi, and animals, but information about these molecules in plants is still sparse. Previously, it was shown that d-amino acids (d-AAs) are taken up and utilized by plants, but their ways to reduce excessive amounts of them still remained unclear. Analyses of plant d-AA content after d-Ala and d-Glu feeding opened the question if exudation of d-AAs into the rhizosphere takes place and plays a role in the reduction of d-AA content in plants. The exudation of d-Ala and d-Glu could be confirmed by amino acid analyses of growth media from plants treated with these d-AAs. Further tests revealed that other d-AAs were also secreted. Nevertheless, treatments with d-Ala and d-Glu showed that plants are still able to reduce their contents within the plant without exudation. Further exudation experiments with transport inhibitors revealed that d-AA root exudation is rather passive and comparable to the secretion of l-AAs. Altogether, these observations argued against a dominant role of exudation in the regulation of plant d-AA content, but may influence the composition of the rhizosphere.
Collapse
Affiliation(s)
- Claudia Hener
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| | - Sabine Hummel
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| | - Juan Suarez
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| | - Mark Stahl
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| | - Üner Kolukisaoglu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| |
Collapse
|
22
|
Aliashkevich A, Alvarez L, Cava F. New Insights Into the Mechanisms and Biological Roles of D-Amino Acids in Complex Eco-Systems. Front Microbiol 2018; 9:683. [PMID: 29681896 PMCID: PMC5898190 DOI: 10.3389/fmicb.2018.00683] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/22/2018] [Indexed: 01/22/2023] Open
Abstract
In the environment bacteria share their habitat with a great diversity of organisms, from microbes to humans, animals and plants. In these complex communities, the production of extracellular effectors is a common strategy to control the biodiversity by interfering with the growth and/or viability of nearby microbes. One of such effectors relies on the production and release of extracellular D-amino acids which regulate diverse cellular processes such as cell wall biogenesis, biofilm integrity, and spore germination. Non-canonical D-amino acids are mainly produced by broad spectrum racemases (Bsr). Bsr’s promiscuity allows it to generate high concentrations of D-amino acids in environments with variable compositions of L-amino acids. However, it was not clear until recent whether these molecules exhibit divergent functions. Here we review the distinctive biological roles of D-amino acids, their mechanisms of action and their modulatory properties of the biodiversity of complex eco-systems.
Collapse
Affiliation(s)
- Alena Aliashkevich
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Laura Alvarez
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Felipe Cava
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
23
|
Lee RJ, Hariri BM, McMahon DB, Chen B, Doghramji L, Adappa ND, Palmer JN, Kennedy DW, Jiang P, Margolskee RF, Cohen NA. Bacterial d-amino acids suppress sinonasal innate immunity through sweet taste receptors in solitary chemosensory cells. Sci Signal 2017; 10:10/495/eaam7703. [PMID: 28874606 DOI: 10.1126/scisignal.aam7703] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the upper respiratory epithelium, bitter and sweet taste receptors present in solitary chemosensory cells influence antimicrobial innate immune defense responses. Whereas activation of bitter taste receptors (T2Rs) stimulates surrounding epithelial cells to release antimicrobial peptides, activation of the sweet taste receptor (T1R) in the same cells inhibits this response. This mechanism is thought to control the magnitude of antimicrobial peptide release based on the sugar content of airway surface liquid. We hypothesized that d-amino acids, which are produced by various bacteria and activate T1R in taste receptor cells in the mouth, may also activate T1R in the airway. We showed that both the T1R2 and T1R3 subunits of the sweet taste receptor (T1R2/3) were present in the same chemosensory cells of primary human sinonasal epithelial cultures. Respiratory isolates of Staphylococcus species, but not Pseudomonas aeruginosa, produced at least two d-amino acids that activate the sweet taste receptor. In addition to inhibiting P. aeruginosa biofilm formation, d-amino acids derived from Staphylococcus inhibited T2R-mediated signaling and defensin secretion in sinonasal cells by activating T1R2/3. d-Amino acid-mediated activation of T1R2/3 also enhanced epithelial cell death during challenge with Staphylococcus aureus in the presence of the bitter receptor-activating compound denatonium benzoate. These data establish a potential mechanism for interkingdom signaling in the airway mediated by bacterial d-amino acids and the mammalian sweet taste receptor in airway chemosensory cells.
Collapse
Affiliation(s)
- Robert J Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. .,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Benjamin M Hariri
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Derek B McMahon
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bei Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Laurel Doghramji
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David W Kennedy
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | | | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. .,Monell Chemical Senses Center, Philadelphia, PA 19104, USA.,Philadelphia Veterans Affairs Medical Center Surgical Service, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Hu Y, Zheng Q, Wanek W. Flux Analysis of Free Amino Sugars and Amino Acids in Soils by Isotope Tracing with a Novel Liquid Chromatography/High Resolution Mass Spectrometry Platform. Anal Chem 2017; 89:9192-9200. [PMID: 28776982 PMCID: PMC5605124 DOI: 10.1021/acs.analchem.7b01938] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Soil fluxomics analysis can provide
pivotal information for understanding
soil biochemical pathways and their regulation, but direct measurement
methods are rare. Here, we describe an approach to measure soil extracellular
metabolite (amino sugar and amino acid) concentrations and fluxes
based on a 15N isotope pool dilution technique via liquid
chromatography and high-resolution mass spectrometry. We produced
commercially unavailable 15N and 13C labeled
amino sugars and amino acids by hydrolyzing peptidoglycan isolated
from isotopically labeled bacterial biomass and used them as tracers
(15N) and internal standards (13C). High-resolution
(Orbitrap Exactive) MS with a resolution of 50 000 allowed
us to separate different stable isotope labeled analogues across a
large range of metabolites. The utilization of 13C internal
standards greatly improved the accuracy and reliability of absolute
quantification. We successfully applied this method to two types of
soils and quantified the extracellular gross fluxes of 2 amino sugars,
18 amino acids, and 4 amino acid enantiomers. Compared to the influx
and efflux rates of most amino acids, similar ones were found for
glucosamine, indicating that this amino sugar is released through
peptidoglycan and chitin decomposition and serves as an important
nitrogen source for soil microorganisms. d-Alanine and d-glutamic acid derived from peptidoglycan decomposition exhibited
similar turnover rates as their l-enantiomers. This novel
approach offers new strategies to advance our understanding of the
production and transformation pathways of soil organic N metabolites,
including the unknown contributions of peptidoglycan and chitin decomposition
to soil organic N cycling.
Collapse
Affiliation(s)
- Yuntao Hu
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology", University of Vienna , Althanstraße 14, 1090 Vienna, Austria
| | - Qing Zheng
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology", University of Vienna , Althanstraße 14, 1090 Vienna, Austria
| | - Wolfgang Wanek
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology", University of Vienna , Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
25
|
Naranjo-Ortíz MA, Brock M, Brunke S, Hube B, Marcet-Houben M, Gabaldón T. Widespread Inter- and Intra-Domain Horizontal Gene Transfer of d-Amino Acid Metabolism Enzymes in Eukaryotes. Front Microbiol 2016; 7:2001. [PMID: 28066338 PMCID: PMC5169069 DOI: 10.3389/fmicb.2016.02001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/29/2016] [Indexed: 01/22/2023] Open
Abstract
Analysis of the growing number of available fully-sequenced genomes has shown that Horizontal Gene Transfer (HGT) in eukaryotes is more common than previously thought. It has been proposed that genes with certain functions may be more prone to HGT than others, but we still have a very poor understanding of the selective forces driving eukaryotic HGT. Recent work uncovered that d-amino acid racemases have been commonly transferred from bacteria to fungi, but their role in the receiving organisms is currently unknown. Here, we set out to assess whether d-amino acid racemases are commonly transferred to and between eukaryotic groups. For this we performed a global survey that used a novel automated phylogeny-based HGT-detection algorithm (Abaccus). Our results revealed that at least 7.0% of the total eukaryotic racemase repertoire is the result of inter- or intra-domain HGT. These transfers are significantly enriched in plant-associated fungi. For these, we hypothesize a possible role for the acquired racemases allowing to exploit minoritary nitrogen sources in plant biomass, a nitrogen-poor environment. Finally, we performed experiments on a transferred aspartate-glutamate racemase in the fungal human pathogen Candida glabrata, which however revealed no obvious biological role.
Collapse
Affiliation(s)
- Miguel A Naranjo-Ortíz
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain
| | - Matthias Brock
- Fungal Genetics and Biology Group, School of Life Sciences, University of Nottingham Nottingham, UK
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute Jena Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute JenaJena, Germany; Friedrich Schiller UniversityJena, Germany; Center for Sepsis Control and Care, University HospitalJena, Germany
| | - Marina Marcet-Houben
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, Spain
| |
Collapse
|
26
|
Levin GV, Straat PA. The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment. ASTROBIOLOGY 2016; 16:798-810. [PMID: 27626510 PMCID: PMC6445182 DOI: 10.1089/ast.2015.1464] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/16/2016] [Indexed: 05/09/2023]
Abstract
The 1976 Viking Labeled Release (LR) experiment was positive for extant microbial life on the surface of Mars. Experiments on both Viking landers, 4000 miles apart, yielded similar, repeatable, positive responses. While the authors eventually concluded that the experiment detected martian life, this was and remains a highly controversial conclusion. Many believe that the martian environment is inimical to life and the LR responses were nonbiological, attributed to an as-yet-unidentified oxidant (or oxidants) in the martian soil. Unfortunately, no further metabolic experiments have been conducted on Mars. Instead, follow-on missions have sought to define the martian environment, mostly searching for signs of water. These missions have collected considerable data regarding Mars as a habitat, both past and present. The purpose of this article is to consider recent findings about martian water, methane, and organics that impact the case for extant life on Mars. Further, the biological explanation of the LR and recent nonbiological hypotheses are evaluated. It is concluded that extant life is a strong possibility, that abiotic interpretations of the LR data are not conclusive, and that, even setting our conclusion aside, biology should still be considered as an explanation for the LR experiment. Because of possible contamination of Mars by terrestrial microbes after Viking, we note that the LR data are the only data we will ever have on biologically pristine martian samples. Key Words: Extant life on Mars-Viking Labeled Release experiment-Astrobiology-Extraterrestrial life-Mars. Astrobiology 16, 798-810.
Collapse
|
27
|
Kubota T, Kobayashi T, Nunoura T, Maruyama F, Deguchi S. Enantioselective Utilization of D-Amino Acids by Deep-Sea Microorganisms. Front Microbiol 2016; 7:511. [PMID: 27148200 PMCID: PMC4836201 DOI: 10.3389/fmicb.2016.00511] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/29/2016] [Indexed: 12/27/2022] Open
Abstract
Microorganisms that utilize various D-amino acids (DAAs) were successfully isolated from deep-sea sediments. The isolates were phylogenetically assigned to Alphaproteobacteria, Gammmaproteobacteria, and Bacilli. Some of the isolates exhibited high enantioselective degradation activities to various DAAs. In particular, the Alphaproteobacteria Nautella sp. strain A04V exhibited robust growth in minimal medium supplemented with D-Val as a sole carbon and nitrogen source, whereas its growth was poor on minimal medium supplemented with L-Val instead of D-Val. Its growth was facilitated most when racemic mixtures of valine were used. In contrast, the Nautella strains isolated from shallow-sea grew only with L-Val. No significant differences were found among the strains in the genome sequences including genes possibly related to DAA metabolisms.
Collapse
Affiliation(s)
- Takaaki Kubota
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| | - Tohru Kobayashi
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| | - Takuro Nunoura
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| | - Fumito Maruyama
- Department of Microbiology, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Shigeru Deguchi
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| |
Collapse
|
28
|
Grecu D, Irudayaraj VPR, Martinez-Sanz J, Mallet JM, Assairi L. A chirality change in XPC- and Sfi1-derived peptides affects their affinity for centrin. Peptides 2016; 78:77-86. [PMID: 26923803 DOI: 10.1016/j.peptides.2016.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/30/2022]
Abstract
The Ca(2+)-binding protein centrin binds to a hydrophobic motif (W(1)xxL(4)xxxL(8)) included in the sequence of several cellular targets: XPC (xeroderma pigmentosum group C protein), Sfi1 (suppressor of fermentation-induced loss of stress resistance protein1), and Sac3 [the central component of the transcription and mRNA export (TREX-2) complex]. However, centrin binding occurs in a reversed orientation (L(8)xxxL(4)xxW(1)) for Sfi1 and Sac3 compared with XPC. Because D-peptides have been investigated for future therapeutic use, we analyzed their centrin-binding properties. Their affinity for centrin was measured using isothermal titration calorimetry. The chirality change in the target-derived peptides affected their ability to bind centrin in a specific manner depending on the sequence orientation of the centrin-binding motif. In contrast to L-XPC-P10, D-XPC-P10 bound C-HsCen1 in a Ca(2+)-dependent manner and to a lesser extent. D-XPC-P10 exhibited a reduced affinity for C-HsCen1 (Ka=0.064 × 10(6) M(-1)) by a factor of 2000 compared with L-XPC-P10 (Ka=132 × 10(6) M(-1)). D-peptides have a lower affinity than L-peptides for centrin, and the strength of this affinity depends on the sequence orientation of the target-derived peptides. The residual affinity observed for D-XPC suggests that the use of d-peptides represents a promising strategy for inhibiting centrin binding to its targets.
Collapse
Affiliation(s)
- Dora Grecu
- Institut Curie-Centre de Recherche, F-91405 Orsay Cédex, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U759, F-91405 Orsay Cédex, France
| | - Victor Paul Raj Irudayaraj
- Institut Curie-Centre de Recherche, F-91405 Orsay Cédex, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U759, F-91405 Orsay Cédex, France; UMR CNRS 7203, Paris Cédex 05, France; ENS Ecole Normale Supérieure de Paris, Paris Cédex 05, France; Université Paris 6, Paris Cédex 05, France
| | - Juan Martinez-Sanz
- Institut Curie-Centre de Recherche, F-91405 Orsay Cédex, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U759, F-91405 Orsay Cédex, France; UMR9187-U1196, F-91405 Orsay Cédex, France
| | - Jean-Maurice Mallet
- UMR CNRS 7203, Paris Cédex 05, France; ENS Ecole Normale Supérieure de Paris, Paris Cédex 05, France; Université Paris 6, Paris Cédex 05, France
| | - Liliane Assairi
- Institut Curie-Centre de Recherche, F-91405 Orsay Cédex, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U759, F-91405 Orsay Cédex, France.
| |
Collapse
|
29
|
Li Z, Liu Z, Chen Z, Ju E, Li W, Ren J, Qu X. Bioorthogonal chemistry for selective recognition, separation and killing bacteria over mammalian cells. Chem Commun (Camb) 2016; 52:3482-5. [DOI: 10.1039/c5cc10625g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We report a new strategy for selective recognition, separation and killing bacteria using metabolic engineering and bioorthogonal chemistry.
Collapse
Affiliation(s)
- Zhenhua Li
- Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Zhen Liu
- Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Zhaowei Chen
- Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Enguo Ju
- Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Wei Li
- Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
30
|
Hernández SB, Cava F. Environmental roles of microbial amino acid racemases. Environ Microbiol 2015; 18:1673-85. [DOI: 10.1111/1462-2920.13072] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/15/2015] [Accepted: 09/27/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Sara B. Hernández
- Laboratory for Molecular Infection Medicine Sweden; Department of Molecular Biology; Umeå Centre for Microbial Research; Umeå University; 90187 Umeå Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden; Department of Molecular Biology; Umeå Centre for Microbial Research; Umeå University; 90187 Umeå Sweden
| |
Collapse
|
31
|
Nixon SL, Cockell CS. Nonproteinogenic D-amino acids at millimolar concentrations are a toxin for anaerobic microorganisms relevant to early Earth and other anoxic planets. ASTROBIOLOGY 2015; 15:238-246. [PMID: 25695622 DOI: 10.1089/ast.2014.1252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The delivery of extraterrestrial organics to early Earth provided a potentially important source of carbon and energy for microbial life. Optically active organic compounds of extraterrestrial origin exist in racemic form, yet life on Earth has almost exclusively selected for L- over D-enantiomers of amino acids. Although D-enantiomers of proteinogenic amino acids are known to inhibit aerobic microorganisms, the role of concentrated nonproteinogenic meteoritic D-amino acids on anaerobic metabolisms relevant to early Earth and other anoxic planets such as Mars is unknown. Here, we test the inhibitory effect of D-enantiomers of two nonproteinogenic amino acids common to carbonaceous chondrites, norvaline and α-aminobutyric acid, on microbial iron reduction. Three pure strains (Geobacter bemidjiensis, Geobacter metallireducens, Geopsychrobacter electrodiphilus) and an iron-reducing enrichment culture were grown in the presence of 10 mM D-enantiomers of both amino acids. Further tests were conducted to assess the inhibitory effect of these D-amino acids at 1 and 0.1 mM. The presence of 10 mM D-norvaline and D-α-aminobutyric acid inhibited microbial iron reduction by all pure strains and the enrichment. G. bemidjiensis was not inhibited by either amino acid at 0.1 mM, but D-α-aminobutyric acid still inhibited at 1 mM. Calculations using published meteorite accumulation rates to the martian surface indicate D-α-aminobutyric acid may have reached inhibitory concentrations in little over 1000 years during peak infall. These data show that, on a young anoxic planet, the use of one enantiomer over another may render the nonbiological enantiomer an environmental toxin. Processes that generate racemic amino acids in the environment, such as meteoritic infall or impact synthesis, would have been toxic processes and could have been a selection pressure for the evolution of early racemases.
Collapse
Affiliation(s)
- Sophie L Nixon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | | |
Collapse
|