1
|
Chiba T, Oda A, Zhang Y, Pfister K, Bons J, Bharathi SS, Kinoshita A, Zhang BB, Richert A, Schilling B, Goetzman E, Sims-Lucas S. Loss of long-chain acyl-CoA dehydrogenase protects against acute kidney injury. JCI Insight 2025; 10:e186073. [PMID: 39932791 PMCID: PMC11949023 DOI: 10.1172/jci.insight.186073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
The renal tubular epithelial cells (RTECs) are particularly vulnerable to acute kidney injury (AKI). While fatty acids are the preferred energy source for RTECs via fatty acid oxidation (FAO), FAO-mediated H2O2 production in mitochondria has been shown to be a major source of oxidative stress. We have previously shown that a mitochondrial flavoprotein, long-chain acyl-CoA dehydrogenase (LCAD), which catalyzes a key step in mitochondrial FAO, directly produces H2O2 in vitro. Furthermore, we showed that renal LCAD becomes hyposuccinylated during AKI. Here, we demonstrated that succinylation of recombinant LCAD protein suppresses the production of H2O2. Following 2 distinct models of AKI, cisplatin treatment or renal ischemia/reperfusion injury (IRI), LCAD-/- mice demonstrated renoprotection. Specifically, LCAD-/- kidneys displayed mitigated renal tubular injury, decreased oxidative stress, preserved mitochondrial function, enhanced peroxisomal FAO, and decreased ferroptotic cell death. LCAD deficiency confers protection against 2 distinct models of AKI. This suggests a therapeutically attractive mechanism whereby preserved mitochondrial respiration as well as enhanced peroxisomal FAO by loss of LCAD mediates renoprotection against AKI.
Collapse
Affiliation(s)
- Takuto Chiba
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Akira Oda
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuxun Zhang
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine Pfister
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, California, USA
| | - Sivakama S. Bharathi
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ayako Kinoshita
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bob B. Zhang
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam Richert
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Eric Goetzman
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sunder Sims-Lucas
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Chiba T, Oda A, Zhang Y, Bons J, Bharathi SS, Pfister KE, Zhang BB, Richert AC, Schilling B, Goetzman ES, Sims-Lucas S. Loss of long-chain acyl-CoA dehydrogenase protects against acute kidney injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619640. [PMID: 39484612 PMCID: PMC11526992 DOI: 10.1101/2024.10.22.619640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Proximal tubular epithelial cells (PTECs) are particularly vulnerable to acute kidney injury (AKI). While fatty acids are the preferred energy source for PTECs via fatty acid oxidation (FAO), FAO-mediated H 2 O 2 production in mitochondria has been shown to be a major source of oxidative stress. We have previously shown that a mitochondrial flavoprotein, long-chain acyl-CoA dehydrogenase (LCAD), which catalyzes a key step in mitochondrial FAO, directly produces H 2 O 2 in vitro . Further we have established that loss of a lysine deacylase, Sirtuin 5 ( Sirt5 -/- ), induces hypersuccinylation and inhibition of mitochondrial FAO genes to stimulate peroxisomal FAO and to protect against AKI. However, the role of LCAD has yet to be determined. Mass spectrometry data acquisition revealed that LCAD is hypersuccinylated in Sirt5 -/- kidneys after AKI. Following two distinct models of AKI, cisplatin treatment or renal ischemia/reperfusion (IRI), LCAD knockout mice ( LCAD -/- ) demonstrated renoprotection against AKI. Specifically, LCAD -/- kidneys displayed mitigated renal tubular injury, decreased oxidative stress, preserved mitochondrial function, enhanced peroxisomal FAO, and decreased ferroptotic cell death. LCAD deficiency confers protection against two distinct models of AKI. This suggests a therapeutically attractive mechanism whereby preserved mitochondrial respiration as well as enhanced peroxisomal FAO by loss of LCAD mediates renoprotection against AKI.
Collapse
|
3
|
Airik M, Phua YL, Huynh AB, McCourt BT, Rush BM, Tan RJ, Vockley J, Murray SL, Dorman A, Conlon PJ, Airik R. Persistent DNA damage underlies tubular cell polyploidization and progression to chronic kidney disease in kidneys deficient in the DNA repair protein FAN1. Kidney Int 2022; 102:1042-1056. [PMID: 35931300 PMCID: PMC9588672 DOI: 10.1016/j.kint.2022.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022]
Abstract
Defective DNA repair pathways contribute to the development of chronic kidney disease (CKD) in humans. However, the molecular mechanisms underlying DNA damage-induced CKD pathogenesis are not well understood. Here, we investigated the role of tubular cell DNA damage in the pathogenesis of CKD using mice in which the DNA repair protein Fan1 was knocked out. The phenotype of these mice is orthologous to the human DNA damage syndrome, karyomegalic interstitial nephritis (KIN). Inactivation of Fan1 in kidney proximal tubule cells sensitized the kidneys to genotoxic and obstructive injury characterized by replication stress and persistent DNA damage response activity. Accumulation of DNA damage in Fan1 tubular cells induced epithelial dedifferentiation and tubular injury. Characteristic to KIN, cells with chronic DNA damage failed to complete mitosis and underwent polyploidization. In vitro and in vivo studies showed that polyploidization was caused by the overexpression of DNA replication factors CDT1 and CDC6 in FAN1 deficient cells. Mechanistically, inhibiting DNA replication with Roscovitine reduced tubular injury, blocked the development of KIN and mitigated kidney function in these Fan1 knockout mice. Thus, our data delineate a mechanistic pathway by which persistent DNA damage in the kidney tubular cells leads to kidney injury and development of CKD. Furthermore, therapeutic modulation of cell cycle activity may provide an opportunity to mitigate the DNA damage response induced CKD progression.
Collapse
Affiliation(s)
- Merlin Airik
- Division of Nephrology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yu Leng Phua
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amy B Huynh
- Division of Nephrology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Blake T McCourt
- Division of Nephrology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brittney M Rush
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jerry Vockley
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Susan L Murray
- Department of Nephrology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Anthony Dorman
- Department of Nephrology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Peter J Conlon
- Department of Nephrology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rannar Airik
- Division of Nephrology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
4
|
Wen Y, Yang C, Menez SP, Rosenberg AZ, Parikh CR. A Systematic Review of Clinical Characteristics and Histologic Descriptions of Acute Tubular Injury. Kidney Int Rep 2020; 5:1993-2001. [PMID: 33163720 PMCID: PMC7609907 DOI: 10.1016/j.ekir.2020.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/13/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The term "acute tubular injury" (ATI) represents histopathologic renal tubular injury and often manifests clinically as acute kidney injury (AKI). Studies systematically summarizing the clinical presentation and histological changes in human ATI are limited. METHODS We used a comprehensive search strategy to search human studies of ATI from 1936 to July 2019. We extracted study characteristics, clinical characteristics, and histologic descriptions of ATI by bright field, immunofluorescence, electron microscopy, and immunohistochemistry. We compared ATI histology as a function of tissue procurement type, timing, and etiologies. RESULTS We included 292 studies comprising a total of 1987 patients. The majority of studies (222 of 292, 76%) were single-center case reports. The mean age of included patients was 47 years. In native kidney biopsy cases, baseline, peak, and latest creatinine were 1.3 mg/dl, 7.19 mg/dl, and 1.85 mg/dl respectively, and biopsy was performed mostly after peak creatinine (86.7%, 391 of 451). We identified 16 histologic descriptions of tubular injury, including tubular cell sloughing (115 of 292, 39.4%), tubular epithelial flattening/simplification (110 of 292, 37.7%), tubular dilatation (109 of 292, 37.3%), and tubular cell necrosis (93 of 292, 31.8%). There was no difference in tubular injury histology among different tissue procurement types (native kidney biopsy, transplant kidney biopsy, and autopsy), among different etiologies, or between different tissue procurement timing (before or after creatinine peaks in native kidneys). Electron microscopy and immunohistochemistry were used in a minority of studies. CONCLUSION ATI manifests with diverse histologic changes. Efforts to establish protocols to harmonize biopsy practices, to handle kidney biopsy for tissue interrogation, and to report results across clinical practice are needed to improve our understanding of this complex disease.
Collapse
Affiliation(s)
- Yumeng Wen
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chen Yang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Steven P. Menez
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chirag R. Parikh
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Correspondence: Chirag R. Parikh, Division of Nephrology, Johns Hopkins University School of Medicine, 1830 E. Monument St., Suite 416, Baltimore, Maryland 21287, USA.
| |
Collapse
|
5
|
Zhao X, Zhang E, Ren X, Bai X, Wang D, Bai L, Luo D, Guo Z, Wang Q, Yang J. Edaravone alleviates cell apoptosis and mitochondrial injury in ischemia-reperfusion-induced kidney injury via the JAK/STAT pathway. Biol Res 2020; 53:28. [PMID: 32620154 PMCID: PMC7333427 DOI: 10.1186/s40659-020-00297-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/26/2020] [Indexed: 01/31/2023] Open
Abstract
Background Kidney ischemia–reperfusion injury is a common pathophysiological phenomenon in the clinic. A large number of studies have found that the tyrosine protein kinase/signal transducer and activator of transcription (JAK/STAT) pathway is involved in the development of a variety of kidney diseases and renal protection associated with multiple drugs. Edaravone (EDA) is an effective free radical scavenger that has been used clinically for the treatment of postischemic neuronal injury. This study aimed to identify whether EDA improved kidney function in rats with ischemia–reperfusion injury by regulating the JAK/STAT pathway and clarify the underlying mechanism. Methods Histomorphological analysis was used to assess pathological kidney injury, and mitochondrial damage was observed by transmission electron microscopy. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining was performed to detect tubular epithelial cell apoptosis. The expression of JAK2, P-JAK2, STAT3, P-STAT3, STAT1, P-STAT1, BAX and Bcl-2 was assessed by western blotting. Mitochondrial function in the kidney was assessed by mitochondrial membrane potential (ΔΨm) measurement. Results The results showed that EDA inhibited the expression of p-JAK2, p-STAT3 and p-STAT1, accompanied by downregulation of the expression of Bax and caspase-3, and significantly ameliorated kidney damage caused by ischemia–reperfusion injury (IRI). Furthermore, the JC-1 dye assay showed that edaravone attenuated ischemia–reperfusion-induced loss of kidney ΔΨm. Conclusion Our findings indicate that EDA protects against kidney damage caused by ischemia–reperfusion through JAK/STAT signaling, inhibiting apoptosis and improving mitochondrial injury.
Collapse
Affiliation(s)
- Xiaoying Zhao
- Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Erfei Zhang
- Department of Anesthesiology, The Affiliated Hospital of Yan'an University, Yan'an, China
| | - Xiaofen Ren
- Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoli Bai
- Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Dongming Wang
- Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ling Bai
- Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Danlei Luo
- Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zheng Guo
- Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiang Wang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianxin Yang
- Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Abstract
The molecular mechanisms in acute tubular injury (ATI) are complex and enigmatic. Moreover, we currently lack validated tissue injury markers that can be integrated into the kidney biopsy analysis to guide nephrologists in their patient's management of AKI. Although recognizing the ATI lesion by light microscopy is fairly straightforward, the staging of tubular lesions in the context of clinical time course and etiologic mechanism currently is not adapted to the renal pathology practice. To the clinician, the exact time point when an ischemic or toxic injury has occurred often is not known and cannot be discerned from the review of the biopsy sample. Moreover, the assessment of the different types of organized necrosis as the underlying cell death mechanism, which can be targeted using specific inhibitors, has not yet reached clinical practice. The renal pathology laboratory is uniquely qualified to assess the time course and etiology of ATI using established analytic techniques, such as immunohistochemistry and electron microscopy. Recent advances in the understanding of pathophysiological mechanisms of ATI and the important role that certain types of tubular cell organelles play in different stages of the ATI lesions may allow differentiation of early versus late ATI. Furthermore, the determination of respective cell injury pathways may help to differentiate ischemic versus toxic etiology in a reliable fashion. In the future, such a kidney biopsy-based classification system of ATI could guide the nephrologist's management of patients in regard to treatment modality and drug choice.
Collapse
Affiliation(s)
- Gilbert W Moeckel
- Renal Pathology and Electron Microscopy Laboratory, Department of Pathology, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
7
|
Abstract
Over a decade ago, it was proposed that the regulation of tubular repair in the kidney might involve the recapitulation of developmental pathways. Although the kidney cannot generate new nephrons after birth, suggesting a low level of regenerative competence, the tubular epithelial cells of the nephrons can proliferate to repair the damage after AKI. However, the debate continues over whether this repair involves a persistent progenitor population or any mature epithelial cell remaining after injury. Recent reports have highlighted the expression of Sox9, a transcription factor critical for normal kidney development, during postnatal epithelial repair in the kidney. Indeed, the proliferative response of the epithelium involves expression of several pathways previously described as being involved in kidney development. In some instances, these pathways are also apparently involved in the maladaptive responses observed after repeated injury. Whether development and repair in the kidney are the same processes or we are misinterpreting the similar expression of genes under different circumstances remains unknown. Here, we review the evidence for this link, concluding that such parallels in expression may more correctly represent the use of the same pathways in a distinct context, likely triggered by similar stressors.
Collapse
Affiliation(s)
- Melissa Helen Little
- Murdoch Children's Research Institute, Melbourne, Australia; and .,Department of Pediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Pamela Kairath
- Murdoch Children's Research Institute, Melbourne, Australia; and.,Department of Pediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
De Chiara L, Crean J. Emerging Transcriptional Mechanisms in the Regulation of Epithelial to Mesenchymal Transition and Cellular Plasticity in the Kidney. J Clin Med 2016; 5:jcm5010006. [PMID: 26771648 PMCID: PMC4730131 DOI: 10.3390/jcm5010006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/18/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022] Open
Abstract
Notwithstanding controversies over the role of epithelial to mesenchymal transition in the pathogenesis of renal disease, the last decade has witnessed a revolution in our understanding of the regulation of renal cell plasticity. Significant parallels undoubtedly exist between ontogenic processes and the initiation and propagation of damage in the diseased kidney as evidenced by the reactivation of developmental programmes of gene expression, in particular with respect to TGFβ superfamily signaling. Indeed, multiple signaling pathways converge on a complex transcriptional regulatory nexus that additionally involves epigenetic activator and repressor mechanisms and microRNA regulatory networks that control renal cell plasticity. It is becoming increasingly apparent that differentiated cells can acquire an undifferentiated state akin to “stemness” which is leading us towards new models of complex cell behaviors and interactions. Here we discuss the latest findings that delineate new and novel interactions between this transcriptional regulatory network and highlight a hitherto poorly recognized role for the Polycomb Repressive Complex (PRC2) in the regulation of renal cell plasticity. A comprehensive understanding of how external stimuli interact with the epigenetic control of gene expression, in normal and diseased contexts, establishes a new therapeutic paradigm to promote the resolution of renal injury and regression of fibrosis.
Collapse
Affiliation(s)
- Letizia De Chiara
- Diabetes Complications Research Centre, UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - John Crean
- Diabetes Complications Research Centre, UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
9
|
Pax genes in renal development, disease and regeneration. Semin Cell Dev Biol 2015; 44:97-106. [DOI: 10.1016/j.semcdb.2015.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 11/21/2022]
|
10
|
Correction: Cell Atavistic Transition: Paired Box 2 Re-Expression Occurs in Mature Tubular Epithelial Cells during Acute Kidney Injury and Is Regulated by Angiotensin II. PLoS One 2015; 10:e0127718. [PMID: 25945929 PMCID: PMC4422722 DOI: 10.1371/journal.pone.0127718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|