1
|
Shore SFH, Leinberger FH, Fozo EM, Berghoff BA. Type I toxin-antitoxin systems in bacteria: from regulation to biological functions. EcoSal Plus 2024; 12:eesp00252022. [PMID: 38767346 PMCID: PMC11636113 DOI: 10.1128/ecosalplus.esp-0025-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Toxin-antitoxin systems are ubiquitous in the prokaryotic world and widely distributed among chromosomes and mobile genetic elements. Several different toxin-antitoxin system types exist, but what they all have in common is that toxin activity is prevented by the cognate antitoxin. In type I toxin-antitoxin systems, toxin production is controlled by an RNA antitoxin and by structural features inherent to the toxin messenger RNA. Most type I toxins are small membrane proteins that display a variety of cellular effects. While originally discovered as modules that stabilize plasmids, chromosomal type I toxin-antitoxin systems may also stabilize prophages, or serve important functions upon certain stress conditions and contribute to population-wide survival strategies. Here, we will describe the intricate RNA-based regulation of type I toxin-antitoxin systems and discuss their potential biological functions.
Collapse
Affiliation(s)
- Selene F. H. Shore
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Florian H. Leinberger
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| | - Elizabeth M. Fozo
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Bork A. Berghoff
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
2
|
Fijalkowski I, Snauwaert V, Van Damme P. Proteins à la carte: riboproteogenomic exploration of bacterial N-terminal proteoform expression. mBio 2024; 15:e0033324. [PMID: 38511928 PMCID: PMC11005335 DOI: 10.1128/mbio.00333-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
In recent years, it has become evident that the true complexity of bacterial proteomes remains underestimated. Gene annotation tools are known to propagate biases and overlook certain classes of truly expressed proteins, particularly proteoforms-protein isoforms arising from a single gene. Recent (re-)annotation efforts heavily rely on ribosome profiling by providing a direct readout of translation to fully describe bacterial proteomes. In this study, we employ a robust riboproteogenomic pipeline to conduct a systematic census of expressed N-terminal proteoform pairs, representing two isoforms encoded by a single gene raised by annotated and alternative translation initiation, in Salmonella. Intriguingly, conditional-dependent changes in relative utilization of annotated and alternative translation initiation sites (TIS) were observed in several cases. This suggests that TIS selection is subject to regulatory control, adding yet another layer of complexity to our understanding of bacterial proteomes. IMPORTANCE With the emerging theme of genes within genes comprising the existence of alternative open reading frames (ORFs) generated by translation initiation at in-frame start codons, mechanisms that control the relative utilization of annotated and alternative TIS need to be unraveled and our molecular understanding of resulting proteoforms broadened. Utilizing complementary ribosome profiling strategies to map ORF boundaries, we uncovered dual-encoding ORFs generated by in-frame TIS usage in Salmonella. Besides demonstrating that alternative TIS usage may generate proteoforms with different characteristics, such as differential localization and specialized function, quantitative aspects of conditional retapamulin-assisted ribosome profiling (Ribo-RET) translation initiation maps offer unprecedented insights into the relative utilization of annotated and alternative TIS, enabling the exploration of gene regulatory mechanisms that control TIS usage and, consequently, the translation of N-terminal proteoform pairs.
Collapse
Affiliation(s)
- Igor Fijalkowski
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Valdes Snauwaert
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Bruna RE, Kendra CG, Pontes MH. Phosphorus starvation response and PhoB-independent utilization of organic phosphate sources by Salmonella enterica. Microbiol Spectr 2023; 11:e0226023. [PMID: 37787565 PMCID: PMC10715179 DOI: 10.1128/spectrum.02260-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Phosphorus (P) is the fifth most abundant element in living cells. This element is acquired mainly as inorganic phosphate (Pi, PO4 3-). In enteric bacteria, P starvation activates a two-component signal transduction system which is composed of the membrane sensor protein PhoR and its cognate transcription regulator PhoB. PhoB, in turn, promotes the transcription of genes that help maintain Pi homeostasis. Here, we characterize the P starvation response of the bacterium Salmonella enterica. We determine the PhoB-dependent and independent transcriptional changes promoted by P starvation and identify proteins enabling the utilization of a range of organic substrates as sole P sources. We show that transcription and activity of a subset of these proteins are independent of PhoB and Pi availability. These results establish that Salmonella enterica can maintain Pi homeostasis and repress PhoB/PhoR activation even when cells are grown in medium lacking Pi.
Collapse
Affiliation(s)
- Roberto E. Bruna
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- The One Health Microbiome Center, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Christopher G. Kendra
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- The One Health Microbiome Center, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mauricio H. Pontes
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- The One Health Microbiome Center, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Bruna RE, Kendra CG, Pontes MH. An intracellular phosphorus-starvation signal activates the PhoB/PhoR two-component system in Salmonella enterica. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533958. [PMID: 36993483 PMCID: PMC10055408 DOI: 10.1101/2023.03.23.533958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Bacteria acquire P primarily as inorganic orthophosphate (Pi, PO43-). Once internalized, Pi is rapidly assimilated into biomass during the synthesis of ATP. Because Pi is essential, but excessive ATP is toxic, the acquisition of environmental Pi is tightly regulated. In the bacterium Salmonella enterica (Salmonella), growth in Pi-limiting environments activates the membrane sensor histidine kinase PhoR, leading to the phosphorylation of its cognate transcriptional regulator PhoB and subsequent transcription of genes involved in adaptations to low Pi. Pi limitation is thought to promote PhoR kinase activity by altering the conformation of a membrane signaling complex comprised by PhoR, the multicomponent Pi transporter system PstSACB and the regulatory protein PhoU. However, the identity of the low Pi signal and how it controls PhoR activity remain unknown. Here we characterize the PhoB-dependent and independent transcriptional changes elicited by Salmonella in response to P starvation, and identify PhoB-independent genes that are required for the utilization of several organic-P sources. We use this knowledge to identify the cellular compartment where the PhoR signaling complex senses the Pi-limiting signal. We demonstrate that the PhoB and PhoR signal transduction proteins can be maintained in an inactive state even when Salmonella is grown in media lacking Pi. Our results establish that PhoR activity is controlled by an intracellular signal resulting from P insufficiency.
Collapse
Affiliation(s)
- Roberto E. Bruna
- Department of Pathology and Laboratory Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, United States of America
| | - Christopher G. Kendra
- Department of Pathology and Laboratory Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, United States of America
| | - Mauricio H. Pontes
- Department of Pathology and Laboratory Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, United States of America
- Department of Microbiology and Immunology, Pennsylvania State College of Medicine, Hershey, PA 17033, United States of America
| |
Collapse
|
5
|
Regulatory Evolution of the phoH Ancestral Gene in Salmonella enterica Serovar Typhimurium. J Bacteriol 2022; 204:e0058521. [PMID: 35404111 DOI: 10.1128/jb.00585-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One important event for the divergence of Salmonella from Escherichia coli was the acquisition by horizontal transfer of the Salmonella pathogenicity island 1 (SPI-1), containing genes required for the invasion of host cells by Salmonella. HilD is an AraC-like transcriptional regulator in SPI-1 that induces the expression of the SPI-1 and many other acquired virulence genes located in other genomic regions of Salmonella. Additionally, HilD has been shown to positively control the expression of some ancestral genes (also present in E. coli and other bacteria), including phoH. In this study, we determined that both the gain of HilD and cis-regulatory evolution led to the integration of the phoH gene into the HilD regulon. Our results indicate that a HilD-binding sequence was generated in the regulatory region of the S. enterica serovar Typhimurium phoH gene, which mediates the activation of promoter 1 of this gene under SPI-1-inducing conditions. Furthermore, we found that repression by H-NS, a histone-like protein, was also adapted on the S. Typhimurium phoH gene and that HilD activates the expression of this gene in part by antagonizing H-NS. Additionally, our results revealed that the expression of the S. Typhmurium phoH gene is also activated in response to low phosphate but independently of the PhoB/R two-component system, known to regulate the E. coli phoH gene in response to low phosphate. Thus, our results indicate that cis-regulatory evolution has played a role in the expansion of the HilD regulon and illustrate the phenomenon of differential regulation of ortholog genes. IMPORTANCE Two mechanisms mediating differentiation of bacteria are well known: acquisition of genes by horizontal transfer events and mutations in coding DNA sequences. In this study, we found that the phoH ancestral gene is differentially regulated between Salmonella Typhimurium and Escherichia coli, two closely related bacterial species. Our results indicate that this differential regulation was generated by mutations in the regulatory sequence of the S. Typhimurium phoH gene and by the acquisition by S. Typhimurium of foreign DNA encoding the transcriptional regulator HilD. Thus, our results, together with those from an increasing number of studies, indicate that cis-regulatory evolution can lead to the rewiring and reprogramming of transcriptional regulation, which also plays an important role in the divergence of bacteria through time.
Collapse
|
6
|
Chau NYE, Ahmad S, Whitney JC, Coombes BK. Emerging and divergent roles of pyrophosphorylated nucleotides in bacterial physiology and pathogenesis. PLoS Pathog 2021; 17:e1009532. [PMID: 33984072 PMCID: PMC8118318 DOI: 10.1371/journal.ppat.1009532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacteria inhabit diverse environmental niches and consequently must modulate their metabolism to adapt to stress. The nucleotide second messengers guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) (collectively referred to as (p)ppGpp) are essential for survival during nutrient starvation. (p)ppGpp is synthesized by the RelA-SpoT homologue (RSH) protein family and coordinates the control of cellular metabolism through its combined effect on over 50 proteins. While the role of (p)ppGpp has largely been associated with nutrient limitation, recent studies have shown that (p)ppGpp and related nucleotides have a previously underappreciated effect on different aspects of bacterial physiology, such as maintaining cellular homeostasis and regulating bacterial interactions with a host, other bacteria, or phages. (p)ppGpp produced by pathogenic bacteria facilitates the evasion of host defenses such as reactive nitrogen intermediates, acidic pH, and the complement system. Additionally, (p)ppGpp and pyrophosphorylated derivatives of canonical adenosine nucleotides called (p)ppApp are emerging as effectors of bacterial toxin proteins. Here, we review the RSH protein family with a focus on its unconventional roles during host infection and bacterial competition.
Collapse
Affiliation(s)
- N. Y Elizabeth Chau
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Shehryar Ahmad
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - John C. Whitney
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Brian K. Coombes
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
7
|
Kiselev S, Markelova N, Masulis I. Divergently Transcribed ncRNAs in Escherichia coli: Refinement of the Transcription Starts Assumes Functional Diversification. Front Mol Biosci 2021; 8:610453. [PMID: 33748186 PMCID: PMC7967276 DOI: 10.3389/fmolb.2021.610453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/07/2021] [Indexed: 02/05/2023] Open
Abstract
Non-coding regulatory RNAs (ncRNAs) comprise specialized group of essential genetically encoded biological molecules involved in the wide variety of cellular metabolic processes. The progressive increase in the number of newly identified ncRNAs and the defining of their genome location indicate their predominant nesting in intergenic regions and expression under the control of their own regulatory elements. At the same time, the regulation of ncRNA's transcription cannot be considered in isolation from the processes occurring in the immediate genetic environment. A number of experimental data indicate the notable impact of positional regulation of gene expression mediated by dynamic temporal DNA rearrangements accompanying transcription events in the vicinity of neighboring genes. This issue can be perceived as particularly significant for divergently transcribed ncRNAs being actually subjected to double regulatory pressure. Based on available results of RNAseq experiments for Escherichia coli, we screened out divergent ncRNAs and the adjacent genes for the exact positions of transcription start sites (TSSs) and relative efficiency of RNA production. This analysis revealed extension or shortening of some previously annotated ncRNAs resulting in modified secondary structure, confirmed stable expression of four ncRNAs annotated earlier as putative, and approved the possibility of expression of divergently transcribed ncRNAs containing repetitive extragenic palindromic (REP) elements. The biogenesis of secreted ncRNAs from divergently transcribed ffs, chiX, ralA, and ryhB is discussed taking into account positions of TSSs. Refinement of TSSs for the neighboring genes renders some ncRNAs as true antisense overlapping with 5'UTR of divergently transcribed mRNAs.
Collapse
Affiliation(s)
| | | | - Irina Masulis
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
8
|
(p)ppGpp-Dependent Regulation of the Nucleotide Hydrolase PpnN Confers Complement Resistance in Salmonella enterica Serovar Typhimurium. Infect Immun 2021; 89:IAI.00639-20. [PMID: 33139383 DOI: 10.1128/iai.00639-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
The stringent response is an essential mechanism of metabolic reprogramming during environmental stress that is mediated by the nucleotide alarmones guanosine tetraphosphate and pentaphosphate [(p)ppGpp]. In addition to physiological adaptations, (p)ppGpp also regulates virulence programs in pathogenic bacteria, including Salmonella enterica serovar Typhimurium. S Typhimurium is a common cause of acute gastroenteritis, but it may also spread to systemic tissues, resulting in severe clinical outcomes. During infection, S Typhimurium encounters a broad repertoire of immune defenses that it must evade for successful host infection. Here, we examined the role of the stringent response in S Typhimurium resistance to complement-mediated killing and found that the (p)ppGpp synthetase-hydrolase, SpoT, is required for bacterial survival in human serum. We identified the nucleotide hydrolase, PpnN, as a target of the stringent response that is required to promote bacterial fitness in serum. Using chromatography and mass spectrometry, we show that PpnN hydrolyzes purine and pyrimidine monophosphates to generate free nucleobases and ribose 5'-phosphate, and that this metabolic activity is required for conferring resistance to complement killing. In addition to PpnN, we show that (p)ppGpp is required for the biosynthesis of the very long and long O-antigen in the outer membrane, known to be important for complement resistance. Our results provide new insights into the role of the stringent response in mediating evasion of the innate immune system by pathogenic bacteria.
Collapse
|
9
|
The Small Toxic Salmonella Protein TimP Targets the Cytoplasmic Membrane and Is Repressed by the Small RNA TimR. mBio 2020; 11:mBio.01659-20. [PMID: 33172998 PMCID: PMC7667032 DOI: 10.1128/mbio.01659-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) has enabled the revelation of a vast number of genomes from organisms spanning all domains of life. To reduce complexity when new genome sequences are annotated, open reading frames (ORFs) shorter than 50 codons in length are generally omitted. However, it has recently become evident that this procedure sorts away ORFs encoding small proteins of high biological significance. For instance, tailored small protein identification approaches have shown that bacteria encode numerous small proteins with important physiological functions. As the number of predicted small ORFs increase, it becomes important to characterize the corresponding proteins. In this study, we discovered a conserved but previously overlooked small enterobacterial protein. We show that this protein, which we dubbed TimP, is a potent toxin that inhibits bacterial growth by targeting the cell membrane. Toxicity is relieved by a small regulatory RNA, which binds the toxin mRNA to inhibit toxin synthesis. Small proteins are gaining increased attention due to their important functions in major biological processes throughout the domains of life. However, their small size and low sequence conservation make them difficult to identify. It is therefore not surprising that enterobacterial ryfA has escaped identification as a small protein coding gene for nearly 2 decades. Since its identification in 2001, ryfA has been thought to encode a noncoding RNA and has been implicated in biofilm formation in Escherichia coli and pathogenesis in Shigella dysenteriae. Although a recent ribosome profiling study suggested ryfA to be translated, the corresponding protein product was not detected. In this study, we provide evidence that ryfA encodes a small toxic inner membrane protein, TimP, overexpression of which causes cytoplasmic membrane leakage. TimP carries an N-terminal signal sequence, indicating that its membrane localization is Sec-dependent. Expression of TimP is repressed by the small RNA (sRNA) TimR, which base pairs with the timP mRNA to inhibit its translation. In contrast to overexpression, endogenous expression of TimP upon timR deletion permits cell growth, possibly indicating a toxicity-independent function in the bacterial membrane.
Collapse
|
10
|
Cervantes-Rivera R, Puhar A. Whole-genome Identification of Transcriptional Start Sites by Differential RNA-seq in Bacteria. Bio Protoc 2020; 10:e3757. [PMID: 33659416 PMCID: PMC7842792 DOI: 10.21769/bioprotoc.3757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/25/2020] [Accepted: 07/23/2020] [Indexed: 11/02/2022] Open
Abstract
Gene transcription in bacteria often starts some nucleotides upstream of the start codon. Identifying the specific Transcriptional Start Site (TSS) is essential for genetic manipulation, as in many cases upstream of the start codon there are sequence elements that are involved in gene expression regulation. Taken into account the classical gene structure, we are able to identify two kinds of transcriptional start site: primary and secondary. A primary transcriptional start site is located some nucleotides upstream of the translational start site, while a secondary transcriptional start site is located within the gene encoding sequence. Here, we present a step by step protocol for genome-wide transcriptional start sites determination by differential RNA-sequencing (dRNA-seq) using the enteric pathogen Shigella flexneri serotype 5a strain M90T as model. However, this method can be employed in any other bacterial species of choice. In the first steps, total RNA is purified from bacterial cultures using the hot phenol method. Ribosomal RNA (rRNA) is specifically depleted via hybridization probes using a commercial kit. A 5'-monophosphate-dependent exonuclease (TEX)-treated RNA library enriched in primary transcripts is then prepared for comparison with a library that has not undergone TEX-treatment, followed by ligation of an RNA linker adaptor of known sequence allowing the determination of TSS with single nucleotide precision. Finally, the RNA is processed for Illumina sequencing library preparation and sequenced as purchased service. TSS are identified by in-house bioinformatic analysis. Our protocol is cost-effective as it minimizes the use of commercial kits and employs freely available software.
Collapse
Affiliation(s)
- Ramón Cervantes-Rivera
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90 187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90 187 Umeå, Sweden
| | - Andrea Puhar
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90 187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90 187 Umeå, Sweden
| |
Collapse
|
11
|
Fels U, Gevaert K, Van Damme P. Bacterial Genetic Engineering by Means of Recombineering for Reverse Genetics. Front Microbiol 2020; 11:548410. [PMID: 33013782 PMCID: PMC7516269 DOI: 10.3389/fmicb.2020.548410] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Serving a robust platform for reverse genetics enabling the in vivo study of gene functions primarily in enterobacteriaceae, recombineering -or recombination-mediated genetic engineering-represents a powerful and relative straightforward genetic engineering tool. Catalyzed by components of bacteriophage-encoded homologous recombination systems and only requiring short ∼40–50 base homologies, the targeted and precise introduction of modifications (e.g., deletions, knockouts, insertions and point mutations) into the chromosome and other episomal replicons is empowered. Furthermore, by its ability to make use of both double- and single-stranded linear DNA editing substrates (e.g., PCR products or oligonucleotides, respectively), lengthy subcloning of specific DNA sequences is circumvented. Further, the more recent implementation of CRISPR-associated endonucleases has allowed for more efficient screening of successful recombinants by the selective purging of non-edited cells, as well as the creation of markerless and scarless mutants. In this review we discuss various recombineering strategies to promote different types of gene modifications, how they are best applied, and their possible pitfalls.
Collapse
Affiliation(s)
- Ursula Fels
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
A high-resolution transcriptome map identifies small RNA regulation of metabolism in the gut microbe Bacteroides thetaiotaomicron. Nat Commun 2020; 11:3557. [PMID: 32678091 PMCID: PMC7366714 DOI: 10.1038/s41467-020-17348-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
Bacteria of the genus Bacteroides are common members of the human intestinal microbiota and important degraders of polysaccharides in the gut. Among them, the species Bacteroides thetaiotaomicron has emerged as the model organism for functional microbiota research. Here, we use differential RNA sequencing (dRNA-seq) to generate a single-nucleotide resolution transcriptome map of B. thetaiotaomicron grown under defined laboratory conditions. An online browser, called ‘Theta-Base’ (www.helmholtz-hiri.de/en/datasets/bacteroides), is launched to interrogate the obtained gene expression data and annotations of ~4500 transcription start sites, untranslated regions, operon structures, and 269 noncoding RNA elements. Among the latter is GibS, a conserved, 145 nt-long small RNA that is highly expressed in the presence of N-acetyl-D-glucosamine as sole carbon source. We use computational predictions and experimental data to determine the secondary structure of GibS and identify its target genes. Our results indicate that sensing of N-acetyl-D-glucosamine induces GibS expression, which in turn modifies the transcript levels of metabolic enzymes. Bacteroides thetaiotaomicron is a human gut microbe and an emergent model organism. Here, Ryan et al. generate single-nucleotide resolution RNA-seq data for this bacterium and map transcription start sites and noncoding RNAs, one of which modulates expression of metabolic enzymes.
Collapse
|
13
|
Kliemt J, Jaschinski K, Soppa J. A Haloarchaeal Small Regulatory RNA (sRNA) Is Essential for Rapid Adaptation to Phosphate Starvation Conditions. Front Microbiol 2019; 10:1219. [PMID: 31231327 PMCID: PMC6560208 DOI: 10.3389/fmicb.2019.01219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/15/2019] [Indexed: 11/26/2022] Open
Abstract
The haloarchaeon Haloferax volcanii contains nearly 2800 small non-coding RNAs (sRNAs). One intergenic sRNA, sRNA132, was chosen for a detailed characterization. A deletion mutant had a growth defect and thus underscored the importance of sRNA132. A microarray analysis identified the transcript of an operon for a phosphate-specific ABC transporter as a putative target of sRNA132. Both the sRNA132 and the operon transcript accumulated under low phosphate concentrations, indicating a positive regulatory role of sRNA132. A kinetic analysis revealed that sRNA132 is essential shortly after the onset of phosphate starvation, while other regulatory processes take over after several hours. Comparison of the transcriptomes of wild-type and the sRNA132 gene deletion mutant 30 min after the onset of phosphate starvation revealed that sRNA132 controls a regulon of about 40 genes. Remarkably, the regulon included a second operon for a phosphate-specific ABC transporter, which also depended on sRNA132 for rapid induction in the absence of phosphate. Competitive growth experiments of the wild-type and ABC transporter operon deletion mutants underscored the importance of both transporters for growth at low phosphate concentrations. Northern blot analyses of four additional members of the sRNA132 regulon verified that all four transcripts depended on sRNA132 for rapid regulation after the onset of phosphate starvation. Importantly, this is the first example for the transient importance of a sRNA for any archaeal and bacterial species. In addition, this study unraveled the first sRNA regulon for haloarchaea.
Collapse
Affiliation(s)
- Jana Kliemt
- Biocentre, Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Katharina Jaschinski
- Biocentre, Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Jörg Soppa
- Biocentre, Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
14
|
Dasgupta S, Das S, Biswas A, Bhadra RK, Das S. Small alarmones (p)ppGpp regulate virulence associated traits and pathogenesis of Salmonella enterica serovar Typhi. Cell Microbiol 2019; 21:e13034. [PMID: 31013389 DOI: 10.1111/cmi.13034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/29/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
Abstract
How Salmonella enterica serovar Typhi (S. Typhi), an important human pathogen, survives the stressful microenvironments inside the gastrointestinal tract and within macrophages remains poorly understood. We report here that S. Typhi has a bonafide stringent response (SR) system, which is mediated by (p)ppGpp and regulates multiple virulence-associated traits and the pathogenicity of the S. Typhi Ty2 strain. In an iron overload mouse model of S. Typhi infection, the (p)ppGpp0 (Ty2ΔRelAΔSpoT) strain showed minimal systemic spread and no mortality, as opposed to 100% death of the mice challenged with the isogenic wild-type strain. Ty2ΔRelAΔSpoT had markedly elongated morphology with incomplete septa formation and demonstrated severely attenuated motility and chemotaxis due to the loss of flagella. Absence of the Vi-polysaccharide capsule rendered the mutant strain highly susceptible to complement-mediated lysis. The phenotypes of Ty2ΔRelAΔSpoT was contributed by transcriptional repression of several genes, including fliC, tviA, and ftsZ, as found by reverse transcriptase quantitative polymerase chain reaction and gene complementation studies. Finally, Ty2ΔRelAΔSpoT had markedly reduced invasion into intestinal epithelial cells and significantly attenuated survival within macrophages. To the best of our knowledge, this was the first study that addressed SR in S. Typhi and showed that (p)ppGpp was essential for optimal pathogenic fitness of the organism.
Collapse
Affiliation(s)
- Shreya Dasgupta
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sayan Das
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asim Biswas
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Rupak K Bhadra
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Santasabuj Das
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
15
|
Martini MC, Zhou Y, Sun H, Shell SS. Defining the Transcriptional and Post-transcriptional Landscapes of Mycobacterium smegmatis in Aerobic Growth and Hypoxia. Front Microbiol 2019; 10:591. [PMID: 30984135 PMCID: PMC6448022 DOI: 10.3389/fmicb.2019.00591] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
The ability of Mycobacterium tuberculosis to infect, proliferate, and survive during long periods in the human lungs largely depends on the rigorous control of gene expression. Transcriptome-wide analyses are key to understanding gene regulation on a global scale. Here, we combine 5′-end-directed libraries with RNAseq expression libraries to gain insight into the transcriptome organization and post-transcriptional mRNA cleavage landscape in mycobacteria during log phase growth and under hypoxia, a physiologically relevant stress condition. Using the model organism Mycobacterium smegmatis, we identified 6,090 transcription start sites (TSSs) with high confidence during log phase growth, of which 67% were categorized as primary TSSs for annotated genes, and the remaining were classified as internal, antisense, or orphan, according to their genomic context. Interestingly, over 25% of the RNA transcripts lack a leader sequence, and of the coding sequences that do have leaders, 53% lack a strong consensus Shine-Dalgarno site. This indicates that like M. tuberculosis, M. smegmatis can initiate translation through multiple mechanisms. Our approach also allowed us to identify over 3,000 RNA cleavage sites, which occur at a novel sequence motif. To our knowledge, this represents the first report of a transcriptome-wide RNA cleavage site map in mycobacteria. The cleavage sites show a positional bias toward mRNA regulatory regions, highlighting the importance of post-transcriptional regulation in gene expression. We show that in low oxygen, a condition associated with the host environment during infection, mycobacteria change their transcriptomic profiles and endonucleolytic RNA cleavage is markedly reduced, suggesting a mechanistic explanation for previous reports of increased mRNA half-lives in response to stress. In addition, a number of TSSs were triggered in hypoxia, 56 of which contain the binding motif for the sigma factor SigF in their promoter regions. This suggests that SigF makes direct contributions to transcriptomic remodeling in hypoxia-challenged mycobacteria. Taken together, our data provide a foundation for further study of both transcriptional and posttranscriptional regulation in mycobacteria.
Collapse
Affiliation(s)
- M Carla Martini
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Ying Zhou
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Huaming Sun
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
16
|
Drecktrah D, Hall LS, Rescheneder P, Lybecker M, Samuels DS. The Stringent Response-Regulated sRNA Transcriptome of Borrelia burgdorferi. Front Cell Infect Microbiol 2018; 8:231. [PMID: 30027068 PMCID: PMC6041397 DOI: 10.3389/fcimb.2018.00231] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
The Lyme disease spirochete Borrelia (Borreliella) burgdorferi must tolerate nutrient stress to persist in the tick phase of its enzootic life cycle. We previously found that the stringent response mediated by RelBbu globally regulates gene expression to facilitate persistence in the tick vector. Here, we show that RelBbu regulates the expression of a swath of small RNAs (sRNA), affecting 36% of previously identified sRNAs in B. burgdorferi. This is the first sRNA regulatory mechanism identified in any spirochete. Threefold more sRNAs were RelBbu-upregulated than downregulated during nutrient stress and included antisense, intergenic and 5′ untranslated region sRNAs. RelBbu-regulated sRNAs associated with genes known to be important for host infection (bosR and dhhp) as well as persistence in the tick (glpF and hk1) were identified, suggesting potential mechanisms for post-transcriptional regulation of gene expression.
Collapse
Affiliation(s)
- Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Laura S Hall
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Philipp Rescheneder
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Meghan Lybecker
- Department of Biology, University of Colorado, Colorado Springs, CO, United States
| | - D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT, United States.,Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
| |
Collapse
|
17
|
Tapscott T, Kim JS, Crawford MA, Fitzsimmons L, Liu L, Jones-Carson J, Vázquez-Torres A. Guanosine tetraphosphate relieves the negative regulation of Salmonella pathogenicity island-2 gene transcription exerted by the AT-rich ssrA discriminator region. Sci Rep 2018; 8:9465. [PMID: 29930310 PMCID: PMC6013443 DOI: 10.1038/s41598-018-27780-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/01/2018] [Indexed: 01/09/2023] Open
Abstract
The repressive activity of ancestral histone-like proteins helps integrate transcription of foreign genes with discrepant AT content into existing regulatory networks. Our investigations indicate that the AT-rich discriminator region located between the −10 promoter element and the transcription start site of the regulatory gene ssrA plays a distinct role in the balanced expression of the Salmonella pathogenicity island-2 (SPI2) type III secretion system. The RNA polymerase-binding protein DksA activates the ssrAB regulon post-transcriptionally, whereas the alarmone guanosine tetraphosphate (ppGpp) relieves the negative regulation imposed by the AT-rich ssrA discriminator region. An increase in the GC-content of the ssrA discriminator region enhances ssrAB transcription and SsrB translation, thus activating the expression of downstream SPI2 genes. A Salmonella strain expressing a GC-rich ssrA discriminator region is attenuated in mice and grows poorly intracellularly. The combined actions of ppGpp and DksA on SPI2 expression enable Salmonella to grow intracellularly, and cause disease in a murine model of infection. Collectively, these findings indicate that (p)ppGpp relieves the negative regulation associated with the AT-rich discriminator region in the promoter of the horizontally-acquired ssrA gene, whereas DksA activates ssrB gene expression post-transcriptionally. The combined effects of (p)ppGpp and DksA on the ssrAB locus facilitate a balanced SPI2 virulence gene transcription that is essential for Salmonella pathogenesis.
Collapse
Affiliation(s)
- Timothy Tapscott
- Molecular Biology Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ju-Sim Kim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Matthew A Crawford
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Liam Fitzsimmons
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lin Liu
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jessica Jones-Carson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.,Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrés Vázquez-Torres
- Molecular Biology Program, University of Colorado School of Medicine, Aurora, CO, USA. .,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA. .,Veterans Affairs Eastern Colorado Health Care System, Denver, CO, USA.
| |
Collapse
|
18
|
Thompson A, Fulde M, Tedin K. The metabolic pathways utilized by Salmonella Typhimurium during infection of host cells. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:140-154. [PMID: 29411544 DOI: 10.1111/1758-2229.12628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Only relatively recently has research on the metabolism of intracellular bacterial pathogens within their host cells begun to appear in the published literature. This reflects in part the experimental difficulties encountered in separating host metabolic processes from those of the resident pathogen. One of the most genetically tractable and thoroughly studied intracellular bacterial pathogens, Salmonella enterica serovar Typhimurium (S. Typhimurium), has been at the forefront of metabolic studies within eukaryotic host cells. In this review, we offer a synthesis of what has been discovered to date regarding the metabolic adaptation of S. Typhimurium to survival and growth within the infected host. We discuss many studies in the context of techniques used, types of host cells, how host metabolites contribute to intracellular survival and proliferation of the pathogen and how bacterial metabolism affects the virulence and persistence of the pathogen.
Collapse
Affiliation(s)
- Arthur Thompson
- Institute for Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| | - Marcus Fulde
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
| | - Karsten Tedin
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
19
|
Lago M, Monteil V, Douche T, Guglielmini J, Criscuolo A, Maufrais C, Matondo M, Norel F. Proteome remodelling by the stress sigma factor RpoS/σ S in Salmonella: identification of small proteins and evidence for post-transcriptional regulation. Sci Rep 2017; 7:2127. [PMID: 28522802 PMCID: PMC5437024 DOI: 10.1038/s41598-017-02362-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
The RpoS/σS sigma subunit of RNA polymerase is the master regulator of the general stress response in many Gram-negative bacteria. Extensive studies have been conducted on σS-regulated gene expression at the transcriptional level. In contrast, very limited information regarding the impact of σS on global protein production is available. In this study, we used a mass spectrometry-based proteomics approach to explore the wide σS-dependent proteome of the human pathogen Salmonella enterica serovar Typhimurium. Our present goals were twofold: (1) to survey the protein changes associated with the ΔrpoS mutation and (2) to assess the coding capacity of σS-dependent small RNAs. Our proteomics data, and complementary assays, unravelled the large impact of σS on the Salmonella proteome, and validated expression and σS regulation of twenty uncharacterized small proteins of 27 to 96 amino acids. Furthermore, a large number of genes regulated at the protein level only were identified, suggesting that post-transcriptional regulation is an important component of the σS response. Novel aspects of σS in the control of important catabolic pathways such as myo-inositol, L-fucose, propanediol, and ethanolamine were illuminated by this work, providing new insights into the physiological remodelling involved in bacterial adaptation to a non-actively growing state.
Collapse
Affiliation(s)
- Magali Lago
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, rue du Dr. Roux, 75015, Paris, France
| | - Véronique Monteil
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie structurale et Chimie, rue du Dr. Roux, 75015, Paris, France
| | - Thibaut Douche
- Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, Département de Biologie Structurale et Chimie, UMR3528, rue du Dr. Roux, 75015, Paris, France
| | - Julien Guglielmini
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Corinne Maufrais
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, Département de Biologie Structurale et Chimie, UMR3528, rue du Dr. Roux, 75015, Paris, France
| | - Françoise Norel
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France.
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France.
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie structurale et Chimie, rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
20
|
Colgan AM, Cameron AD, Kröger C. If it transcribes, we can sequence it: mining the complexities of host-pathogen-environment interactions using RNA-seq. Curr Opin Microbiol 2017; 36:37-46. [PMID: 28189909 DOI: 10.1016/j.mib.2017.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
Abstract
Host-pathogen interactions are exceedingly complex because they involve multiple host tissues, often occur in the context of normal microflora, and can span diverse microenvironments. Although decades of gene expression studies have provided detailed insights into infection processes, technical challenges have restricted experiments to single pathogenic species or host tissues. RNA-sequencing (RNA-seq) has revolutionized the study of gene expression because in addition to quantifying transcriptional output, it allows detection and characterization of all transcripts in a genome. Here, we review how refined approaches to RNA-seq are used to map the transcriptional networks that control host-pathogen interactions. These enhanced techniques include dRNA-seq and term-seq for the fine-scale mapping of transcriptional start and termination sites, and dual RNA-seq for simultaneous sequencing of host and bacterial pathogen transcriptomes. Dual RNA-seq experiments are currently limited to in vitro infection systems that do not fully reflect the complexities of the in vivo environment, thus a challenge is to develop in vivo model systems and experimental approaches that address the biological heterogeneity of host environments, followed by the integration of RNA-seq with other genome-scale datasets to identify the transcriptional networks that mediate host-pathogen interactions.
Collapse
Affiliation(s)
- Aoife M Colgan
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Andrew Ds Cameron
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
21
|
Suar M, Ryan D. Small RNA in the acid tolerance response of Salmonella and their role in virulence. Virulence 2016; 6:105-6. [PMID: 25853732 DOI: 10.4161/21505594.2014.988543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Mrutyunjay Suar
- a School of Biotechnology ; KIIT University ; Bhubaneswar , Odisha , India
| | | |
Collapse
|
22
|
Meng L, Alter T, Aho T, Huehn S. Gene expression profiles of Vibrio parahaemolyticus in the early stationary phase. Lett Appl Microbiol 2015; 61:231-7. [PMID: 26118852 DOI: 10.1111/lam.12452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 11/26/2022]
Abstract
UNLABELLED Vibrio (V.) parahaemolyticus is an aquatic bacterium capable of causing foodborne gastroenteritis. In the environment or the food chain, V. parahaemolyticus cells are usually forced into the stationary phase, the common phase for bacterial survival in the environment. So far, little is known about whole genomic expression of V. parahaemolyticus in the early stationary phase compared with the exponential growth phase. We performed whole transcriptomic profiling of V. parahaemolyticus cells in both phases (exponential and early stationary phase). Our data showed in total that 172 genes were induced in early stationary phase, while 61 genes were repressed in early stationary phase compared with the exponential phase. Three functional categories showed stable gene expression in the early stationary phase. Eleven functional categories showed that up-regulation of genes was dominant over down-regulation in the early stationary phase. Although genes related to endogenous metabolism were repressed in the early stationary phase, massive regulation of gene expression occurred in the early stationary phase, indicating the expressed gene set of V. parahaemolyticus in the early stationary phase impacts environmental survival. SIGNIFICANCE AND IMPACT OF THE STUDY Vibrio (V.) parahaemolyticus is one of the main bacterial causes of foodborne intestinal infections. This bacterium usually is forced into stationary phase in the environment, which includes, e.g. seafood. When bacteria are in stationary phase, physiological changes can lead to a resistance to many stresses, including physical and chemical challenges during food processing. To the best of our knowledge, highlighting the whole genome expression changes in the early stationary phase compared with exponential phase, as well as the investigation of physiological changes of V. parahaemolyticus such as the survival mechanism in the stationary phase has been the very first study in this field.
Collapse
Affiliation(s)
- L Meng
- Institute of Food Hygiene, Freie Universitaet Berlin, Berlin, Germany
| | - T Alter
- Institute of Food Hygiene, Freie Universitaet Berlin, Berlin, Germany
| | - T Aho
- Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - S Huehn
- Institute of Food Hygiene, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
23
|
Rice CJ, Ramachandran VK, Shearer N, Thompson A. Transcriptional and Post-Transcriptional Modulation of SPI1 and SPI2 Expression by ppGpp, RpoS and DksA in Salmonella enterica sv Typhimurium. PLoS One 2015; 10:e0127523. [PMID: 26039089 PMCID: PMC4454661 DOI: 10.1371/journal.pone.0127523] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/16/2015] [Indexed: 12/02/2022] Open
Abstract
The expression of genes within Salmonella Pathogenicity Islands 1 and 2 (SPI1, SPI2) is required to facilitate invasion and intracellular replication respectively of S. Typhimurium in host cell lines. Control of their expression is complex and occurs via a variety of factors operating at transcriptional and post-transcriptional levels in response to the environmental stimuli found within the host. Several of the factors that modulate SPI1 and SPI2 expression are involved in the redistribution or modification of RNA polymerase (RNAP) specificity. These factors include the bacterial alarmone, ppGpp, the alternative sigma factor, RpoS, and the RNAP accessory protein, DksA. In this report we show not only how these three factors modulate SPI1 and SPI2 expression but also how they contribute to the 'phased' expression of SPI1 and SPI2 during progress through late-log and stationary phase in aerobic rich broth culture conditions. In addition, we demonstrate that the expression of at least one SPI1-encoded protein, SipC is subject to DksA-dependent post-transcriptional control.
Collapse
Affiliation(s)
| | | | - Neil Shearer
- Institute of Food Research, Norwich, NR4 7UA, United Kingdom
| | - Arthur Thompson
- Institute of Food Research, Norwich, NR4 7UA, United Kingdom
| |
Collapse
|
24
|
Chatnaparat T, Li Z, Korban SS, Zhao Y. The bacterial alarmone (p)ppGpp is required for virulence and controls cell size and survival of Pseudomonas syringae on plants. Environ Microbiol 2015; 17:4253-70. [PMID: 25626964 DOI: 10.1111/1462-2920.12744] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/29/2014] [Accepted: 12/06/2014] [Indexed: 11/29/2022]
Abstract
The stringent response, mediated by second messenger (p)ppGpp, results in swift and massive transcriptional reprogramming under nutrient limited conditions. In this study, the role of (p)ppGpp on virulence of Pseudomonas syringae pv. syringae B728a (PssB728a) was investigated. The virulence of the relA/spoT (ppGpp(0) ) double mutant was completely impaired on bean, and bacterial growth was significantly reduced, suggesting that (p)ppGpp is required for full virulence of P. syringae. Expression of T3SS and other virulence genes was reduced in ppGpp(0) mutants. In addition, ppGpp deficiency resulted in loss of swarming motility, reduction of pyoverdine production, increased sensitivity to oxidative stress and antibiotic tolerance, as well as reduced ability to utilize γ-amino butyric acid. Increased levels of ppGpp resulted in reduced cell size of PssB728a when grown in a minimal medium and on plant surfaces, while most ppGpp(0) mutant cells were not viable on plant surfaces 24 h after spray inoculation, suggesting that ppGpp-mediated stringent response temporarily limits cell growth, and might control cell survival on plants by limiting their growth. These results demonstrated that ppGpp-mediated stringent response plays a central role in P. syringae virulence and survival and indicated that ppGpp serves as a global signal for regulating various virulence traits in PssB728a.
Collapse
Affiliation(s)
- Tiyakhon Chatnaparat
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhong Li
- Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Schuyler S Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
25
|
The bacterial alarmone (p)ppGpp activates the type III secretion system in Erwinia amylovora. J Bacteriol 2015; 197:1433-43. [PMID: 25666138 DOI: 10.1128/jb.02551-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by a sigma factor cascade. In this study, the role of the bacterial alarmone ppGpp in activating the T3SS and virulence of E. amylovora was investigated using ppGpp mutants generated by Red recombinase cloning. The virulence of a ppGpp-deficient mutant (ppGpp(0)) as well as a dksA mutant of E. amylovora was completely impaired, and bacterial growth was significantly reduced, suggesting that ppGpp is required for full virulence of E. amylovora. Expression of T3SS genes was greatly downregulated in the ppGpp(0) and dksA mutants. Western blotting showed that accumulations of the HrpA protein in the ppGpp(0) and dksA mutants were about 10 and 4%, respectively, of that in the wild-type strain. Furthermore, higher levels of ppGpp resulted in a reduced cell size of E. amylovora. Moreover, serine hydroxamate and α-methylglucoside, which induce amino acid and carbon starvation, respectively, activated hrpA and hrpL promoter activities in hrp-inducing minimal medium. These results demonstrated that ppGpp and DksA play central roles in E. amylovora virulence and indicated that E. amylovora utilizes ppGpp as an internal messenger to sense environmental/nutritional stimuli for regulation of the T3SS and virulence. IMPORTANCE The type III secretion system (T3SS) is a key pathogenicity factor in Gram-negative bacteria. Fully elucidating how the T3SS is activated is crucial for comprehensively understanding the function of the T3SS, bacterial pathogenesis, and survival under stress conditions. In this study, we present the first evidence that the bacterial alarmone ppGpp-mediated stringent response activates the T3SS through a sigma factor cascade, indicating that ppGpp acts as an internal messenger to sense environmental/nutritional stimuli for the regulation of the T3SS and virulence in plant-pathogenic bacteria. Furthermore, the recovery of an spoT null mutant, which displayed very unique phenotypes, suggested that small proteins containing a single ppGpp hydrolase domain are functional.
Collapse
|
26
|
Lévi-Meyrueis C, Monteil V, Sismeiro O, Dillies MA, Kolb A, Monot M, Dupuy B, Duarte SS, Jagla B, Coppée JY, Beraud M, Norel F. Repressor activity of the RpoS/σS-dependent RNA polymerase requires DNA binding. Nucleic Acids Res 2015; 43:1456-68. [PMID: 25578965 PMCID: PMC4330354 DOI: 10.1093/nar/gku1379] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The RpoS/σ(S) sigma subunit of RNA polymerase (RNAP) activates transcription of stationary phase genes in many Gram-negative bacteria and controls adaptive functions, including stress resistance, biofilm formation and virulence. In this study, we address an important but poorly understood aspect of σ(S)-dependent control, that of a repressor. Negative regulation by σ(S) has been proposed to result largely from competition between σ(S) and other σ factors for binding to a limited amount of core RNAP (E). To assess whether σ(S) binding to E alone results in significant downregulation of gene expression by other σ factors, we characterized an rpoS mutant of Salmonella enterica serovar Typhimurium producing a σ(S) protein proficient for Eσ(S) complex formation but deficient in promoter DNA binding. Genome expression profiling and physiological assays revealed that this mutant was defective for negative regulation, indicating that gene repression by σ(S) requires its binding to DNA. Although the mechanisms of repression by σ(S) are likely specific to individual genes and environmental conditions, the study of transcription downregulation of the succinate dehydrogenase operon suggests that σ competition at the promoter DNA level plays an important role in gene repression by Eσ(S).
Collapse
Affiliation(s)
- Corinne Lévi-Meyrueis
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Docteur Roux, 75015 Paris, France CNRS ERL3526, rue du Docteur Roux, 75015 Paris, France Université Paris Sud XI, 15, rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - Véronique Monteil
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Docteur Roux, 75015 Paris, France CNRS ERL3526, rue du Docteur Roux, 75015 Paris, France
| | - Odile Sismeiro
- Institut Pasteur, Plate-forme Transcriptome et Epigénome, Département Génomes et génétique, rue du Docteur Roux, 75015 Paris, France
| | - Marie-Agnès Dillies
- Institut Pasteur, Plate-forme Transcriptome et Epigénome, Département Génomes et génétique, rue du Docteur Roux, 75015 Paris, France
| | - Annie Kolb
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Docteur Roux, 75015 Paris, France CNRS ERL3526, rue du Docteur Roux, 75015 Paris, France
| | - Marc Monot
- Institut Pasteur, Laboratoire Pathogenèse des bactéries anaérobies, Département de Microbiologie, rue du Docteur Roux, 75015 Paris, France
| | - Bruno Dupuy
- Institut Pasteur, Laboratoire Pathogenèse des bactéries anaérobies, Département de Microbiologie, rue du Docteur Roux, 75015 Paris, France
| | - Sara Serradas Duarte
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Docteur Roux, 75015 Paris, France CNRS ERL3526, rue du Docteur Roux, 75015 Paris, France
| | - Bernd Jagla
- Institut Pasteur, Plate-forme Transcriptome et Epigénome, Département Génomes et génétique, rue du Docteur Roux, 75015 Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Plate-forme Transcriptome et Epigénome, Département Génomes et génétique, rue du Docteur Roux, 75015 Paris, France
| | - Mélanie Beraud
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Docteur Roux, 75015 Paris, France CNRS ERL3526, rue du Docteur Roux, 75015 Paris, France Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, rue du Docteur Roux, 75015 Paris, France
| | - Françoise Norel
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Docteur Roux, 75015 Paris, France CNRS ERL3526, rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
27
|
Erdogan I, Akcelik N, Akcelik M. Comparative proteomic analysis of Salmonella typhimurium LT2 and its hisG gene inactivated mutant. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2015. [DOI: 10.3103/s0891416815010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Sharma CM, Vogel J. Differential RNA-seq: the approach behind and the biological insight gained. Curr Opin Microbiol 2014; 19:97-105. [PMID: 25024085 DOI: 10.1016/j.mib.2014.06.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/15/2014] [Accepted: 06/19/2014] [Indexed: 01/14/2023]
Abstract
RNA-sequencing has revolutionized the quantitative and qualitative analysis of transcriptomes in both prokaryotes and eukaryotes. It provides a generic approach for gene expression profiling, annotation of transcript boundaries and operons, as well as identifying novel transcripts including small noncoding RNA molecules and antisense RNAs. We recently developed a differential RNA-seq (dRNA-seq) method which in addition to the above, yields information as to whether a given RNA is a primary or processed transcript. Originally applied to describe the primary transcriptome of the gastric pathogen Helicobacter pylori, dRNA-seq has since provided global maps of transcriptional start sites in diverse species, informed new biology in the CRISPR-Cas9 system, advanced to a tool for comparative transcriptomics, and inspired simultaneous RNA-seq of pathogen and host.
Collapse
Affiliation(s)
- Cynthia M Sharma
- University of Würzburg, Institute for Molecular Infection Biology & Research Center for Infectious Diseases, Josef-Schneider-Straße 2/D15, D-97080 Würzburg, Germany.
| | - Jörg Vogel
- University of Würzburg, Institute for Molecular Infection Biology & Research Center for Infectious Diseases, Josef-Schneider-Straße 2/D15, D-97080 Würzburg, Germany.
| |
Collapse
|