1
|
Rehn S, Raymond JS, Boakes RA, Kendig MD, Leenaars CHC. Behavioural and physiological effects of binge eating: A systematic review and meta-analysis of animal models. Neurosci Biobehav Rev 2025; 173:106135. [PMID: 40222574 DOI: 10.1016/j.neubiorev.2025.106135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Binge eating is defined as eating abnormally large amounts in a brief period of time. Many animal studies have examined the behavioural and physiological effects of binge eating of high-fat, high-sugar foods to model the consequences of human binge eating. The present systematic review of 199 rodent studies sought to identify the behavioural and physiological consequences of binge eating and determine whether changes were specific to binge eating or to general effects of exposure to a palatable diet. A meta-analysis of 18 rodent studies revealed that binge eating produces greater anxiety-like behaviour on the Elevated Plus-Maze with a small effect size and significant funnel plot asymmetry, suggesting that the true effect size is overestimated. A history of binge-like access generally increases progressive ratio breakpoint for the binged food, without altering 'liking' as measured by lick microstructure, suggesting that dissociable effects on 'wanting' but not 'liking' accompany binge eating behaviour and contribute to its persistence. Binge eating appears to enhance compulsive food-seeking behaviour and prevent stress-induced reductions in intake but does not appear to alter depression-like behaviour or locomotor activity. Notably, binge eating may produce comparable metabolic impairments to those observed after extended continuous exposure to a palatable diet despite no overall effects on body weight outcomes in most studies.
Collapse
Affiliation(s)
- Simone Rehn
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Joel S Raymond
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW 2050, Australia; Department of Psychiatry and Brain Health Institute, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Robert A Boakes
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael D Kendig
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Cathalijn H C Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
2
|
Júnior REM, Pedersen ASB, Ferreira RM, de Asevedo GH, Mendes GL, Ribeiro K, Maioli TU, de Faria AMC, Brunialti-Godard AL. Behavioral changes and transcriptional regulation of mesolimbic dopaminergic genes in a mouse model of binge eating disorder by diet intermittent access. J Nutr Biochem 2025; 135:109784. [PMID: 39426552 DOI: 10.1016/j.jnutbio.2024.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/02/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Binge Eating Disorder (BED) is among the most prevalent eating disorders worldwide. It is characterized by recurrent episodes of excessive consumption of palatable foods in short periods, accompanied by a sense of loss of control and distress around the episode, which tends to worsen over time. The mesolimbic dopaminergic system influences on reinforcement and reward-seeking behaviors is implicated in the disorder's pathogenesis. Animal models that replicate the clinical conditions observed in humans, including the disorder progression, are essential for understanding the underlying physiological mechanisms of BED. This study aimed to evaluate binge eating behavior induced by intermittent High Sugar and Butter (HSB) diet access in mice, their phenotypes, transcriptional regulation of mesolimbic dopaminergic system genes, and behavior. Thus, mice were subdivided into three groups: CHOW (maintenance diet only), HSB-i (maintenance diet with thrice-weekly access to HSB), and HSB (continuous access to HSB). Animals were subjected to marble-burying and light-dark box behavioral tests, and transcriptional regulation was evaluated by RT-qPCR. The results indicated that the HSB-i group established a feeding pattern of significantly more kilocalories on days when HSB was available and reduced intake on non-HSB days similar to human binge eating. Over time, binge episodes intensified, potentially indicating a tolerance effect. Additionally, these animals behave differently towards preferring the HSB diet and exhibited altered transcriptional regulation of the Drd1, Slc6a3, and Lrrk2 genes. Our study provides a mouse model that reflects human BED, showing a progression in binge episodes and mesolimbic dopamine pathway involvement, suggesting targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Renato Elias Moreira Júnior
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Agatha Sondertoft Braga Pedersen
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raquel Mary Ferreira
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme Henrique de Asevedo
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grazielle Laudares Mendes
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Karine Ribeiro
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiani Uceli Maioli
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Caetano de Faria
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Lúcia Brunialti-Godard
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Fructuoso M, Fernández-Blanco Á, Gallego-Román A, Sierra C, de Lagrán MM, Lorenzon N, De Toma I, Langohr K, Martín-García E, Maldonado R, Dairou J, Janel N, Dierssen M. Exploring the link between hedonic overeating and prefrontal cortex dysfunction in the Ts65Dn trisomic mouse model. Cell Mol Life Sci 2023; 80:370. [PMID: 37989807 PMCID: PMC11072570 DOI: 10.1007/s00018-023-05009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/23/2023]
Abstract
Individuals with Down syndrome (DS) have a higher prevalence of obesity compared to the general population. Conventionally, this has been attributed to endocrine issues and lack of exercise. However, deficits in neural reward responses and dopaminergic disturbances in DS may be contributing factors. To investigate this, we focused on a mouse model (Ts65Dn) bearing some triplicated genes homologous to trisomy 21. Through detailed meal pattern analysis in male Ts65Dn mice, we observed an increased preference for energy-dense food, pointing towards a potential "hedonic" overeating behavior. Moreover, trisomic mice exhibited higher scores in compulsivity and inflexibility tests when limited access to energy-dense food and quinine hydrochloride adulteration were introduced, compared to euploid controls. Interestingly, when we activated prelimbic-to-nucleus accumbens projections in Ts65Dn male mice using a chemogenetic approach, impulsive and compulsive behaviors significantly decreased, shedding light on a promising intervention avenue. Our findings uncover a novel mechanism behind the vulnerability to overeating and offer potential new pathways for tackling obesity through innovative interventions.
Collapse
Affiliation(s)
- Marta Fructuoso
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Ana Gallego-Román
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cèsar Sierra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - María Martínez de Lagrán
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Nicola Lorenzon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Ilario De Toma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Klaus Langohr
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), 08003, Barcelona, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya/ BARCELONATECH, Barcelona, Spain
| | - Elena Martín-García
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), 08003, Barcelona, Spain
- Departament de Psicobiologia i Metodologia de Les Ciències de la Salut, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologique, UMR 8601, CNRS, Université de Paris, 75013, Paris, France
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), 08003, Barcelona, Spain
| | - Julien Dairou
- Departament de Psicobiologia i Metodologia de Les Ciències de la Salut, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologique, UMR 8601, CNRS, Université de Paris, 75013, Paris, France
| | - Nathalie Janel
- BFA, UMR 8251, CNRS, Université de Paris, 75013, Paris, France
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), 08003, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
4
|
SCARPA LL, BELLO NT. Dietary-induced binge-like eating impairs acoustic startle responses to acute nisoxetine in male mice. Behav Pharmacol 2023; 34:411-423. [PMID: 37578423 PMCID: PMC10528891 DOI: 10.1097/fbp.0000000000000748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Sensorimotor gating disruptions have been noted in several psychiatric and neurodegenerative disorders. However, the involvement of sensorimotor gating processes in eating disorders has not been well characterized. Our objective was to examine the sensorimotor gating of the acoustic startle response following dietary-induced binge eating and high-fat diet (HFD) induced weight gain in male C57B/6J mice. Acute administration of the norepinephrine reuptake inhibitor, nisoxetine (0.5 and 5 mg/kg), and a dopamine reuptake inhibitor, GBR 12783 (1.6 and 16 mg/kg), were either given alone or in combination to assess norepinephrine and dopamine alterations, respectively. Male mice with repeated bouts of calorie restriction (Restrict) and with limited access to a sweetened fat food (Binge) demonstrated an escalation of intake over 2.5 weeks under standard chow conditions. Restrict Binge (RB) mice had a reduced startle response to the startle pulse (110 dB) compared with the Naive control group at 5 mg/kg nisoxetine. There was an overall effect of nisoxetine (0.5 and 5 mg/kg) to increase percent inhibition at pre-pulse (74 dB), %PP74. Under HFD conditions, the RB group did not demonstrate a binge-like eating phenotype. The RB group on HFD had a higher response to 74 dB with nisoxetine (5.0 mg/kg) compared with a combinational dose of nisoxetine (5.0 mg/kg) and GBR 12783 (1.6 mg/kg). These findings suggest that dietary conditions that promote binge-like eating can influence the central noradrenergic and dopaminergic controls of the acoustic startle response and potentially influence sensorimotor gating.
Collapse
Affiliation(s)
- Lori L. SCARPA
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey; New Brunswick, NJ 08901
| | - Nicholas T. BELLO
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey; New Brunswick, NJ 08901
| |
Collapse
|
5
|
Berger G, Corris JD, Fields SE, Hao L, Scarpa LL, Bello NT. Systematic Review of Binge Eating Rodent Models for Developing Novel or Repurposing Existing Pharmacotherapies. Biomolecules 2023; 13:742. [PMID: 37238615 PMCID: PMC10216509 DOI: 10.3390/biom13050742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Recent advances in developing and screening candidate pharmacotherapies for psychiatric disorders have depended on rodent models. Eating disorders are a set of psychiatric disorders that have traditionally relied on behavioral therapies for effective long-term treatment. However, the clinical use of Lisdexamfatamine for binge eating disorder (BED) has furthered the notion of using pharmacotherapies for treating binge eating pathologies. While there are several binge eating rodent models, there is not a consensus on how to define pharmacological effectiveness within these models. Our purpose is to provide an overview of the potential pharmacotherapies or compounds tested in established rodent models of binge eating behavior. These findings will help provide guidance for determining pharmacological effectiveness for potential novel or repurposed pharmacotherapies.
Collapse
Affiliation(s)
- Gregory Berger
- Endocrinology and Animal Biosciences Graduate Program, Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Joshua D. Corris
- Endocrinology and Animal Biosciences Graduate Program, Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Spencer E. Fields
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Lihong Hao
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Lori L. Scarpa
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Nicholas T. Bello
- Endocrinology and Animal Biosciences Graduate Program, Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Rutgers Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| |
Collapse
|
6
|
Duesman SJ, Shetty S, Patel S, Ogale N, Mohamed F, Sparman N, Rajbhandari P, Rajbhandari AK. Sexually dimorphic role of the locus coeruleus PAC1 receptors in regulating acute stress-associated energy metabolism. Front Behav Neurosci 2022; 16:995573. [PMID: 36275856 PMCID: PMC9580361 DOI: 10.3389/fnbeh.2022.995573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/24/2022] [Indexed: 01/05/2023] Open
Abstract
Severe stress leads to alterations in energy metabolism with sexually dimorphic onset or severity. The locus coeruleus (LC) in the brainstem that mediates fight-or-flight-or-freeze response to stress is sexually dimorphic in morphology, plays a key role in interactions between diet and severe stressors, and has neuronal input to the brown adipose tissue (BAT)-a thermogenic organ important for energy balance. Yet, little is known on how LC coordinates stress-related metabolic adaptations. LC expresses receptors for the neuropeptide PACAP (pituitary adenylate cyclase activating peptide) and PACAP signaling through PAC1 (PACAP receptor) are critical regulators of various types of stressors and energy metabolism. We hypothesized that LC-PAC1 axis is a sex-specific central "gatekeeper" of severe acute stress-driven behavior and energy metabolism. Selective ablation of PAC1 receptors from the LC did not alter stress response in mice of either sex, but enhanced food intake in females and was associated with increased energy expenditure and BAT thermogenesis in male mice. These results show a sexually dimorphic role of the LC-PAC1 in regulating acute stress-related energy metabolism. Thus, by disrupting LC-PAC1 signaling, our studies show a unique and previously unexplored role of LC in adaptive energy metabolism in a sex-dependent manner.
Collapse
Affiliation(s)
- Samuel J. Duesman
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sanutha Shetty
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sanil Patel
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Neha Ogale
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Farzanna Mohamed
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Njeri Sparman
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Abha Karki Rajbhandari
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States,*Correspondence: Abha Karki Rajbhandari,
| |
Collapse
|
7
|
Li X, Yeh CY, Bello NT. High-fat diet attenuates morphine withdrawal effects on sensory-evoked locus coeruleus norepinephrine neural activity in male obese rats. Nutr Neurosci 2021; 25:2369-2378. [PMID: 34467832 DOI: 10.1080/1028415x.2021.1968103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objective: These experiments sought to characterize the effects of obesity propensity and obesogenic diet on locus coeruleus (LC) norepinephrine (NE) activity and determine the effects of obesity on LC neural responses to morphine withdrawal.Methods: In vivo single-unit LC electrophysiological activity was measured in obese prone (OP) and obese resistant (OR) male SD rats following high-fat (HFD: 45% fat) or low-fat (LFD; 10% fat) feeding. A separate cohort of LFD and HFD rats underwent in vivo LC recording on day 3 of spontaneous morphine withdrawal following an escalation dose paradigm (5-15 mg/kg; SQ twice daily).Results: OP (LFD: 34 cells/7 rats; HFD: 32 cells/6 rats) had higher spontaneous and tonic activity, and lower sensory-evoked activity compared with OR (LFD: 31 cells/6 rats; HFD: 41 cells/7 rats). Interacting effect of diet x strain status was observed on signal-to-noise ratio with OR-LFD having higher ratio than OP-LFD and OP-HFD. Morphine treatment decreased body weights. Withdrawal increased sensory-evoked rate in LFD (morphine; 20 cells/10 rats; saline 24 cells/6 rats) but not HFD (saline: 22 cells/7 rats; morphine: 21 cells/5 rats) rats. In a separate group of age-matched SD rats, a similar weight loss (5-7%) in response to the morphine did not alter sensory-evoked rate but decreased signal-to-noise ratio (Control: 22 cells/8 rats; Weight-matched: 23 cells/8 rats).Discussion: Taken together, our findings suggest that obesity and diet alter the sensory-evoked LC-NE neural responses, which could have implication for emotional stress and opioid-withdrawal behaviors.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Animal Sciences, Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Nicholas T Bello
- Department of Animal Sciences, Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
8
|
Ródenas-González F, Blanco-Gandía MDC, Pascual M, Molari I, Guerri C, López JM, Rodríguez-Arias M. A limited and intermittent access to a high-fat diet modulates the effects of cocaine-induced reinstatement in the conditioned place preference in male and female mice. Psychopharmacology (Berl) 2021; 238:2091-2103. [PMID: 33786639 DOI: 10.1007/s00213-021-05834-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/22/2021] [Indexed: 12/01/2022]
Abstract
RATIONALE Palatable food and drugs of abuse activate common neurobiological pathways and numerous studies suggest that fat consumption increases vulnerability to drug abuse. In addition, preclinical reports show that palatable food may relieve craving for drugs, showing that an ad libitum access to a high-fat diet (HFD) can reduce cocaine-induced reinstatement. OBJECTIVE The main aim of the present study was to evaluate the effect of a limited and intermittent exposure to HFD administered during the extinction and reinstatement processes of a cocaine-induced conditioned place preference (CPP). METHODS Male and female mice underwent the 10 mg/kg cocaine CPP. From post-conditioning onwards, animals were divided into four groups: SD (standard diet); HFD-MWF with 2-h access to the HFD on Mondays, Wednesdays, and Fridays; HFD-24h, with 1-h access every day; and HFD-Ext with 1-h access to the HFD before each extinction session. RESULTS Our results showed that all HFD administrations blocked reinstatement in males, while only the HFD-MWF was able to inhibit reinstatement in females. In addition, HFD-Ext males needed fewer sessions to extinguish the preference, which suggests that administration of fat before being exposed to the environmental cues is effective to extinguish drug-related memories. HFD did not affect Oprμ gene expression but increased CB1r gene expression in the striatum in HFD-Ext males. CONCLUSIONS These results support that palatable food could act as an alternative reward to cocaine, accelerating extinction and blocking reinstatement, these effects being sex specific.
Collapse
Affiliation(s)
- Francisco Ródenas-González
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | | | - María Pascual
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain
- Department of Physiology, School of Medicine, Universitat de Valencia, Valencia, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Irene Molari
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - José Miñarro López
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain.
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
9
|
Hicks C, Sabino V, Cottone P. The Alpha-1 Adrenergic Receptor Antagonist Prazosin Reduces Binge-Like Eating in Rats. Nutrients 2020; 12:nu12061569. [PMID: 32481494 PMCID: PMC7352795 DOI: 10.3390/nu12061569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 01/19/2023] Open
Abstract
Background: Binge-eating disorder is a pervasive addiction-like disorder that is defined by excessive and uncontrollable consumption of food within brief periods of time. The aim of the current study was to examine the role of the brain noradrenergic system in binge-like eating through the use of the alpha-1 adrenergic receptor antagonist prazosin. Methods: For this purpose, we employed a limited access model whereby male Wistar rats were allowed to nosepoke for either chow (Chow rats) or a sugary, highly palatable food (Palatable rats) for 1 h/day. The effects of prazosin (0, 0.5, 1 and 2 mg/kg, i.p.) were tested in a fixed ratio 1 (FR1) and progressive ratio (PR) schedule of reinforcement. Results: The results show that prazosin preferentially reduced the responses for palatable food in a FR1 reinforcement schedule; when tested in a PR schedule of reinforcement, prazosin increased breakpoint in both Chow and Palatable rats, but more potently and more efficaciously in the latter. Our results suggest that prazosin treatment preferentially increased the motivational properties of the palatable diet. Conclusions: The current findings provide the characterization of the effects of prazosin on binge-like eating and offer support to the existing literature showing the important role of the noradrenergic system in addiction-like behavior.
Collapse
|
10
|
Pantoni MM, Carmack SA, Hammam L, Anagnostaras SG. Dopamine and norepinephrine transporter inhibition for long-term fear memory enhancement. Behav Brain Res 2019; 378:112266. [PMID: 31580915 DOI: 10.1016/j.bbr.2019.112266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 12/25/2022]
Abstract
Psychostimulants are highly effective cognitive-enhancing therapeutics yet have a significant potential for abuse and addiction. While psychostimulants likely exert their rewarding and addictive properties through dopamine transporter (DAT) inhibition, the mechanisms of their procognitive effects are less certain. By one prevalent view, psychostimulants exert their procognitive effects exclusively through norepinephrine transporter (NET) inhibition, however increasing evidence suggests that DAT also plays a critical role in their cognitive-enhancing properties, including long-term memory enhancement. The present experiments test the hypothesis that combined strong NET and weak DAT inhibition will mimic the fear memory-enhancing but not the addiction-related effects of psychostimulants in mice. We examined the effects of the high affinity NET inhibitors atomoxetine or nisoxetine and the low affinity DAT inhibitor bupropion, either alone or in combination, on short- and long-term memory of Pavlovian fear conditioning. We also examined the addiction-related effects of combined strong NET and weak DAT inhibition using conditioned place preference and a locomotor activity test. While atomoxetine or nisoxetine alone enhanced short-term fear memory, the addition of bupropion was required to significantly enhance long-term fear memory. Additionally, combined atomoxetine and bupropion did not produce substantial motor stimulation or place preference. These findings suggest that combining strong NET and weak DAT inhibition could lead to the development of a highly effective cognitive enhancer that lacks the potential for addiction.
Collapse
Affiliation(s)
- Madeline M Pantoni
- Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA 92093-0109, USA.
| | - Stephanie A Carmack
- Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA 92093-0109, USA
| | - Leen Hammam
- Division of Biology, University of California San Diego, La Jolla, CA 92093-0109, USA
| | - Stephan G Anagnostaras
- Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA 92093-0109, USA; Program in Neurosciences, University of California San Diego, La Jolla, CA 92093-0109, USA
| |
Collapse
|
11
|
Bello NT, Yeh CY, James MH. Reduced Sensory-Evoked Locus Coeruleus-Norepinephrine Neural Activity in Female Rats With a History of Dietary-Induced Binge Eating. Front Psychol 2019; 10:1966. [PMID: 31551861 PMCID: PMC6737582 DOI: 10.3389/fpsyg.2019.01966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022] Open
Abstract
Noradrenergic pathways have been implicated in eating pathologies. These experiments sought to examine how dietary-induced binge eating influences the neuronal activity of the locus coeruleus (LC)-norepinephrine (NE) system. Young adult female Sprague Dawley rats (7-8 weeks old) were exposed to a repeated intermittent (twice weekly) cycle of 30-min access to a highly palatable sweetened fat (i.e., vegetable shortening with 10% sucrose) with or without intermittent (24 h) calorie restriction (Restrict Binge or Binge groups, respectively). Age- and weight-matched female control rats were exposed to standard chow feeding (Naive group) or intermittent chow feeding (Restrict group). The Binge and Restrict Binge groups demonstrated an escalation in sweet-fat food intake after 2.5 weeks. On week 3, in vivo single-unit LC electrophysiological activity was recorded under isoflurane anesthesia. Restrict Binge (20 cells from six rats) and Binge (27 cells from six rats) had significantly reduced (approximate 20% and 26%, respectively) evoked LC discharge rates compared with naive rats (22 cells, seven rats). Spontaneous and tonic discharge rates were not different among the groups. Signal-to-noise ratio was reduced in the groups with intermittent sweetened fat exposure. In order to investigate the neuropeptide alterations as a consequence of dietary binge eating, relative gene expression of neuropeptide Y (NPY), glucagon-like peptide 1 receptor (GLP-1r), prodynorphin, and related genes were measured in LC and hypothalamic arcuate (Arc) regions. Glp-1r, Npy2r, and Pdyn in LC region were reduced with repeated intermittent restriction. Npy1r was reduced by approximately 27% in ARC of Restrict compared with Naive group. Such data indicate that dietary-induced binge eating alters the neural response of LC neurons to sensory stimuli and dampens the neural stress response.
Collapse
Affiliation(s)
- Nicholas T. Bello
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Rutgers Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Chung-Yang Yeh
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Morgan H. James
- Rutgers Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ, United States
- Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
12
|
Sachdeo BLY, Yu L, Giunta GM, Bello NT. Binge-Like Eating Is Not Influenced by the Murine Model of OPRM1 A118G Polymorphism. Front Psychol 2019; 10:246. [PMID: 30804861 PMCID: PMC6378308 DOI: 10.3389/fpsyg.2019.00246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/25/2019] [Indexed: 12/23/2022] Open
Abstract
Impairments in opioid receptor signaling have been implicated in disordered eating. A functional variant of the OPRM1 gene is a guanine (G) substitution for adenine (A) at the 118 position of exon 1 (A118G). The influence of the A118G variant on binge eating behaviors and the effectiveness of pharmacotherapies used to treat binge eating have not been characterized. Mice were generated with A to G substitution at the 112 position on exon 1 to produce a murine equivalent of the human A118G variant. Homozygous female mice (AA or GG) were exposed to intermittent access to a highly palatable sweet-fat food with or without prior calorie deprivation to promote dietary-induced binge eating. There were no genotype-dependent differences in the dietary-induced binge eating. However, GG mice exposed to intermittent calorie restriction (Restrict) had higher body weights compared with GG mice exposed to intermittent sweet fat-food (Binge) and ad libitum feeding (Naive). Acute oral dosing of lisdexamfetamine (0.15, 0.5, and 1.5 mg/kg) or sibutramine (0.3, 1, and 3 mg/kg) did not produce genotype-dependent differences in binge-like eating. In addition, no genotype-dependent differences in binge-like eating were observed with chronic (14-day) dosing of lisdexamfetamine (1.5 mg/kg/day) or sibutramine (3 mg/kg/day). In the chronic dosing, body weights were higher in the GG Restrict compared with AA Restrict. Our findings suggest that the A112G polymorphism does not influence binge eating behaviors or pharmacotherapies for treating binge eating.
Collapse
Affiliation(s)
- Bryn L. Y. Sachdeo
- Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Lei Yu
- Department of Genetics, School of Arts and Sciences, and Center of Alcohol Studies, Graduate School of Applied and Professional Psychology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Gina M. Giunta
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Nicholas T. Bello
- Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
13
|
Pucci M, Micioni Di Bonaventura MV, Zaplatic E, Bellia F, Maccarrone M, Cifani C, D'Addario C. Transcriptional regulation of the endocannabinoid system in a rat model of binge-eating behavior reveals a selective modulation of the hypothalamic fatty acid amide hydrolase gene. Int J Eat Disord 2019; 52:51-60. [PMID: 30578649 DOI: 10.1002/eat.22989] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/24/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Binge-eating episodes are recurrent and are defining features of several eating disorders. Thus binge-eating episodes might influence eating disorder development of which exact underlying mechanisms are still largely unknown. METHODS Here we focused on the transcriptional regulation of the endocannabinoid system, a potent regulator of feeding behavior, in relevant rat brain regions, using a rat model in which a history of intermittent food restriction and a frustration stress induce binge-like palatable food consumption. RESULTS We observed a selective down-regulation of fatty acid amide hydrolase (faah) gene expression in the hypothalamus of rats showing the binge-eating behavior with a consistent reduction in histone 3 acetylation at lysine 4 of the gene promoter. No relevant changes were detected for any other endocannabinoid system components in any brain regions under study, as well as for the other epigenetic mechanisms investigated (DNA methylation and histone 3 lysine 27 methylation) at the faah gene promoter. DISCUSSION Our findings suggest that faah transcriptional regulation is a potential biomarker of binge-eating episodes, with a relevant role in the homeostatic regulation of food intake.
Collapse
Affiliation(s)
- Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Elizabeta Zaplatic
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Fabio Bellia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Caynas-Rojas S, Rodríguez-García G, Delint-Ramírez I, Miranda MI. Differential function of medial prefrontal cortex catecholaminergic receptors after long-term sugar consumption. Behav Brain Res 2018; 356:495-503. [PMID: 29920309 DOI: 10.1016/j.bbr.2018.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022]
Abstract
The medial prefrontal cortex (mPFC) has reciprocal projections with many cerebral structures that are crucial in the control of food ingestion behavior and reward processing; Thus the mPFC has an important function in taste memory recognition. Previous results indicate that long-term consumption of sugar produces changes in appetitive re-learning and suggest that this could trigger an escalating consumption due to the inability to learn new negative consequences related to the same taste. Further evidence suggests that general identity reward value could be encoded in the mPFC. Therefore, the purpose of this study was to evaluate in rats whether after 21 days of sugar consumption the increase in sweet taste preference and latent inhibition of conditioned taste aversion (CTA) were affected differentially by pharmacological activation or blockage of dopaminergic and β-adrenergic receptors, in the mPFC, during CTA acquisition. Results showed that after long-term sugar exposure, mPFC activation of β-adrenergic receptors with clenbuterol delayed aversive memory extinction, but the blockade with propranolol or activation of dopaminergic receptors with apomorphine increased CTA latent inhibition and accelerated aversive memory extinction only after acute sugar exposure. Only dopaminergic blockade with haloperidol prevented sweet taste preference expression after long-term sugar consumption, increased CTA latent inhibition and accelerated extinction after acute sugar exposure. Taken together, the present data provide evidence that catecholaminergic receptors in the mPFC after prolonged sugar consumption underwent functional changes related to re-learning and new aversive taste learning.
Collapse
Affiliation(s)
- Seraid Caynas-Rojas
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, 76230, Mexico
| | - Gabriela Rodríguez-García
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, 76230, Mexico
| | - Ilse Delint-Ramírez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 64460, Mexico
| | - María Isabel Miranda
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, 76230, Mexico.
| |
Collapse
|
15
|
Razlog R, Pellow J, Patel R, Caminsky M, van Heerden HJ. Case studies on the homeopathic treatment of binge eating in adult males. Health SA 2016. [DOI: 10.1016/j.hsag.2016.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
16
|
Kessler RM, Hutson PH, Herman BK, Potenza MN. The neurobiological basis of binge-eating disorder. Neurosci Biobehav Rev 2016; 63:223-38. [PMID: 26850211 DOI: 10.1016/j.neubiorev.2016.01.013] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/25/2016] [Accepted: 01/31/2016] [Indexed: 02/07/2023]
Abstract
Relatively little is known about the neuropathophysiology of binge-eating disorder (BED). Here, the evidence from neuroimaging, neurocognitive, genetics, and animal studies are reviewed to synthesize our current understanding of the pathophysiology of BED. Binge-eating disorder may be conceptualized as an impulsive/compulsive disorder, with altered reward sensitivity and food-related attentional biases. Neuroimaging studies suggest there are corticostriatal circuitry alterations in BED similar to those observed in substance abuse, including altered function of prefrontal, insular, and orbitofrontal cortices and the striatum. Human genetics and animal studies suggest that there are changes in neurotransmitter networks, including dopaminergic and opioidergic systems, associated with binge-eating behaviors. Overall, the current evidence suggests that BED may be related to maladaptation of the corticostriatal circuitry regulating motivation and impulse control similar to that found in other impulsive/compulsive disorders. Further studies are needed to understand the genetics of BED and how neurotransmitter activity and neurocircuitry function are altered in BED and how pharmacotherapies may influence these systems to reduce BED symptoms.
Collapse
Affiliation(s)
- Robert M Kessler
- Department of Radiology, University of Alabama at Birmingham School of Medicine, 619 19th St. South, Birmingham, AL 35249, United States.
| | - Peter H Hutson
- Shire, 300 Shire Way, Lexington, MA 02421, United States.
| | - Barry K Herman
- Shire, 300 Shire Way, Lexington, MA 02421, United States.
| | - Marc N Potenza
- Department of Psychiatry, Department of Neurobiology, Child Study Center, CASAColumbia and Connecticut Mental Health Center, Yale University School of Medicine, 34 Park St., New Haven, CT 06519, United States.
| |
Collapse
|
17
|
Noradrenergic-Dopaminergic Interactions Due to DSP-4-MPTP Neurotoxin Treatments: Iron Connection. Curr Top Behav Neurosci 2015; 29:73-86. [PMID: 26718588 DOI: 10.1007/7854_2015_411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The investigations of noradrenergic lesions and dopaminergic lesions have established particular profiles of functional deficits and accompanying alterations of biomarkers in brain regions and circuits. In the present account, the focus of these lesions is directed toward the effects upon dopaminergic neurotransmission and expression that are associated with the movement disorders and psychosis-like behavior. In this context, it was established that noradrenergic denervation, through administration of the selective noradrenaline (NA) neurotoxin, DSP-4, should be performed prior to the depletion of dopamine (DA) with the selective neurotoxin, MPTP. Employing this regime, it was shown that (i) following DSP-4 (50 mg/kg) pretreatment of C57/Bl6 mice, both the functional and neurochemical (DA loss) effects of MPTP (2 × 20 and 2 × 40 mg/kg) were markedly exacerbated, and (ii) following postnatal iron (Fe(2+), 7.5 mg/kg, on postnatal days 19-12), pretreatment with DSP-4 followed by the lower 2 × 20 mg/kg MPTP dose induced even greater losses of motor behavior and striatal DA. As yet, the combination of NA-DA depletions, and even more so Fe(2+)-NA-DA depletion, has been considered to present a movement disorder aspect although studies exploring cognitive domains are lacking. With intrusion of iron overload into this formula, the likelihood of neuropsychiatric disorder, as well, unfolds.
Collapse
|
18
|
Dietary-induced binge eating increases prefrontal cortex neural activation to restraint stress and increases binge food consumption following chronic guanfacine. Pharmacol Biochem Behav 2014; 125:21-28. [PMID: 25158105 DOI: 10.1016/j.pbb.2014.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/13/2014] [Accepted: 08/16/2014] [Indexed: 01/27/2023]
Abstract
Binge eating is a prominent feature of bulimia nervosa and binge eating disorder. Stress or perceived stress is an often-cited reason for binge eating. One notion is that the neural pathways that overlap with stress reactivity and feeding behavior are altered by recurrent binge eating. Using young adult female rats in a dietary-induced binge eating model (30 min access to binge food with or without 24-h calorie restriction, twice a week, for 6 weeks) we measured the neural activation by c-Fos immunoreactivity to the binge food (vegetable shortening mixed with 10% sucrose) in bingeing and non-bingeing animals under acute stress (immobilization; 1 h) or no stress conditions. There was an increase in the number of immunopositive cells in the dorsal medial prefrontal cortex (mPFC) in stressed animals previously exposed to the binge eating feeding schedules. Because attention deficit hyperactive disorder (ADHD) medications target the mPFC and have some efficacy at reducing binge eating in clinical populations, we examined whether chronic (2 weeks; via IP osmotic mini-pumps) treatment with a selective alpha-2A adrenergic agonist (0.5 mg/kg/day), guanfacine, would reduce binge-like eating. In the binge group with only scheduled access to binge food (30 min; twice a week; 8 weeks), guanfacine increased total calories consumed during the 30-min access period from the 2-week pre-treatment baseline and increased binge food consumption compared with saline-treated animals. These experiments suggest that mPFC is differentially activated in response to an immobilization stress in animals under different dietary conditions and chronic guanfacine, at the dose tested, was ineffective at reducing binge-like eating.
Collapse
|