1
|
Liu D, Ye Y, Tang R, Gong Y, Chen S, Zhang C, Mei P, Chen J, Chen L, Ma C. High-density genetic map construction and QTL mapping of a zigzag-shaped stem trait in tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2024; 24:382. [PMID: 38724900 PMCID: PMC11080114 DOI: 10.1186/s12870-024-05082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
The highly unique zigzag-shaped stem phenotype in tea plants boasts significant ornamental value and is exceptionally rare. To investigate the genetic mechanism behind this trait, we developed BC1 artificial hybrid populations. Our genetic analysis revealed the zigzag-shaped trait as a qualitative trait. Utilizing whole-genome resequencing, we constructed a high-density genetic map from the BC1 population, incorporating 5,250 SNP markers across 15 linkage groups, covering 3,328.51 cM with an average marker interval distance of 0.68 cM. A quantitative trait locus (QTL) for the zigzag-shaped trait was identified on chromosome 4, within a 61.2 to 97.2 Mb range, accounting for a phenotypic variation explained (PVE) value of 13.62%. Within this QTL, six candidate genes were pinpointed. To better understand their roles, we analyzed gene expression in various tissues and individuals with erect and zigzag-shaped stems. The results implicated CsXTH (CSS0035625) and CsCIPK14 (CSS0044366) as potential key contributors to the zigzag-shaped stem formation. These discoveries lay a robust foundation for future functional genetic mapping and tea plant genetic enhancement.
Collapse
Affiliation(s)
- Dingding Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Yuanyuan Ye
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Rongjin Tang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Yang Gong
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Si Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Chenyu Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Piao Mei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Jiedan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Chunlei Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
2
|
Hu CY, Tsai HT, Chiu CF, Su TC, Le NHK, Yeh SD. SSR-based molecular diagnosis for Taiwan tea cultivars and its application in identifying cultivar composition of the processed tea. J Food Drug Anal 2023; 31:446-457. [PMID: 39666285 PMCID: PMC10629914 DOI: 10.38212/2224-6614.3465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/17/2023] [Indexed: 12/13/2024] Open
Abstract
Taiwan specialty teas are produced with distinct manufacturing processes from specific cultivars of tea plants in Camellia. Due to the widespread transplantation of Taiwan tea cultivars and active international trading of tea materials, an accurate and reliable method to identify tea cultivars at the border is vital to protect the image of premium Taiwan specialty teas. In this study, we introduced the Taiwan Tea Variety Identification (TTVID) kit, a capillary electrophoresis-based multiplex PCR assay consisting of 12 simple sequence repeat (SSR) markers. A database composing these 12 SSR loci genotypes in 144 cultivars was established for marker assessment and molecular diagnosis. The power of discrimination on a locus ranged from 0.7894 to 0.966 and the combined match probability of 12 SSR loci was 5.34e-14. Cultivar pairwise comparison among 144 accessions showed that over 90.6% of the pairs had differential genotypes on at least 10 of 12 SSR loci. Further assessment showed that the TTVID kit could unambiguously recognize the cultivars mixed in the loose-leaf teas processed with various degrees of fermentation and roasting. Our results suggested that this TTVID kit effectively identified cultivar composition in loose-leaf tea and is helpful for border control in preventing adulteration and fraud in the Taiwan tea market.
Collapse
Affiliation(s)
- Chih-Yi Hu
- Tea Research and Extension Station, Yangmei, Taoyuan City, 326011,
Taiwan
| | - Hsien-Tsung Tsai
- Tea Research and Extension Station, Yangmei, Taoyuan City, 326011,
Taiwan
| | - Chui-Feng Chiu
- Tea Research and Extension Station, Yangmei, Taoyuan City, 326011,
Taiwan
| | - Tsung-Chen Su
- Tea Research and Extension Station, Yangmei, Taoyuan City, 326011,
Taiwan
| | - Nguyen Hoang Khoi Le
- Department of Life Sciences, National Central University, Taoyuan City, 320317,
Taiwan
| | - Shu-Dan Yeh
- Department of Life Sciences, National Central University, Taoyuan City, 320317,
Taiwan
| |
Collapse
|
3
|
Li JW, Li H, Liu ZW, Wang YX, Chen Y, Yang N, Hu ZH, Li T, Zhuang J. Molecular markers in tea plant (Camellia sinensis): Applications to evolution, genetic identification, and molecular breeding. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107704. [PMID: 37086694 DOI: 10.1016/j.plaphy.2023.107704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Tea plants have a long cultivation history in the world, and the beverage (tea) made from its leaves is well known in the world. Due to the characteristics of self-incompatibility, long-term natural and artificial hybridization, tea plants have a very complex genetic background, which make the classification of tea plants unclear. Molecular marker, one type of genetic markers, has the advantages of stable inheritance, large amount of information, and high reliability. The development of molecular marker has facilitated the understanding of complex tea germplasm resources. So far, molecular markers had played important roles in the study of the origin and evolution, the preservation and identification of tea germplasms, and the excellent cultivars breeding of tea plants. However, the information is scattered, making it difficult to understand the advance of molecular markers in tea plants. In this paper, we summarized the development process and types of molecular markers in tea plants. In addition, the application advance of these molecular markers in tea plants was reviewed. Perspectives of molecular markers in tea plants were also systematically provided and discussed. The elaboration of molecular markers in this paper should help us to renew understanding of its application in tea plants.
Collapse
Affiliation(s)
- Jing-Wen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yi Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ni Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tong Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
4
|
The Current Developments in Medicinal Plant Genomics Enabled the Diversification of Secondary Metabolites' Biosynthesis. Int J Mol Sci 2022; 23:ijms232415932. [PMID: 36555572 PMCID: PMC9781956 DOI: 10.3390/ijms232415932] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Medicinal plants produce important substrates for their adaptation and defenses against environmental factors and, at the same time, are used for traditional medicine and industrial additives. Plants have relatively little in the way of secondary metabolites via biosynthesis. Recently, the whole-genome sequencing of medicinal plants and the identification of secondary metabolite production were revolutionized by the rapid development and cheap cost of sequencing technology. Advances in functional genomics, such as transcriptomics, proteomics, and metabolomics, pave the way for discoveries in secondary metabolites and related key genes. The multi-omics approaches can offer tremendous insight into the variety, distribution, and development of biosynthetic gene clusters (BGCs). Although many reviews have reported on the plant and medicinal plant genome, chemistry, and pharmacology, there is no review giving a comprehensive report about the medicinal plant genome and multi-omics approaches to study the biosynthesis pathway of secondary metabolites. Here, we introduce the medicinal plant genome and the application of multi-omics tools for identifying genes related to the biosynthesis pathway of secondary metabolites. Moreover, we explore comparative genomics and polyploidy for gene family analysis in medicinal plants. This study promotes medicinal plant genomics, which contributes to the biosynthesis and screening of plant substrates and plant-based drugs and prompts the research efficiency of traditional medicine.
Collapse
|
5
|
Genome Survey and SSR Analysis of Camellia nitidissima Chi (Theaceae). Genet Res (Camb) 2022; 2022:5417970. [PMID: 36407084 PMCID: PMC9646326 DOI: 10.1155/2022/5417970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Camellia nitidissima Chi (CNC), a species of golden Camellia, is well known as "the queen of camellias." It is an ornamental, medicinal, and edible plant grown in China. In this study, we conducted a genome survey sequencing analysis and simple sequence repeat (SSR) identification of CNC using the Illumina sequencing platform. The 21-mer analysis predicted its genome size to be 2,778.82 Mb, with heterozygosity and repetition rates of 1.42% and 65.27%, respectively. The CNC genome sequences were assembled into 9,399,197 scaffolds, covering ∼2,910 Mb and an N50 of 869 base pair. Its genomic characteristics were found to be similar to those of Camellia oleifera. In addition, 1,940,616 SSRs were identified from the genome data, including mono-(61.85%), di-(28.71%), tri-(6.51%), tetra-(1.85%), penta-(0.57%), and hexanucleotide motifs (0.51%). We believe these data will provide a useful foundation for the development of novel molecular markers for CNC as well as for further whole-genome sequencing of CNC.
Collapse
|
6
|
Amplicon Sequencing Reveals Novel Fungal Species Responsible for a Controversial Tea Disease. J Fungi (Basel) 2022; 8:jof8080782. [PMID: 35893150 PMCID: PMC9394346 DOI: 10.3390/jof8080782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/10/2022] Open
Abstract
Amplicon sequencing is a powerful tool for analyzing the fungal composition inside plants, whereas its application for the identification of etiology for plant diseases remains undetermined. Here, we utilize this strategy to clarify the etiology responsible for tea leaf brown-black spot disease (LBSD), a noticeable disease infecting tea plants etiology that remains controversial. Based on the ITS-based amplicon sequencing analysis, Didymella species were identified as separate from Pestalotiopsis spp. and Cercospora sp., which are concluded as the etiological agents. This was further confirmed by the fungal isolation and their specific pathogenicity on diverse tea varieties. Based on the morphologies and phylogenetic analysis constructed with multi-loci (ITS, LSU, tub2, and rpb2), two novel Didymella species—tentatively named D. theae and D. theifolia as reference to their host plants—were proposed and characterized. Here, we present an integrated approach of ITS-based amplicon sequencing in combination with fungal isolation and fulfillment of Koch’s postulates for etiological identification of tea plant disease, revealing new etiology for LBSD. This contributes useful information for further etiological identification of plant disease based on amplicon sequencing, as well as understanding, prevention, and management of this economically important disease.
Collapse
|
7
|
Zhao S, Cheng H, Xu P, Wang Y. Regulation of biosynthesis of the main flavor-contributing metabolites in tea plant ( Camellia sinensis): A review. Crit Rev Food Sci Nutr 2022; 63:10520-10535. [PMID: 35608014 DOI: 10.1080/10408398.2022.2078787] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the process of adapting to the environment, tea plants (Camellia sinensis) endow tea with unique flavor and health functions, which should be attributed to secondary metabolites, including catechins, L-theanine, caffeine and terpene volatiles. Since the content of these flavor-contributing metabolites are mainly determined by the growth of tea plant, it is very important to understand their alteration and regulation mechanisms. In the present work, we first summarize the distribution, change characteristics of the main flavor-contributing metabolites in different cultivars, organs and under environmental stresses of tea plant. Subsequently, we discuss the regulating mechanisms involved in the biosynthesis of these metabolites based on the existing evidence. Finally, we propose the remarks and perspectives on the future study relating flavor-contributing metabolites. This review would contribute to the acceleration of research on the characteristic secondary metabolites and the breeding programs in tea plants.
Collapse
Affiliation(s)
- Shiqi Zhao
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Haiyan Cheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Xu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Tan L, Cui D, Wang L, Liu Q, Zhang D, Hu X, Fu Y, Chen S, Zou Y, Chen W, Wen W, Yang X, Yang Y, Li P, Tang Q. Genetic analysis of the early bud flush trait of tea plants ( Camellia sinensis) in the cultivar 'Emei Wenchun' and its open-pollinated offspring. HORTICULTURE RESEARCH 2022; 9:uhac086. [PMID: 35694722 PMCID: PMC9178331 DOI: 10.1093/hr/uhac086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/25/2022] [Indexed: 05/19/2023]
Abstract
The timing of bud flush (TBF) in the spring is one of the most important agronomic traits of tea plants (Camellia sinensis). In this study, we designed an open-pollination breeding program using 'Emei Wenchun' (EW, a clonal tea cultivar with extra-early TBF) as a female parent. A half-sib population (n = 388) was selected for genotyping using specific-locus amplified fragment sequencing. The results enabled the identification of paternity for 294 (75.8%) of the offspring, including 11 (2.8%) from EW selfing and 217 (55.9%) assigned to a common father, 'Chuanmu 217' (CM). The putative EW × CM full-sib population was used to construct a linkage map. The map has 4244 markers distributed in 15 linkage groups, with an average marker distance of 0.34 cM. A high degree of collinearity between the linkage map and physical map was observed. Sprouting index, a trait closely related to TBF, was recorded for the offspring population in 2020 and 2021. The trait had moderate variation, with coefficients of variation of 18.5 and 17.6% in 2020 and 2021, respectively. Quantitative trait locus (QTL) mapping that was performed using the linkage map identified two major QTLs and three minor QTLs related to the sprouting index. These QTLs are distributed on Chr3, Chr4, Chr5, Chr9, and Chr14 of the reference genome. A total of 1960 predicted genes were found within the confidence intervals of QTLs, and 22 key candidate genes that underlie these QTLs were preliminarily screened. These results are important for breeding and understanding the genetic base of the TBF trait of tea plants.
Collapse
Affiliation(s)
- Liqiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
- Corresponding authors. E-mail: ;
| | - Dong Cui
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Liubin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qinling Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Dongyang Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoli Hu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yidan Fu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shengxiang Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Yao Zou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Wei Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Weiqi Wen
- Mingshan Tea Plant Breeding and Reproduce Farm of Sichuan Province, Yaan 625101, Sichuan, China
| | - Xuemei Yang
- Mingshan Tea Plant Breeding and Reproduce Farm of Sichuan Province, Yaan 625101, Sichuan, China
| | - Yang Yang
- Sichuan Yizhichun Tea Industry Co., Ltd,, Leshan 614503, Sichuan, China
| | - Pinwu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
- Corresponding authors. E-mail: ;
| |
Collapse
|
9
|
Ovesná J, Hrbek V, Svoboda P, Pianta V, Kučera L, Hajšlová J, Milella L. Microsatellite fingerprinting and metabolite profiling for the geographical authentication of commercial green teas. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Development of genic SSR marker resources from RNA-seq data in Camellia japonica and their application in the genus Camellia. Sci Rep 2021; 11:9919. [PMID: 33972624 PMCID: PMC8110538 DOI: 10.1038/s41598-021-89350-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/26/2021] [Indexed: 11/12/2022] Open
Abstract
Camellia is a genus of flowering plants in the family Theaceae, and several species in this genus have economic importance. Although a great deal of molecular makers has been developed for molecular assisted breeding in genus Camellia in the past decade, the number of simple sequence repeats (SSRs) publicly available for plants in this genus is insufficient. In this study, a total of 28,854 potential SSRs were identified with a frequency of 4.63 kb. A total of 172 primer pairs were synthesized and preliminarily screened in 10 C. japonica accessions, and of these primer pairs, 111 were found to be polymorphic. Fifty-one polymorphic SSR markers were randomly selected to perform further analysis of the genetic relationships of 89 accessions across the genus Camellia. Cluster analysis revealed major clusters corresponding to those based on taxonomic classification and geographic origin. Furthermore, all the genotypes of C. japonica separated and consistently grouped well in the genetic structure analysis. The results of the present study provide high-quality SSR resources for molecular genetic breeding studies in camellia plants.
Collapse
|
11
|
Xie X, Jiang J, Chen M, Huang M, Jin L, Li X. De novo Transcriptome Assembly of Myllocerinus aurolineatus Voss in Tea Plants. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.631990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Myllocerinus aurolineatus Voss is a species of the insecta class in the arthropod. In this study, we first observed and identified M. aurolineatus Voss in tea plants in Guizhou, China, where it caused severe quantity and quality losses in tea plants. Knowledge on M. aurolineatus Voss genome is inadequate, especially for biological or functional research. We performed the first transcriptome sequencing by using the Illumina Hiseq™ technique on M. aurolineatus Voss. Over 55.9 million high-quality paired-end reads were generated and assembled into 69,439 unigenes using the Trinity short read software, resulting in a cluster of 1,207 bp of the N50 length. A total of 69,439 genes were predicted by BLAST to known proteins in the NCBI database and were distributed into Gene Ontology (20,190), eukaryotic complete genomes (12,488), and the Kyoto Encyclopedia of Genes and Genomes (3,170). We also identified 96,790 single-nucleotide polymorphisms and 13,121 simple sequence repeats in these unigenes. Our transcriptome data provide a useful resource for future functional studies of M. aurolineatus Voss for dispersal control in tea plants.
Collapse
|
12
|
Fang K, Xia Z, Li H, Jiang X, Qin D, Wang Q, Wang Q, Pan C, Li B, Wu H. Genome-wide association analysis identified molecular markers associated with important tea flavor-related metabolites. HORTICULTURE RESEARCH 2021; 8:42. [PMID: 33642595 PMCID: PMC7917101 DOI: 10.1038/s41438-021-00477-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 05/02/2023]
Abstract
The characteristic secondary metabolites in tea (theanine, caffeine, and catechins) are important factors contributing to unique tea flavors. However, there has been relatively little research on molecular markers related to these metabolites. Thus, we conducted a genome-wide association analysis of the levels of these tea flavor-related metabolites in three seasons. The theanine, caffeine, and catechin levels in Population 1 comprising 191 tea plant germplasms were examined, which revealed that their heritability exceeded 0.5 in the analyzed seasons, with the following rank order (highest to lowest heritabilities): (+)-catechin > (-)-gallocatechin gallate > caffeine = (-)-epicatechin > (-)-epigallocatechin-3-gallate > theanine > (-)-epigallocatechin > (-)-epicatechin-3-gallate > catechin gallate > (+)-gallocatechin. The SNPs detected by amplified-fragment SNP and methylation sequencing divided Population 1 into three groups and seven subgroups. An association analysis yielded 307 SNP markers related to theanine, caffeine, and catechins that were common to all three seasons. Some of the markers were pleiotropic. The functional annotation of 180 key genes at the SNP loci revealed that FLS, UGT, MYB, and WD40 domain-containing proteins, as well as ATP-binding cassette transporters, may be important for catechin synthesis. KEGG and GO analyses indicated that these genes are associated with metabolic pathways and secondary metabolite biosynthesis. Moreover, in Population 2 (98 tea plant germplasm resources), 30 candidate SNPs were verified, including 17 SNPs that were significantly or extremely significantly associated with specific metabolite levels. These results will provide a foundation for future research on important flavor-related metabolites and may help accelerate the breeding of new tea varieties.
Collapse
Affiliation(s)
- Kaixing Fang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, 510640, China
| | - Zhiqiang Xia
- Institute of Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570100, China
- Hainan University, Haikou, 570228, China
| | - Hongjian Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, 510640, China
| | - Xiaohui Jiang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, 510640, China
| | - Dandan Qin
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, 510640, China
| | - Qiushuang Wang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, 510640, China
| | - Qing Wang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, 510640, China
| | - Chendong Pan
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, 510640, China
| | - Bo Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, 510640, China
| | - Hualing Wu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, 510640, China.
| |
Collapse
|
13
|
Guo W, He S, Liang X, Tian C, Dou Y, Lv L. A high-density genetic linkage map for Chinese perch (Siniperca chuatsi) using 2.3K genotyping-by-sequencing SNPs. Anim Genet 2021; 52:311-320. [PMID: 33598959 DOI: 10.1111/age.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2021] [Indexed: 11/27/2022]
Abstract
Chinese perch, Siniperca chuatsi (Basilewsky), is one of the most commercially important cultured fishes in China. In the present study, a high-density genetic linkage map of Chinese perch was constructed by genotyping-by-sequencing technique with an F1 mapping panel containing 190 progenies. A total of 2328 SNPs were assigned to 24 linkage groups (LGs), agreeing with the chromosome haploid number in this species (n = 24). The sex-averaged map covered 97.9% of the Chinese perch genome, with the length of 1694.3 cM and a marker density of 0.7 cM/locus. The number of markers per LG ranged from 57 to 222, with a mean of 97. The length of LGs varied from 43.2 to 108.2 cM, with a mean size of 70.6 cM. The recombination rate of females was 1.5:1, which was higher than that of males. To better understand the distribution pattern of segregation distortion between the two sexes of Chinese perch, the skewed markers were retained and used to reconstruct the sex-specific maps. The 16 segregation distortion regions were identified on 10 LGs of the female map, while 12 segregation distortion regions on eight LGs of the male map. Among these LGs, six LGs matched between the sex-specific maps. This high-density linkage map could provide a solid basis for identifying QTL associated with economically important traits, and for implementing marker-assisted selection breeding of Chinese perch.
Collapse
Affiliation(s)
- Wenjie Guo
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shan He
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xufang Liang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Changxu Tian
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yaqi Dou
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Liyuan Lv
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Karunarathna KHT, Mewan KM, Weerasena OVDSJ, Perera SACN, Edirisinghe ENU. A functional molecular marker for detecting blister blight disease resistance in tea (Camellia sinensis L.). PLANT CELL REPORTS 2021; 40:351-359. [PMID: 33247387 DOI: 10.1007/s00299-020-02637-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/10/2020] [Indexed: 05/27/2023]
Abstract
Identification of an EST-SSR molecular marker associated with Blister blight, a common fungal disease of tea, facilitating marker-assisted selection, marking a milestone in tea molecular breeding. lister blight (BB) leaf disease of tea, caused by the fungus Exobasidium vexans, results in 25-30% crop loss annually. BB is presently controlled by Cu based fungicides, but genetic resistance is the most viable option in disease management. Tea is a naturally out-crossing, woody perennial necessitating a long time for completion of a breeding programme. Marker-assisted selection (MAS) is vital to expedite breeding programmes and also for better accuracy in gene identification. The aim of the current research was to derive marker-trait associations using an F1 population segregating for BB. The population was genotyped at 11 expressed sequence tag simple sequence repeat loci followed by detecting the alleles by fragment analysis. The genotypic and phenotypic data were subjected to single-marker analysis resulting in the identification of EST-SSR073 as a diagnostic marker amplifying three alleles of the sizes, 168, 170 and 190 bp in F1. Of them, alleles 190 and 168 bp were confirmed to concur BB resistance and susceptibility, respectively. The alleles were validated in a panel of 64 tea cultivars, resulting in the amplification of 12 alleles at EST-SSR073. The EST-SSR073 allele sequences matched with Camellia sinensis photosystem-I reaction center subunit-II. The marker EST-SSR073 can be effectively used in breeding tea against BB, recording a milestone in MAS in tea.
Collapse
Affiliation(s)
- K H T Karunarathna
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - K M Mewan
- Department of Biotechnology, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - O V D S J Weerasena
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - S A C N Perera
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - E N U Edirisinghe
- Biochemistry Division, Tea Research Institute of Sri Lanka, Talawakelle, Sri Lanka
| |
Collapse
|
15
|
An Y, Chen L, Tao L, Liu S, Wei C. QTL Mapping for Leaf Area of Tea Plants ( Camellia sinensis) Based on a High-Quality Genetic Map Constructed by Whole Genome Resequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:705285. [PMID: 34394160 PMCID: PMC8358608 DOI: 10.3389/fpls.2021.705285] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/07/2021] [Indexed: 05/08/2023]
Abstract
High-quality genetic maps play important roles in QTL mapping and molecular marker-assisted breeding. Tea leaves are not only important vegetative organs but are also the organ for harvest with important economic value. However, the key genes and genetic mechanism of regulating leaf area have not been clarified. In this study, we performed whole-genome resequencing on "Jinxuan," "Yuncha 1" and their 96 F1 hybrid offspring. From the 1.84 Tb of original sequencing data, abundant genetic variation loci were identified, including 28,144,625 SNPs and 2,780,380 indels. By integrating the markers of a previously reported genetic map, a high-density genetic map consisting of 15 linkage groups including 8,956 high-quality SNPs was constructed. The total length of the genetic map is 1,490.81 cM, which shows good collinearity with the genome. A total of 25 representative markers (potential QTLs) related to leaf area were identified, and there were genes differentially expressed in large and small leaf samples near these markers. GWAS analysis further verified the reliability of QTL mapping. Thirty-one pairs of newly developed indel markers located near these potential QTLs showed high polymorphism and had good discrimination between large and small leaf tea plant samples. Our research will provide necessary support and new insights for tea plant genetic breeding, quantitative trait mapping and yield improvement.
Collapse
Affiliation(s)
- Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Linbo Chen
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, China
| | - Lingling Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Chaoling Wei,
| |
Collapse
|
16
|
Yang Y, He R, Zheng J, Hu Z, Wu J, Leng P. Development of EST-SSR markers and association mapping with floral traits in Syringa oblata. BMC PLANT BIOLOGY 2020; 20:436. [PMID: 32957917 PMCID: PMC7507607 DOI: 10.1186/s12870-020-02652-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/15/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Lilac (Syringa oblata) is an important woody plant with high ornamental value. However, very limited genetic marker resources are currently available, and little is known about the genetic architecture of important ornamental traits for S. oblata, which is hindering its genetic studies. Therefore, it is of great significance to develop effective molecular markers and understand the genetic architecture of complex floral traits for the genetic research of S. oblata. RESULTS In this study, a total of 10,988 SSRs were obtained from 9864 unigene sequences with an average of one SSR per 8.13 kb, of which di-nucleotide repeats were the dominant type (32.86%, 3611). A set of 2042 primer pairs were validated, out of which 932 (45.7%) exhibited successful amplifications, and 248 (12.1%) were polymorphic in eight S. oblata individuals. In addition, 30 polymorphic EST-SSR markers were further used to assess the genetic diversity and the population structure of 192 cultivated S. oblata individuals. Two hundred thirty-four alleles were detected, and the PIC values ranged from 0.23 to 0.88 with an average of 0.51, indicating a high level of genetic diversity within this cultivated population. The analysis of population structure showed two major subgroups in the association population. Finally, 20 significant associations were identified involving 17 markers with nine floral traits using the mixed linear model. Moreover, marker SO104, SO695 and SO790 had significant relationship with more than one trait. CONCLUSION The results showed newly developed markers were valuable resource and provided powerful tools for genetic breeding of lilac. Beyond that, our study could serve an efficient foundation for further facilitate genetic improvement of floral traits for lilac.
Collapse
Affiliation(s)
- Yunyao Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Ruiqing He
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Jian Zheng
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China
| | - Zenghui Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China
| | - Jing Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China.
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China.
| | - Pingsheng Leng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China
| |
Collapse
|
17
|
Wang X, Feng H, Chang Y, Ma C, Wang L, Hao X, Li A, Cheng H, Wang L, Cui P, Jin J, Wang X, Wei K, Ai C, Zhao S, Wu Z, Li Y, Liu B, Wang GD, Chen L, Ruan J, Yang Y. Population sequencing enhances understanding of tea plant evolution. Nat Commun 2020; 11:4447. [PMID: 32895382 PMCID: PMC7477583 DOI: 10.1038/s41467-020-18228-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/07/2020] [Indexed: 12/21/2022] Open
Abstract
Tea is an economically important plant characterized by a large genome, high heterozygosity, and high species diversity. In this study, we assemble a 3.26-Gb high-quality chromosome-scale genome for the 'Longjing 43' cultivar of Camellia sinensis var. sinensis. Genomic resequencing of 139 tea accessions from around the world is used to investigate the evolution and phylogenetic relationships of tea accessions. We find that hybridization has increased the heterozygosity and wide-ranging gene flow among tea populations with the spread of tea cultivation. Population genetic and transcriptomic analyses reveal that during domestication, selection for disease resistance and flavor in C. sinensis var. sinensis populations has been stronger than that in C. sinensis var. assamica populations. This study provides resources for marker-assisted breeding of tea and sets the foundation for further research on tea genetics and evolution.
Collapse
Affiliation(s)
- Xinchao Wang
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China
| | - Hu Feng
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Yuxiao Chang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Chunlei Ma
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China
| | - Xinyuan Hao
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China
| | - A'lun Li
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China
| | - Lu Wang
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China
| | - Peng Cui
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Jiqiang Jin
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China
| | - Xiaobo Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Kang Wei
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China
| | - Cheng Ai
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Sheng Zhao
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Zhichao Wu
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Youyong Li
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, 650231, Menghai, China
| | - Benying Liu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, 650231, Menghai, China
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China.
| | - Liang Chen
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China.
| | - Jue Ruan
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
| | - Yajun Yang
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China.
| |
Collapse
|
18
|
Tan LQ, Yang CJ, Zhou B, Wang LB, Zou Y, Chen W, Xia T, Tang Q. Inheritance and quantitative trait loci analyses of the anthocyanins and catechins of Camellia sinensis cultivar 'Ziyan' with dark-purple leaves. PHYSIOLOGIA PLANTARUM 2020; 170:109-119. [PMID: 32333383 DOI: 10.1111/ppl.13114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Owing to the potential health benefits, anthocyanin-rich teas (Camellia sinensis) have attracted interest over the past decade. Previously, we developed the cultivar 'Ziyan,' which has dark-purple leaves because of the accumulation of a high amount of anthocyanins. In this study, we performed a genetic analysis of this anthocyanin-rich tea cultivar and 176 of its naturally pollinated offspring. For two consecutive years, we quantified the anthocyanins and catechins of 'Ziyan' and the offspring population. While >60% of the offspring accumulated less than half of the amount of anthocyanins of 'Ziyan,' 17 (2018) and 15 (2019) individuals exceeded 'Ziyan' in anthocyanin content. A negative correlation between anthocyanin and total catechin content (r = -0.59, P < 0.001) was observed. The population was genotyped with 131 SSR markers spanning all linkage groups of the C. sinensis genome. Kruskal-Wallis tests identified 10 markers significantly associated with anthocyanins, catechins and their ratios in both years. Quantitative trait locus (QTL) analyses using the interval mapping method detected 13 QTLs, suggesting the dark-purple trait of 'Ziyan' is because of the pyramiding of anthocyanin-promoting alleles on at least five linkage groups. Two genetic loci reversely related to anthocyanin and total catechin contents were identified. This study provides valuable information for genetic improvement of purple tea cultivars and for fine-mapping related genes.
Collapse
Affiliation(s)
- Li-Qiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chun-Jing Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liu-Bin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yao Zou
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
19
|
Dubey H, Rawal HC, Rohilla M, Lama U, Kumar PM, Bandyopadhyay T, Gogoi M, Singh NK, Mondal TK. TeaMiD: a comprehensive database of simple sequence repeat markers of tea. Database (Oxford) 2020; 2020:baaa013. [PMID: 32159215 PMCID: PMC7065459 DOI: 10.1093/database/baaa013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/05/2020] [Accepted: 01/25/2020] [Indexed: 12/05/2022]
Abstract
Tea is a highly cross-pollinated, woody, perennial tree. High heterozygosity combined with a long gestational period makes conventional breeding a cumbersome process. Therefore, marker-assisted breeding is a better alternative approach when compared with conventional breeding. Considering the large genome size of tea (~3 Gb), information about simple sequence repeat (SSR) is scanty. Thus, we have taken advantage of the recently published tea genomes to identify large numbers of SSR markers in the tea. Besides the genomic sequences, we identified SSRs from the other publicly available sequences such as RNA-seq, GSS, ESTs and organelle genomes (chloroplasts and mitochondrial) and also searched published literature to catalog validated set of tea SSR markers. The complete exercise yielded a total of 935 547 SSRs. Out of the total, 82 SSRs were selected for validation among a diverse set of tea genotypes. Six primers (each with four to six alleles, an average of five alleles per locus) out of the total 27 polymorphic primers were used for a diversity analysis in 36 tea genotypes with mean polymorphic information content of 0.61-0.76. Finally, using all the information generated in this study, we have developed a user-friendly database (TeaMiD; http://indianteagenome.in:8080/teamid/) that hosts SSR from all the six resources including three nuclear genomes of tea and transcriptome sequences of 17 Camellia wild species. Database URL: http://indianteagenome.in:8080/teamid/.
Collapse
Affiliation(s)
- Himanshu Dubey
- Indian Council Agricultural Research-National Institute for Plant Biotechnology, Lal Bahadur Sashtri Centre, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Hukam C Rawal
- Indian Council Agricultural Research-National Institute for Plant Biotechnology, Lal Bahadur Sashtri Centre, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Megha Rohilla
- Indian Council Agricultural Research-National Institute for Plant Biotechnology, Lal Bahadur Sashtri Centre, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Urvashi Lama
- Darjeeling Tea Research and Development Centre, Tea Board, Ministry of Commerce, B.T.M. Sarani (Brabourne Road), Kolkata, West Bengal 700001, India
| | - P Mohan Kumar
- Darjeeling Tea Research and Development Centre, Tea Board, Ministry of Commerce, B.T.M. Sarani (Brabourne Road), Kolkata, West Bengal 700001, India
| | - Tanoy Bandyopadhyay
- Department of Biotechnology, Tocklai Experimental Station, Tea Research Association, Jorhat, Assam, India
| | - Madhurjya Gogoi
- Department of Biotechnology, Tocklai Experimental Station, Tea Research Association, Jorhat, Assam, India
| | - Nagendra Kumar Singh
- Indian Council Agricultural Research-National Institute for Plant Biotechnology, Lal Bahadur Sashtri Centre, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Tapan Kumar Mondal
- Indian Council Agricultural Research-National Institute for Plant Biotechnology, Lal Bahadur Sashtri Centre, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| |
Collapse
|
20
|
Xia EH, Tong W, Wu Q, Wei S, Zhao J, Zhang ZZ, Wei CL, Wan XC. Tea plant genomics: achievements, challenges and perspectives. HORTICULTURE RESEARCH 2020; 7:7. [PMID: 31908810 PMCID: PMC6938499 DOI: 10.1038/s41438-019-0225-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/17/2019] [Accepted: 11/03/2019] [Indexed: 05/18/2023]
Abstract
Tea is among the world's most widely consumed non-alcoholic beverages and possesses enormous economic, health, and cultural values. It is produced from the cured leaves of tea plants, which are important evergreen crops globally cultivated in over 50 countries. Along with recent innovations and advances in biotechnologies, great progress in tea plant genomics and genetics has been achieved, which has facilitated our understanding of the molecular mechanisms of tea quality and the evolution of the tea plant genome. In this review, we briefly summarize the achievements of the past two decades, which primarily include diverse genome and transcriptome sequencing projects, gene discovery and regulation studies, investigation of the epigenetics and noncoding RNAs, origin and domestication, phylogenetics and germplasm utilization of tea plant as well as newly developed tools/platforms. We also present perspectives and possible challenges for future functional genomic studies that will contribute to the acceleration of breeding programs in tea plants.
Collapse
Affiliation(s)
- En-Hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Qiong Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Zheng-Zhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Chao-Ling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Xiao-Chun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
21
|
Zheng C, Ma JQ, Chen JD, Ma CL, Chen W, Yao MZ, Chen L. Gene Coexpression Networks Reveal Key Drivers of Flavonoid Variation in Eleven Tea Cultivars ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9967-9978. [PMID: 31403784 DOI: 10.1021/acs.jafc.9b04422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Following the recent completion of the draft genome sequence of the tea plant, high-throughput decoding of gene function, especially for those involved in complex secondary metabolic pathways, has become a major challenge. Here, we profiled the metabolome and transcriptome of 11 tea cultivars, and then illustrated a weighted gene coexpression network analysis (WGCNA)-based system biological strategy to interpret metabolomic flux, predict gene functions, and mine key regulators involved in the flavonoid biosynthesis pathway. We constructed a multilayered regulatory network, which integrated the gene coexpression relationship with the microRNA target and promoter cis-regulatory element information. This allowed us to reveal new uncharacterized TFs (e.g., MADSs, WRKYs, and SBPs) and microRNAs (including 17 conserved and 15 novel microRNAs) that are potentially implicated in different steps of the catechin biosynthesis. Furthermore, we applied metabolic-signature-based association method to capture additional key regulators involved in catechin pathway. This provides important clues for the functional characterization of five SCPL1A acyltransferase family members, which might be implicated in the production balance of anthocyanins, galloylated catechins, and proanthocyanins. Application of an "omics"-based system biology strategy should facilitate germplasm utilization and provide valuable resources for tea quality improvement.
Collapse
Affiliation(s)
- Chao Zheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou 310008 , China
| | - Jian-Qiang Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou 310008 , China
| | - Jie-Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou 310008 , China
| | - Chun-Lei Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou 310008 , China
| | - Wei Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou 310008 , China
| | - Ming-Zhe Yao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou 310008 , China
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou 310008 , China
| |
Collapse
|
22
|
Ferreira RCU, Lara LADC, Chiari L, Barrios SCL, do Valle CB, Valério JR, Torres FZV, Garcia AAF, de Souza AP. Genetic Mapping With Allele Dosage Information in Tetraploid Urochloa decumbens (Stapf) R. D. Webster Reveals Insights Into Spittlebug ( Notozulia entreriana Berg) Resistance. FRONTIERS IN PLANT SCIENCE 2019; 10:92. [PMID: 30873183 PMCID: PMC6401981 DOI: 10.3389/fpls.2019.00092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/21/2019] [Indexed: 05/08/2023]
Abstract
Urochloa decumbens (Stapf) R. D. Webster is one of the most important African forage grasses in Brazilian beef production. Currently available genetic-genomic resources for this species are restricted mainly due to polyploidy and apomixis. Therefore, crucial genomic-molecular studies such as the construction of genetic maps and the mapping of quantitative trait loci (QTLs) are very challenging and consequently affect the advancement of molecular breeding. The objectives of this work were to (i) construct an integrated U. decumbens genetic map for a full-sibling progeny using GBS-based markers with allele dosage information, (ii) detect QTLs for spittlebug (Notozulia entreriana) resistance, and (iii) seek putative candidate genes involved in defense against biotic stresses. We used the Setaria viridis genome a reference to align GBS reads and selected 4,240 high-quality SNP markers with allele dosage information. Of these markers, 1,000 were distributed throughout nine homologous groups with a cumulative map length of 1,335.09 cM and an average marker density of 1.33 cM. We detected QTLs for resistance to spittlebug, an important pasture insect pest, that explained between 4.66 and 6.24% of the phenotypic variation. These QTLs are in regions containing putative candidate genes related to defense against biotic stresses. Because this is the first genetic map with SNP autotetraploid dosage data and QTL detection in U. decumbens, it will be useful for future evolutionary studies, genome assembly, and other QTL analyses in Urochloa spp. Moreover, the results might facilitate the isolation of spittlebug-related candidate genes and help clarify the mechanism of spittlebug resistance. These approaches will improve selection efficiency and accuracy in U. decumbens molecular breeding and shorten the breeding cycle.
Collapse
Affiliation(s)
| | | | - Lucimara Chiari
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | | | | | - José Raul Valério
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | | | | | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, Brazil
- *Correspondence: Anete Pereira de Souza,
| |
Collapse
|
23
|
Xu LY, Wang LY, Wei K, Tan LQ, Su JJ, Cheng H. High-density SNP linkage map construction and QTL mapping for flavonoid-related traits in a tea plant (Camellia sinensis) using 2b-RAD sequencing. BMC Genomics 2018; 19:955. [PMID: 30577813 PMCID: PMC6304016 DOI: 10.1186/s12864-018-5291-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 11/20/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Flavonoids are important components that confer upon tea plants a unique flavour and health functions. However, the traditional breeding method for selecting a cultivar with a high or unique flavonoid content is time consuming and labour intensive. High-density genetic map construction associated with quantitative trait locus (QTL) mapping provides an effective way to facilitate trait improvement in plant breeding. In this study, an F1 population (LJ43×BHZ) was genotyped using 2b-restriction site-associated DNA (2b-RAD) sequencing to obtain massive single nucleotide polymorphism (SNP) markers to construct a high-density genetic map for a tea plant. Furthermore, QTLs related to flavonoids were identified using our new genetic map. RESULTS A total of 13,446 polymorphic SNP markers were developed using 2b-RAD sequencing, and 4,463 of these markers were available for constructing the genetic linkage map. A 1,678.52-cM high-density map at an average interval of 0.40 cM with 4,217 markers, including 427 frameset simple sequence repeats (SSRs) and 3,800 novel SNPs, mapped into 15 linkage groups was successfully constructed. After QTL analysis, a total of 27 QTLs related to flavonoids or caffeine content (CAF) were mapped to 8 different linkage groups, LG01, LG03, LG06, LG08, LG10, LG11, LG12, and LG13, with an LOD from 3.14 to 39.54, constituting 7.5% to 42.8% of the phenotypic variation. CONCLUSIONS To our knowledge, the highest density genetic map ever reported was constructed since the largest mapping population of tea plants was adopted in present study. Moreover, novel QTLs related to flavonoids and CAF were identified based on the new high-density genetic map. In addition, two markers were located in candidate genes that may be involved in flavonoid metabolism. The present study provides valuable information for gene discovery, marker-assisted selection breeding and map-based cloning for functional genes that are related to flavonoid content in tea plants.
Collapse
Affiliation(s)
- Li-Yi Xu
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Li-Yuan Wang
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Kang Wei
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Li-Qiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jing-Jing Su
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Hao Cheng
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| |
Collapse
|
24
|
Ma JQ, Jin JQ, Yao MZ, Ma CL, Xu YX, Hao WJ, Chen L. Quantitative Trait Loci Mapping for Theobromine and Caffeine Contents in Tea Plant ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13321-13327. [PMID: 30486648 DOI: 10.1021/acs.jafc.8b05355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Understanding the genetic basis of theobromine and caffeine accumulation in the tea plant is important due to their contribution to tea flavor. Quantitative trait loci (QTL) analyses were carried out to identify genetic variants associated with theobromine and caffeine contents and ratio using a pseudo-testcross population derived from an intervarietal cross between two varieties of Camellia sinensis. A total of 10 QTL controlling caffeine content (CAF), theobromine content (TBR), sum of caffeine and theobromine (SCT), and caffeine-to-theobromine ratio (CTR) were identified over four measurement years. The major QTL controlling CAF, qCAF1, was mapped onto LG01 and validated across years, explaining an average of 20.1% of the phenotypic variance. The other QTL were detected in 1 or 2 years, and of them there were four, two, and three for TBR, SCT, and CTR, respectively. The present results provide valuable information for further fine mapping and cloning functional genes and for genetic improvement in tea plant.
Collapse
Affiliation(s)
- Jian-Qiang Ma
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture , Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS) , 9 South Meiling Road , Hangzhou 310008 , China
| | - Ji-Qiang Jin
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture , Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS) , 9 South Meiling Road , Hangzhou 310008 , China
| | - Ming-Zhe Yao
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture , Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS) , 9 South Meiling Road , Hangzhou 310008 , China
| | - Chun-Lei Ma
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture , Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS) , 9 South Meiling Road , Hangzhou 310008 , China
| | - Yan-Xia Xu
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture , Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS) , 9 South Meiling Road , Hangzhou 310008 , China
| | - Wan-Jun Hao
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture , Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS) , 9 South Meiling Road , Hangzhou 310008 , China
| | - Liang Chen
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture , Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS) , 9 South Meiling Road , Hangzhou 310008 , China
| |
Collapse
|
25
|
Unraveling the Roles of Regulatory Genes during Domestication of Cultivated Camellia: Evidence and Insights from Comparative and Evolutionary Genomics. Genes (Basel) 2018; 9:genes9100488. [PMID: 30308953 PMCID: PMC6211025 DOI: 10.3390/genes9100488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 01/01/2023] Open
Abstract
With the increasing power of DNA sequencing, the genomics-based approach is becoming a promising resolution to dissect the molecular mechanism of domestication of complex traits in trees. Genus Camellia possesses rich resources with a substantial value for producing beverage, ornaments, edible oil and more. Currently, a vast number of genetic and genomic research studies in Camellia plants have emerged and provided an unprecedented opportunity to expedite the molecular breeding program. In this paper, we summarize the recent advances of gene expression and genomic resources in Camellia species and focus on identifying genes related to key economic traits such as flower and fruit development and stress tolerances. We investigate the genetic alterations and genomic impacts under different selection programs in closely related species. We discuss future directions of integrating large-scale population and quantitative genetics and multiple omics to identify key candidates to accelerate the breeding process. We propose that future work of exploiting the genomic data can provide insights related to the targets of domestication during breeding and the evolution of natural trait adaptations in genus Camellia.
Collapse
|
26
|
Next generation crop improvement program: Progress and prospect in tea ( Camellia sinensis (L.) O. Kuntze). ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.aasci.2018.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Wang ZH, Zhao ZX, Hong N, Ni D, Cai L, Xu WX, Xiao YN. Characterization of Causal Agents of a Novel Disease Inducing Brown-Black Spots on Tender Tea Leaves in China. PLANT DISEASE 2017; 101:1802-1811. [PMID: 30676920 DOI: 10.1094/pdis-04-17-0495-re] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel disease characterized by small brown-black spots (1 to 2 mm in diameter) on tender tea leaves (Camellia sinensis) has been observed in many regions of Hubei Province, China, which severely affects the yield and quality of tea. Tea leaf samples with typical symptoms were collected from three major tea-cultivation regions of Hubei, and were subjected to pathogen isolation for etiological analysis. As a result, 34 Pestalotiopsis isolates were obtained from 20 samples, and they were identified as Pestalotiopsis theae (14 isolates), P. camelliae (12), and P. clavispora (8), determined by morphologies and phylogenetic analysis based on internal transcribed spacer, and partial β-tubulin and translation elongation factor 1-alpha genes. Pathogenicity tests on detached tea leaves showed that no matter what mycelial discs or conidium suspensions were used, inoculation of the Pestalotiopsis fungi could result in small brown-black spots (1 to 2 mm in diameter) on wounded leaves, similar to those observed in the field in the sizes and colors. It also revealed that only P. theae had pathogenicity on unwounded tea leaves, and P. theae and P. clavispora showed significantly higher virulence than P. camelliae. Inoculation test with conidium suspension on intact tea leaves in the field further confirmed that P. theae as the pathogen of brown-black spots. Reisolation of the pathogens from diseased leaves confirmed that the symptom was caused by the inoculation of Pestalotiopsis fungi. The P. theae isolates responsible for brown-black spots were also compared with those for tea gray blight disease in growth rate, pathogenicity, and molecular characteristics in parallel. To our knowledge, this is the first report that the Pestalotiopsis fungi cause brown-black spot disease on tender tea leaves. The results provide important implications for the prevention and management of this economically important disease.
Collapse
Affiliation(s)
- Z H Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070, P. R. China; Key Laboratory of Plant Pathology of Hubei Province, Wuhan, Hubei 430070, P. R. China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Z X Zhao
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070, P. R. China; Key Laboratory of Plant Pathology of Hubei Province, Wuhan, Hubei 430070, P. R. China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - N Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070, P. R. China; Key Laboratory of Plant Pathology of Hubei Province, Wuhan, Hubei 430070, P. R. China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Dejiang Ni
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - L Cai
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070, P. R. China; Key Laboratory of Plant Pathology of Hubei Province, Wuhan, Hubei 430070, P. R. China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - W X Xu
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070, P. R. China; Key Laboratory of Plant Pathology of Hubei Province, Wuhan, Hubei 430070, P. R. China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Y N Xiao
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070, P. R. China; Key Laboratory of Plant Pathology of Hubei Province, Wuhan, Hubei 430070, P. R. China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| |
Collapse
|
28
|
Development of an SSR-based genetic map in sesame and identification of quantitative trait loci associated with charcoal rot resistance. Sci Rep 2017; 7:8349. [PMID: 28827730 PMCID: PMC5566338 DOI: 10.1038/s41598-017-08858-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
Sesame is prized for its oil. Genetic improvement of sesame can be enhanced through marker-assisted breeding. However, few simple sequence repeat (SSR) markers and SSR-based genetic maps were available in sesame. In this study, 7,357 SSR markers were developed from the sesame genome and transcriptomes, and a genetic map was constructed by generating 424 novel polymorphic markers and using a cross population with 548 recombinant inbred lines (RIL). The genetic map had 13 linkage groups, equalling the number of sesame chromosomes. The linkage groups ranged in size from 113.6 to 179.9 centimorgans (cM), with a mean value of 143.8 cM over a total length of 1869.8 cM. Fourteen quantitative trait loci (QTL) for sesame charcoal rot disease resistance were detected, with contribution rates of 3–14.16% in four field environments; ~60% of the QTL were located within 5 cM at 95% confidence interval. The QTL with the highest phenotype contribution rate (qCRR12.2) and those detected in different environments (qCRR8.2 and qCRR8.3) were used to predict candidate disease response genes. The new SSR-based genetic map and 14 novel QTLs for charcoal rot disease resistance will facilitate the mapping of agronomic traits and marker-assisted selection breeding in sesame.
Collapse
|
29
|
Jin JQ, Ma JQ, Yao MZ, Ma CL, Chen L. Functional natural allelic variants of flavonoid 3',5'-hydroxylase gene governing catechin traits in tea plant and its relatives. PLANTA 2017; 245:523-538. [PMID: 27896431 DOI: 10.1007/s00425-016-2620-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/17/2016] [Indexed: 05/21/2023]
Abstract
Functional allelic variants of the flavonoid 3',5'-hydroxylase (F3'5'H) gene provides new information of F3'5'H function of tea plant and its relatives. This insight may serve as the foundation upon which to advance molecular breeding in the tea plant. Catechins are the active components of tea that determine its quality and health attributes. This study established the first integrated genomic strategy for deciphering the genetic basis of catechin traits of tea plant. With the RNA-sequencing analysis of bulked segregants representing the tails of a F1 population segregated for total catechin content, we identified a flavonoid 3',5'-hydroxylase (F3'5'H) gene. F3'5'H had one copy in the genomic DNA of tea plant. Among 202 tea accessions, we identified 120 single nucleotide polymorphisms (SNPs) at F3'5'H locus. Seventeen significant marker-trait associations were identified by association mapping in multiple environments, which were involved in 10 SNP markers, and the traits including the ratio of di/tri-hydroxylated catechins and catechin contents. The associated individual and combination of SNPs explained 4.5-25.2 and 53.0-63.0% phenotypic variations, respectively. In the F1 population (validation population), the catechin trait variation percentages explained by F3'5'H diplotype were 6.9-74.3%. The genotype effects of ten functional SNPs in the F1 population were all consistent with the association population. Furthermore, the function of SNP-711/-655 within F3'5'H was validated by gene expression analysis. Altogether, our work indicated functional SNP allelic variants within F3'5'H governing the ratio of di/tri-hydroxylated catechins and catechin contents. The strong catechin-associated SNPs identified in this study can be used for future marker-assisted selection to improve tea quality.
Collapse
Affiliation(s)
- Ji-Qiang Jin
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
| | - Jian-Qiang Ma
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
| | - Ming-Zhe Yao
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
| | - Chun-Lei Ma
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
| | - Liang Chen
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China.
| |
Collapse
|
30
|
Wang RJ, Gao XF, Kong XR, Yang J. An efficient identification strategy of clonal tea cultivars using long-core motif SSR markers. SPRINGERPLUS 2016; 5:1152. [PMID: 27504250 PMCID: PMC4958088 DOI: 10.1186/s40064-016-2835-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/14/2016] [Indexed: 02/02/2023]
Abstract
Microsatellites, or simple sequence repeats (SSRs), especially those with long-core motifs (tri-, tetra-, penta-, and hexa-nucleotide) represent an excellent tool for DNA fingerprinting. SSRs with long-core motifs are preferred since neighbor alleles are more easily separated and identified from each other, which render the interpretation of electropherograms and the true alleles more reliable. In the present work, with the purpose of characterizing a set of core SSR markers with long-core motifs for well fingerprinting clonal cultivars of tea (Camellia sinensis), we analyzed 66 elite clonal tea cultivars in China with 33 initially-chosen long-core motif SSR markers covering all the 15 linkage groups of tea plant genome. A set of 6 SSR markers were conclusively selected as core SSR markers after further selection. The polymorphic information content (PIC) of the core SSR markers was >0.5, with ≤5 alleles in each marker containing 10 or fewer genotypes. Phylogenetic analysis revealed that the core SSR markers were not strongly correlated with the trait 'cultivar processing-property'. The combined probability of identity (PID) between two random cultivars for the whole set of 6 SSR markers was estimated to be 2.22 × 10(-5), which was quite low, confirmed the usefulness of the proposed SSR markers for fingerprinting analyses in Camellia sinensis. Moreover, for the sake of quickly discriminating the clonal tea cultivars, a cultivar identification diagram (CID) was subsequently established using these core markers, which fully reflected the identification process and provided the immediate information about which SSR markers were needed to identify a cultivar chosen among the tested ones. The results suggested that long-core motif SSR markers used in the investigation contributed to the accurate and efficient identification of the clonal tea cultivars and enabled the protection of intellectual property.
Collapse
Affiliation(s)
- Rang Jian Wang
- Institute of Tea, Fu Jian Academy of Agricultural Sciences, 1 Hu Tou Yang Road, She Kou, Fu An, 355015 Fu Jian China ; Fu Jian Branch, National Center for Tea Improvement, 1 Hu Tou Yang Road, She Kou, Fu An, 355015 Fu Jian China
| | - Xiang Feng Gao
- Institute of Tea, Fu Jian Academy of Agricultural Sciences, 1 Hu Tou Yang Road, She Kou, Fu An, 355015 Fu Jian China ; Fu Jian Branch, National Center for Tea Improvement, 1 Hu Tou Yang Road, She Kou, Fu An, 355015 Fu Jian China
| | - Xiang Rui Kong
- Institute of Tea, Fu Jian Academy of Agricultural Sciences, 1 Hu Tou Yang Road, She Kou, Fu An, 355015 Fu Jian China ; Fu Jian Branch, National Center for Tea Improvement, 1 Hu Tou Yang Road, She Kou, Fu An, 355015 Fu Jian China
| | - Jun Yang
- Institute of Tea, Fu Jian Academy of Agricultural Sciences, 1 Hu Tou Yang Road, She Kou, Fu An, 355015 Fu Jian China ; Fu Jian Branch, National Center for Tea Improvement, 1 Hu Tou Yang Road, She Kou, Fu An, 355015 Fu Jian China
| |
Collapse
|
31
|
Kang SW, Patnaik BB, Hwang HJ, Park SY, Chung JM, Song DK, Patnaik HH, Lee JB, Kim C, Kim S, Park HS, Han YS, Lee JS, Lee YS. Transcriptome sequencing and de novo characterization of Korean endemic land snail, Koreanohadra kurodana for functional transcripts and SSR markers. Mol Genet Genomics 2016; 291:1999-2014. [PMID: 27507702 DOI: 10.1007/s00438-016-1233-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/25/2016] [Indexed: 02/03/2023]
Abstract
The Korean endemic land snail Koreanohadra kurodana (Gastropoda: Bradybaenidae) found in humid areas of broadleaf forests and shrubs have been considered vulnerable as the number of individuals are declining in recent years. The species is poorly characterized at the genomic level that limits the understanding of functions at the molecular and genetics level. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive transcript dataset of visceral mass tissue of K. kurodana by the Illumina paired-end sequencing technology. Over 234 million quality reads were assembled to a total of 315,924 contigs and 191,071 unigenes, with an average and N50 length of 585.6 and 715 bp and 678 and 927 bp, respectively. Overall, 36.32 % of the unigenes found matches to known protein/nucleotide sequences in the public databases. The direction of the unigenes to functional categories was determined using COG, GO, KEGG, and InterProScan protein domain search. The GO analysis search resulted in 22,967 unigenes (12.02 %) being categorized into 40 functional groups. The KEGG annotation revealed that metabolism pathway genes were enriched. The most prominent protein motifs include the zinc finger, ribonuclease H, reverse transcriptase, and ankyrin repeat domains. The simple sequence repeats (SSRs) identified from >1 kb length of unigenes show a dominancy of dinucleotide repeat motifs followed with tri- and tetranucleotide motifs. A number of unigenes were putatively assessed to belong to adaptation and defense mechanisms including heat shock proteins 70, Toll-like receptor 4, AMP-activated protein kinase, aquaporin-2, etc. Our data provide a rich source for the identification and functional characterization of new genes and candidate polymorphic SSR markers in K. kurodana. The availability of transcriptome information ( http://bioinfo.sch.ac.kr/submission/ ) would promote the utilization of the resources for phylogenetics study and genetic diversity assessment.
Collapse
Affiliation(s)
- Se Won Kang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea
| | - Bharat Bhusan Patnaik
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea.,Trident School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Hee-Ju Hwang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea
| | - So Young Park
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea
| | - Jong Min Chung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea
| | - Dae Kwon Song
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea
| | - Hongray Howrelia Patnaik
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea
| | - Jae Bong Lee
- Korea Zoonosis Research Institute (KOZRI), Chonbuk National University, 820-120 Hana-ro, Iksan, Jeollabuk-do, 54528, Korea
| | - Changmu Kim
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Korea
| | - Soonok Kim
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD., 621-6 Banseok-dong, Yuseong-gu, Daejeon, 34069, Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
| | - Jun Sang Lee
- Institute of Environmental Research, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 243341, Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea.
| |
Collapse
|
32
|
Mukhopadhyay M, Mondal TK, Chand PK. Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review. PLANT CELL REPORTS 2016; 35:255-87. [PMID: 26563347 DOI: 10.1007/s00299-015-1884-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 05/28/2023]
Abstract
This article presents a comprehensive review on the success and limitations of biotechnological approaches aimed at genetic improvement of tea with a purpose to explore possibilities to address challenging areas. Tea is a woody perennial tree with a life span of more than 100 years. Conventional breeding of tea is slow and limited primarily to selection which leads to narrowing down of its genetic base. Harnessing the benefits of wild relatives has been negligible due to low cross-compatibility, genetic drag and undesirable alleles for low yield. Additionally, being a recalcitrant species, in vitro propagation of tea is constrained too. Nevertheless, maneuvering with tissue/cell culture techniques, a considerable success has been achieved in the area of micropropagation, somatic embryogenesis as well as genetic transformation. Besides, use of molecular markers, "expressomics" (transcriptomics, proteomics, metabolomics), map-based cloning towards construction of physical maps, generation of expressed sequenced tags (ESTs) have facilitated the identification of QTLs and discovery of genes associated with abiotic or biotic stress tolerance and agronomic traits. Furthermore, the complete genome (or at least gene space) sequence of tea is expected to be accessible in the near future which will strengthen combinational approaches for improvement of tea. This review presents a comprehensive account of the success and limitations of the biotechnological tools and techniques hitherto applied to tea and its wild relatives. Expectedly, this will form a basis for making further advances aimed at genetic improvement of tea in particular and of economically important woody perennials in general.
Collapse
Affiliation(s)
- Mainaak Mukhopadhyay
- Department of Botany, University of Kalyani, Kalyani, 741235, Nadia, West Bengal, India.
| | - Tapan K Mondal
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012, India.
| | - Pradeep K Chand
- Plant Cell and Tissue Culture Facility, Post-Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India.
| |
Collapse
|
33
|
Large-Scale SNP Discovery and Genotyping for Constructing a High-Density Genetic Map of Tea Plant Using Specific-Locus Amplified Fragment Sequencing (SLAF-seq). PLoS One 2015; 10:e0128798. [PMID: 26035838 PMCID: PMC4452719 DOI: 10.1371/journal.pone.0128798] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/30/2015] [Indexed: 11/19/2022] Open
Abstract
Genetic maps are important tools in plant genomics and breeding. The present study reports the large-scale discovery of single nucleotide polymorphisms (SNPs) for genetic map construction in tea plant. We developed a total of 6,042 valid SNP markers using specific-locus amplified fragment sequencing (SLAF-seq), and subsequently mapped them into the previous framework map. The final map contained 6,448 molecular markers, distributing on fifteen linkage groups corresponding to the number of tea plant chromosomes. The total map length was 3,965 cM, with an average inter-locus distance of 1.0 cM. This map is the first SNP-based reference map of tea plant, as well as the most saturated one developed to date. The SNP markers and map resources generated in this study provide a wealth of genetic information that can serve as a foundation for downstream genetic analyses, such as the fine mapping of quantitative trait loci (QTL), map-based cloning, marker-assisted selection, and anchoring of scaffolds to facilitate the process of whole genome sequencing projects for tea plant.
Collapse
|