1
|
Banerjee A, Singh J. Remodeling adipose tissue inflammasome for type 2 diabetes mellitus treatment: Current perspective and translational strategies. Bioeng Transl Med 2020; 5:e10150. [PMID: 32440558 PMCID: PMC7237149 DOI: 10.1002/btm2.10150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/07/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity-associated type 2 diabetes mellitus (T2DM) is characterized by low-grade chronic systemic inflammation that arises primarily from the white adipose tissue. The interplay between various adipose tissue-derived chemokines drives insulin resistance in T2DM and has therefore become a subject of rigorous investigation. The adipocytokines strongly associated with glucose homeostasis include tumor necrosis factor-α, various interleukins, monocyte chemoattractant protein-1, adiponectin, and leptin, among others. Remodeling the adipose tissue inflammasome in obesity-associated T2DM is likely to treat the underlying cause of the disease and bring significant therapeutic benefit. Various strategies have been adopted or are being investigated to modulate the serum/tissue levels of pro- and anti-inflammatory adipocytokines to improve glucose homeostasis in T2DM. These include use of small molecule agonists/inhibitors, mimetics, antibodies, gene therapy, and other novel formulations. Here, we discuss adipocytokines that are strongly associated with insulin activity and therapies that are under investigation for modulation of their levels in the treatment of T2DM.
Collapse
Affiliation(s)
- Amrita Banerjee
- Department of Pharmaceutical SciencesNorth Dakota State UniversityFargoNorth Dakota
| | - Jagdish Singh
- Department of Pharmaceutical SciencesNorth Dakota State UniversityFargoNorth Dakota
| |
Collapse
|
2
|
Wang M, Li S, Wang F, Zou J, Zhang Y. Aerobic exercise regulates blood lipid and insulin resistance via the toll‑like receptor 4‑mediated extracellular signal‑regulated kinases/AMP‑activated protein kinases signaling pathway. Mol Med Rep 2018; 17:8339-8348. [PMID: 29658605 DOI: 10.3892/mmr.2018.8863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 08/09/2017] [Indexed: 11/06/2022] Open
Abstract
Diabetes mellitus is a complicated metabolic disease with symptoms of hyperglycemia, insulin resistance, chronic damage and dysfunction of tissues, and metabolic syndrome for insufficient insulin production. Evidence has indicated that exercise treatments are essential in the progression of type‑ІІ diabetes mellitus, and affect insulin resistance and activity of islet β‑cells. In the present study, the efficacy and signaling mechanism of aerobic exercise on blood lipids and insulin resistance were investigated in the progression of type‑ІІ diabetes mellitus. Body weight, glucose metabolism and insulin serum levels were investigated in mouse models of type‑ІІ diabetes mellitus following experienced aerobic exercise. Expression levels of inflammatory factors, interleukin (IL)‑6, high‑sensitivity C‑reactive protein, tumor necrosis factor‑α and leucocyte differentiation antigens, soluble CD40 ligand in the serum were analyzed in the experimental mice. In addition, expression levels of toll‑like receptor 4 (TLR‑4) were analyzed in the liver cells of experimental mice. Changes of oxidative stress indicators, including reactive oxygen species, superoxide dismutase, glutathione and catalase were examined in the liver cells of experimental mice treated by aerobic exercise. Expression levels and activity of extracellular signal‑regulated kinases (ERK) and AMP‑activated protein kinase (AMPK) signaling pathways were investigated in the liver cells of mouse models of type‑ІІ diabetes mellitus after undergoing aerobic exercise. Aerobic exercise decreased the expression levels of inflammatory factors in the serum of mouse models of type‑ІІ diabetes mellitus. The results indicated that aerobic exercise downregulated oxidative stress indicators in liver cells from mouse models of type‑ІІ diabetes mellitus. In addition, the ERK and AMPK signaling pathways were inactivated by aerobic exercise in liver cells in mouse models of type‑ІІ diabetes mellitus. The activity of ERK and AMPK, and the function of islet β‑cells were observed to be improved in experimental mice treated with aerobic exercise. Furthermore, blood lipid metabolism and insulin resistance were improved by treatment with aerobic exercise. Body weight and glucose concentration of serology was markedly improved in mouse models of type‑ІІ diabetes mellitus. Furthermore, TLR‑4 inhibition markedly promoted ERK and AMPK expression levels and activity. Thus, these results indicate that aerobic exercise may improve blood lipid metabolism, insulin resistance and glucose plasma concentration in mouse models of type‑ІІ diabetes mellitus. Thus indicating aerobic exercise is beneficial for improvement of blood lipid and insulin resistance via the TLR‑4‑mediated ERK/AMPK signaling pathway in the progression of type‑ІІ diabetes mellitus.
Collapse
Affiliation(s)
- Mei Wang
- State General Administration of Sports, Sports Science Institute, Mass Sports Research Center, Beijing 100061, P.R. China
| | - Sen Li
- Jiangsu Institute of Sports Science, Nanjing, Jiangsu 210033, P.R. China
| | - Fubaihui Wang
- State General Administration of Sports, Sports Science Institute, Mass Sports Research Center, Beijing 100061, P.R. China
| | - Jinhui Zou
- Guangxi Institute of Sports Science Mass Sports Research, Nanning, Guangxi 210014, P.R. China
| | - Yanfeng Zhang
- State General Administration of Sports, Sports Science Institute, Mass Sports Research Center, Beijing 100061, P.R. China
| |
Collapse
|
3
|
Hyslop CM, Tsai S, Shrivastava V, Santamaria P, Huang C. Prolactin as an Adjunct for Type 1 Diabetes Immunotherapy. Endocrinology 2016; 157:150-65. [PMID: 26512750 DOI: 10.1210/en.2015-1549] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes is caused by autoimmune destruction of β-cells. Although immunotherapy can restore self-tolerance thereby halting continued immune-mediated β-cell loss, residual β-cell mass and function is often insufficient for normoglycemia. Using a growth factor to boost β-cell mass can potentially overcome this barrier and prolactin (PRL) may fill this role. Previous studies have shown that PRL can stimulate β-cell proliferation and up-regulate insulin synthesis and secretion while reducing lymphocytic infiltration of islets, suggesting that it may restore normoglycemia through complementary mechanisms. Here, we test the hypothesis that PRL can improve the efficacy of an immune modulator, the anticluster of differentiation 3 monoclonal antibody (aCD3), in inducing diabetes remission by up-regulating β-cell mass and function. Diabetic nonobese diabetic (NOD) mice were treated with a 5-day course of aCD3 with or without a concurrent 3-week course of PRL. We found that a higher proportion of diabetic mice treated with the aCD3 and PRL combined therapy achieved diabetes reversal than those treated with aCD3 alone. The aCD3 and PRL combined group had a higher β-cell proliferation rate, an increased β-cell fraction, larger islets, higher pancreatic insulin content, and greater glucose-stimulated insulin release. Lineage-tracing analysis found minimal contribution of β-cell neogenesis to the formation of new β-cells. Although we did not detect a significant difference in the number or proliferative capacity of T cells, we observed a higher proportion of insulitis-free islets in the aCD3 and PRL group. These results suggest that combining a growth factor with an immunotherapy may be an effective treatment paradigm for autoimmune diabetes.
Collapse
Affiliation(s)
- Colin M Hyslop
- Department of Biochemistry and Molecular Biology (C.M.H., V.S., C.H.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Julia McFarlane Diabetes Research Centre and Department of Microbiology, Immunology and Infectious Diseases (S.T., P.S.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Institut D'Investigacions Biomediques August Pi i Sunyer (P.S.), 08036 Barcelona, Spain; and Department of Pediatrics (C.H.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Sue Tsai
- Department of Biochemistry and Molecular Biology (C.M.H., V.S., C.H.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Julia McFarlane Diabetes Research Centre and Department of Microbiology, Immunology and Infectious Diseases (S.T., P.S.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Institut D'Investigacions Biomediques August Pi i Sunyer (P.S.), 08036 Barcelona, Spain; and Department of Pediatrics (C.H.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Vipul Shrivastava
- Department of Biochemistry and Molecular Biology (C.M.H., V.S., C.H.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Julia McFarlane Diabetes Research Centre and Department of Microbiology, Immunology and Infectious Diseases (S.T., P.S.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Institut D'Investigacions Biomediques August Pi i Sunyer (P.S.), 08036 Barcelona, Spain; and Department of Pediatrics (C.H.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Pere Santamaria
- Department of Biochemistry and Molecular Biology (C.M.H., V.S., C.H.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Julia McFarlane Diabetes Research Centre and Department of Microbiology, Immunology and Infectious Diseases (S.T., P.S.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Institut D'Investigacions Biomediques August Pi i Sunyer (P.S.), 08036 Barcelona, Spain; and Department of Pediatrics (C.H.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Carol Huang
- Department of Biochemistry and Molecular Biology (C.M.H., V.S., C.H.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Julia McFarlane Diabetes Research Centre and Department of Microbiology, Immunology and Infectious Diseases (S.T., P.S.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Institut D'Investigacions Biomediques August Pi i Sunyer (P.S.), 08036 Barcelona, Spain; and Department of Pediatrics (C.H.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
4
|
Chen YW, Chiu CC, Hsieh PL, Hung CH, Wang JJ. Treadmill training combined with insulin suppresses diabetic nerve pain and cytokines in rat sciatic nerve. Anesth Analg 2015; 121:239-246. [PMID: 25993391 DOI: 10.1213/ane.0000000000000799] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Insulin therapy plays a critical role in managing type 1 diabetes mellitus, and exercise produces alterations in pain sensation. This experiment explored the effects of insulin therapy combined with treadmill training on diabetic neuropathic pain and on the expression of malondialdehyde (MDA) and cytokines. METHODS Rats were given 4 weeks of insulin (100 IU/kg) therapy and treadmill training (30-60 min/d of training at 20-25 m/min) each day beginning on day 3 after streptozotocin (65 mg/kg, IV) injection and continuing until day 27. Sensitivity to heat and mechanical stimuli and the expression of interleukin (IL)-10, IL-6, tumor necrosis factor-α, and MDA in the sciatic nerve were estimated. RESULTS We showed that 2 to 4 weeks of treadmill training, insulin treatment, or their combination increased both paw withdrawal thresholds and latencies compared with the same regimen in sedentary diabetic rats (all P < 0.0022). Treatment with insulin, but without treadmill training, had significant effects on glycemic control (P < 0.0001) and restored body weight (P < 0.0001) in the diabetic rats. The diabetic rats demonstrated the upregulation (all P < 0.009) of IL-6, MDA, and tumor necrosis factor-α in the sciatic nerve on days 14 and 28 after streptozotocin treatment, whereas in diabetic rats receiving insulin, treadmill training, or a combination (all P < 0.01), this upregulation was decreased. Insulin, treadmill training, or the combination increased IL-10 expression (all P < 0.0051) in all diabetic rats. CONCLUSIONS Treadmill training combined with insulin therapy showed the best improvements in tactile allodynia and thermal hyperalgesia among our 3 treatment groups. The benefits of insulin intervention and treadmill training could be related to chronic inflammation (proinflammatory cytokines) and oxidative stress (MDA).
Collapse
Affiliation(s)
- Yu-Wen Chen
- From the Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan; Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan; Department of General Surgery, Chi-Mei Medical Center, Tainan and Liouying, Taiwan; Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan; and Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
5
|
Gunawardana SC, Piston DW. Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant. Am J Physiol Endocrinol Metab 2015; 308:E1043-55. [PMID: 25898954 PMCID: PMC4469812 DOI: 10.1152/ajpendo.00570.2014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/11/2015] [Indexed: 02/07/2023]
Abstract
Traditional therapies for type 1 diabetes (T1D) involve insulin replacement or islet/pancreas transplantation and have numerous limitations. Our previous work demonstrated the ability of embryonic brown adipose tissue (BAT) transplants to establish normoglycemia without insulin in chemically induced models of insulin-deficient diabetes. The current study sought to extend the technique to an autoimmune-mediated T1D model and document the underlying mechanisms. In nonobese diabetic (NOD) mice, BAT transplants result in complete reversal of T1D associated with rapid and long-lasting euglycemia. In addition, BAT transplants placed prior to the onset of diabetes on NOD mice can prevent or significantly delay the onset of diabetes. As with streptozotocin (STZ)-diabetic models, euglycemia is independent of insulin and strongly correlates with decrease of inflammation and increase of adipokines. Plasma insulin-like growth factor-I (IGF-I) is the first hormone to increase following BAT transplants. Adipose tissue of transplant recipients consistently express IGF-I compared with little or no expression in controls, and plasma IGF-I levels show a direct negative correlation with glucose, glucagon, and inflammatory cytokines. Adipogenic and anti-inflammatory properties of IGF-I may stimulate regeneration of new healthy white adipose tissue, which in turn secretes hypoglycemic adipokines that substitute for insulin. IGF-I can also directly decrease blood glucose through activating insulin receptor. These data demonstrate the potential for insulin-independent reversal of autoimmune-induced T1D with BAT transplants and implicate IGF-I as a likely mediator in the resulting equilibrium.
Collapse
Affiliation(s)
- Subhadra C Gunawardana
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - David W Piston
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|