1
|
Vitale F, Zileri Dal Verme L, Paratore M, Negri M, Nista EC, Ainora ME, Esposto G, Mignini I, Borriello R, Galasso L, Alfieri S, Gasbarrini A, Zocco MA, Nicoletti A. The Past, Present, and Future of Biomarkers for the Early Diagnosis of Pancreatic Cancer. Biomedicines 2024; 12:2840. [PMID: 39767746 PMCID: PMC11673965 DOI: 10.3390/biomedicines12122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Pancreatic cancer is one of the most aggressive cancers with a very poor 5-year survival rate and reduced therapeutic options when diagnosed in an advanced stage. The dismal prognosis of pancreatic cancer has guided significant efforts to discover novel biomarkers in order to anticipate diagnosis, increasing the population of patients who can benefit from curative surgical treatment. CA 19-9 is the reference biomarker that supports the diagnosis and guides the response to treatments. However, it has significant limitations, a low specificity, and is inefficient as a screening tool. Several potential biomarkers have been discovered in the serum, urine, feces, and pancreatic juice of patients. However, most of this evidence needs further validation in larger cohorts. The advent of advanced omics sciences and liquid biopsy techniques has further enhanced this field of research. The aim of this review is to analyze the historical evolution of the research on novel biomarkers for the early diagnosis of pancreatic cancer, focusing on the current evidence for the most promising biomarkers from different body fluids and the novel trends in research, such as omics sciences and liquid biopsy, in order to favor the application of modern personalized medicine.
Collapse
Affiliation(s)
- Federica Vitale
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Lorenzo Zileri Dal Verme
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Mattia Paratore
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Marcantonio Negri
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Enrico Celestino Nista
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Maria Elena Ainora
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Giorgio Esposto
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Irene Mignini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Raffaele Borriello
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Linda Galasso
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Sergio Alfieri
- Centro Pancreas, Chirurgia Digestiva, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Maria Assunta Zocco
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Alberto Nicoletti
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| |
Collapse
|
2
|
Bararia A, Das A, Mitra S, Banerjee S, Chatterjee A, Sikdar N. Deoxyribonucleic acid methylation driven aberrations in pancreatic cancer-related pathways. World J Gastrointest Oncol 2023; 15:1505-1519. [PMID: 37746645 PMCID: PMC10514732 DOI: 10.4251/wjgo.v15.i9.1505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 08/01/2023] [Indexed: 09/13/2023] Open
Abstract
Pancreatic cancer (PanCa) presents a catastrophic disease with poor overall survival at advanced stages, with immediate requirement of new and effective treatment options. Besides genetic mutations, epigenetic dysregulation of signaling pathway-associated enriched genes are considered as novel therapeutic target. Mechanisms beneath the deoxyribonucleic acid methylation and its utility in developing of epi-drugs in PanCa are under trails. Combinations of epigenetic medicines with conventional cytotoxic treatments or targeted therapy are promising options to improving the dismal response and survival rate of PanCa patients. Recent studies have identified potentially valid pathways that support the prediction that future PanCa clinical trials will include vigorous testing of epigenomic therapies. Epigenetics thus promises to generate a significant amount of new knowledge of biological and medical importance. Our review could identify various components of epigenetic mechanisms known to be involved in the initiation and development of pancreatic ductal adenocarcinoma and related precancerous lesions, and novel pharmacological strategies that target these components could potentially lead to breakthroughs. We aim to highlight the possibilities that exist and the potential therapeutic interventions.
Collapse
Affiliation(s)
- Akash Bararia
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Amlan Das
- Department of Biochemistry, Royal Global University, Assam 781035, India
| | - Sangeeta Mitra
- Department of Biochemistry and Biophysics, University of Kalyani, West Bengal 741235, India
| | - Sudeep Banerjee
- Department of Gastrointestinal Surgery, Tata Medical Center, Kolkata 700160, India
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
3
|
Gautam SK, Khan P, Natarajan G, Atri P, Aithal A, Ganti AK, Batra SK, Nasser MW, Jain M. Mucins as Potential Biomarkers for Early Detection of Cancer. Cancers (Basel) 2023; 15:1640. [PMID: 36980526 PMCID: PMC10046558 DOI: 10.3390/cancers15061640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Early detection significantly correlates with improved survival in cancer patients. So far, a limited number of biomarkers have been validated to diagnose cancers at an early stage. Considering the leading cancer types that contribute to more than 50% of deaths in the USA, we discuss the ongoing endeavors toward early detection of lung, breast, ovarian, colon, prostate, liver, and pancreatic cancers to highlight the significance of mucin glycoproteins in cancer diagnosis. As mucin deregulation is one of the earliest events in most epithelial malignancies following oncogenic transformation, these high-molecular-weight glycoproteins are considered potential candidates for biomarker development. The diagnostic potential of mucins is mainly attributed to their deregulated expression, altered glycosylation, splicing, and ability to induce autoantibodies. Secretory and shed mucins are commonly detected in patients' sera, body fluids, and tumor biopsies. For instance, CA125, also called MUC16, is one of the biomarkers implemented for the diagnosis of ovarian cancer and is currently being investigated for other malignancies. Similarly, MUC5AC, a secretory mucin, is a potential biomarker for pancreatic cancer. Moreover, anti-mucin autoantibodies and mucin-packaged exosomes have opened new avenues of biomarker development for early cancer diagnosis. In this review, we discuss the diagnostic potential of mucins in epithelial cancers and provide evidence and a rationale for developing a mucin-based biomarker panel for early cancer detection.
Collapse
Affiliation(s)
- Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar K. Ganti
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd W. Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Chhoda A, Sharma A, Sailo B, Tang H, Ruzgar N, Tan WY, Ying L, Khatri R, Narayanan A, Mane S, De Kumar B, Wood LD, Iacobuzio-Donahue C, Wolfgang CL, Kunstman JW, Salem RR, Farrell JJ, Ahuja N. Utility of promoter hypermethylation in malignant risk stratification of intraductal papillary mucinous neoplasms. Clin Epigenetics 2023; 15:28. [PMID: 36803844 PMCID: PMC9942382 DOI: 10.1186/s13148-023-01429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/14/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Intraductal papillary mucinous neoplasms (IPMNs), a type of cystic pancreatic cancer (PC) precursors, are increasingly identified on cross-sectional imaging and present a significant diagnostic challenge. While surgical resection of IPMN-related advanced neoplasia, i.e., IPMN-related high-grade dysplasia or PC, is an essential early PC detection strategy, resection is not recommended for IPMN-low-grade dysplasia (LGD) due to minimal risk of carcinogenesis, and significant procedural risks. Based on their promising results in prior validation studies targeting early detection of classical PC, DNA hypermethylation-based markers may serve as a biomarker for malignant risk stratification of IPMNs. This study investigates our DNA methylation-based PC biomarker panel (ADAMTS1, BNC1, and CACNA1G genes) in differentiating IPMN-advanced neoplasia from IPMN-LGDs. METHODS Our previously described genome-wide pharmaco-epigenetic method identified multiple genes as potential targets for PC detection. The combination was further optimized and validated for early detection of classical PC in previous case-control studies. These promising genes were evaluated among micro-dissected IPMN tissue (IPMN-LGD: 35, IPMN-advanced neoplasia: 35) through Methylation-Specific PCR. The discriminant capacity of individual and combination of genes were delineated through Receiver Operating Characteristics curve analysis. RESULTS As compared to IPMN-LGDs, IPMN-advanced neoplasia had higher hypermethylation frequency of candidate genes: ADAMTS1 (60% vs. 14%), BNC1 (66% vs. 3%), and CACGNA1G (25% vs. 0%). We observed Area Under Curve (AUC) values of 0.73 for ADAMTS1, 0.81 for BNC1, and 0.63 for CACNA1G genes. The combination of the BNC1/ CACNA1G genes resulted in an AUC of 0.84, sensitivity of 71%, and specificity of 97%. Combining the methylation status of the BNC1/CACNA1G genes, blood-based CA19-9, and IPMN lesion size enhanced the AUC to 0.92. CONCLUSION DNA-methylation based biomarkers have shown a high diagnostic specificity and moderate sensitivity for differentiating IPMN-advanced neoplasia from LGDs. Addition of specific methylation targets can improve the accuracy of the methylation biomarker panel and enable the development of noninvasive IPMN stratification biomarkers.
Collapse
Affiliation(s)
- Ankit Chhoda
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Anup Sharma
- Department of Surgery, Yale School of Medicine, New Haven, USA
| | - Bethsebie Sailo
- Department of Surgery, Yale School of Medicine, New Haven, USA
| | - Haoyu Tang
- Yale Systems Biology Institute, Yale University, New Haven, USA
| | - Nensi Ruzgar
- Department of Surgery, Yale School of Medicine, New Haven, USA
| | - Wan Ying Tan
- Department of Surgery, Yale School of Medicine, New Haven, USA
| | - Lee Ying
- Department of Surgery, Yale School of Medicine, New Haven, USA
| | - Rishabh Khatri
- Department of Internal Medicine, Temple University Hospital, Philadelphia, USA
| | | | | | | | - Laura D Wood
- Department of Pathology, Johns Hopkins University, Baltimore, USA
| | | | | | - John W Kunstman
- Department of Surgery, Yale School of Medicine, New Haven, USA
| | - Ronald R Salem
- Department of Surgery, Yale School of Medicine, New Haven, USA
| | - James J Farrell
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, USA.
| | - Nita Ahuja
- Department of Surgery, Yale School of Medicine, New Haven, USA.
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, USA.
- Department of Pathology, Yale School of Medicine, New Haven, USA.
- Department of Biological and Biomedical Sciences, Yale School of Medicine, New Haven, USA.
| |
Collapse
|
5
|
Systematic review and meta-analysis: Diagnostic performance of DNA alterations in pancreatic juice for the detection of pancreatic cancer. Pancreatology 2022; 22:973-986. [PMID: 35864067 DOI: 10.1016/j.pan.2022.06.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Pancreatic cancer has a dismal prognosis. So far, imaging has been proven incapable of establishing an early enough diagnosis. Thus, biomarkers are urgently needed for early detection and improved survival. Our aim was to evaluate the pooled diagnostic performance of DNA alterations in pancreatic juice. METHODS A systematic literature search was performed in EMBASE, MEDLINE Ovid, Cochrane CENTRAL and Web of Science for studies concerning the diagnostic performance of DNA alterations in pancreatic juice to differentiate patients with high-grade dysplasia or pancreatic cancer from controls. Study quality was assessed using QUADAS-2. The pooled prevalence, sensitivity, specificity and diagnostic odds ratio were calculated. RESULTS Studies mostly concerned cell-free DNA mutations (32 studies: 939 cases, 1678 controls) and methylation patterns (14 studies: 579 cases, 467 controls). KRAS, TP53, CDKN2A, GNAS and SMAD4 mutations were evaluated most. Of these, TP53 had the highest diagnostic performance with a pooled sensitivity of 42% (95% CI: 31-54%), specificity of 98% (95%-CI: 92%-100%) and diagnostic odds ratio of 36 (95% CI: 9-133). Of DNA methylation patterns, hypermethylation of CDKN2A, NPTX2 and ppENK were studied most. Hypermethylation of NPTX2 performed best with a sensitivity of 39-70% and specificity of 94-100% for distinguishing pancreatic cancer from controls. CONCLUSIONS This meta-analysis shows that, in pancreatic juice, the presence of distinct DNA mutations (TP53, SMAD4 or CDKN2A) and NPTX2 hypermethylation have a high specificity (close to 100%) for the presence of high-grade dysplasia or pancreatic cancer. However, the sensitivity of these DNA alterations is poor to moderate, yet may increase if they are combined in a panel.
Collapse
|
6
|
Yokoyama S, Iwaya H, Akahane T, Hamada T, Higashi M, Hashimoto S, Tanoue S, Ohtsuka T, Ido A, Tanimoto A. Sequential evaluation of
MUC
promoter methylation using next‐generation sequencing‐based custom‐made panels in liquid‐based cytology specimens of pancreatic cancer. Diagn Cytopathol 2022; 50:499-507. [DOI: 10.1002/dc.25022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Sieya Yokoyama
- Department of Pathology Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Hiromichi Iwaya
- Digestive and Lifestyle Diseases Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Toshiaki Akahane
- Department of Pathology Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
- Center for Human Genome and Gene Analysis Kagoshima University Hospital Kagoshima Japan
| | - Taiji Hamada
- Department of Pathology Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Michiyo Higashi
- Unit of Surgical Pathology Kagoshima University Hospital Kagoshima Japan
| | - Shinichi Hashimoto
- Digestive and Lifestyle Diseases Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Shiroh Tanoue
- Digestive and Lifestyle Diseases Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Akihide Tanimoto
- Department of Pathology Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
- Center for Human Genome and Gene Analysis Kagoshima University Hospital Kagoshima Japan
- Unit of Surgical Pathology Kagoshima University Hospital Kagoshima Japan
| |
Collapse
|
7
|
Roalsø MTT, Hald ØH, Alexeeva M, Søreide K. Emerging Role of Epigenetic Alterations as Biomarkers and Novel Targets for Treatments in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14030546. [PMID: 35158814 PMCID: PMC8833770 DOI: 10.3390/cancers14030546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Epigenetic alterations cause changes in gene expression without affecting the DNA sequence and are found to affect several molecular pathways in pancreatic tumors. Such changes are reversible, making them potential drug targets. Furthermore, epigenetic alterations occur early in the disease course and may thus be explored for early detection. Hence, a deeper understanding of epigenetics in pancreatic cancer may lead to improved diagnostics, treatments, and prognostication. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with limited treatment options. Emerging evidence shows that epigenetic alterations are present in PDAC. The changes are potentially reversible and therefore promising therapeutic targets. Epigenetic aberrations also influence the tumor microenvironment with the potential to modulate and possibly enhance immune-based treatments. Epigenetic marks can also serve as diagnostic screening tools, as epigenetic changes occur at early stages of the disease. Further, epigenetics can be used in prognostication. The field is evolving, and this review seeks to provide an updated overview of the emerging role of epigenetics in the diagnosis, treatment, and prognostication of PDAC.
Collapse
Affiliation(s)
- Marcus T. T. Roalsø
- Department of Quality and Health Technology, University of Stavanger, 4036 Stavanger, Norway;
- HPB Unit, Department of Gastrointestinal Surgery, Stavanger University Hospital, 4068 Stavanger, Norway;
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, 4068 Stavanger, Norway
| | - Øyvind H. Hald
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway;
| | - Marina Alexeeva
- HPB Unit, Department of Gastrointestinal Surgery, Stavanger University Hospital, 4068 Stavanger, Norway;
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, 4068 Stavanger, Norway
| | - Kjetil Søreide
- HPB Unit, Department of Gastrointestinal Surgery, Stavanger University Hospital, 4068 Stavanger, Norway;
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, 4068 Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Correspondence:
| |
Collapse
|
8
|
O'Neill RS, Stoita A. Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket? World J Gastroenterol 2021; 27:4045-4087. [PMID: 34326612 PMCID: PMC8311531 DOI: 10.3748/wjg.v27.i26.4045] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a leading cause of cancer related mortality on a global scale. The disease itself is associated with a dismal prognosis, partly due to its silent nature resulting in patients presenting with advanced disease at the time of diagnosis. To combat this, there has been an explosion in the last decade of potential candidate biomarkers in the research setting in the hope that a diagnostic biomarker may provide a glimmer of hope in what is otherwise quite a substantial clinical dilemma. Currently, serum carbohydrate antigen 19-9 is utilized in the diagnostic work-up of patients diagnosed with PC however this biomarker lacks the sensitivity and specificity associated with a gold-standard marker. In the search for a biomarker that is both sensitive and specific for the diagnosis of PC, there has been a paradigm shift towards a focus on liquid biopsy and the use of diagnostic panels which has subsequently proved to have efficacy in the diagnosis of PC. Currently, promising developments in the field of early detection on PC using diagnostic biomarkers include the detection of microRNA (miRNA) in serum and circulating tumour cells. Both these modalities, although in their infancy and yet to be widely accepted into routine clinical practice, possess merit in the early detection of PC. We reviewed over 300 biomarkers with the aim to provide an in-depth summary of the current state-of-play regarding diagnostic biomarkers in PC (serum, urinary, salivary, faecal, pancreatic juice and biliary fluid).
Collapse
Affiliation(s)
- Robert S O'Neill
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| | - Alina Stoita
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| |
Collapse
|
9
|
Mucin expression, epigenetic regulation and patient survival: A toolkit of prognostic biomarkers in epithelial cancers. Biochim Biophys Acta Rev Cancer 2021; 1876:188538. [PMID: 33862149 DOI: 10.1016/j.bbcan.2021.188538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Twenty mucin genes have been identified and classified in two groups (encoding secreted and membrane-bound proteins). Secreted mucins participate in mucus formation by assembling a 3-dimensional network via oligomerization, whereas membrane-bound mucins are anchored to the outer membrane mediating extracellular interactions and cell signaling. Both groups have been associated with carcinogenesis progression in epithelial cancers, and are therefore considered as potential therapeutic targets. In the present review, we discuss the link between mucin expression patterns and patient survival and propose mucins as prognosis biomarkers of epithelial cancers (esophagus, gastric, pancreatic, colorectal, lung, breast or ovarian cancers). We also investigate the relationship between mucin expression and overall survival in the TCGA dataset. In particular, epigenetic mechanisms regulating mucin gene expression, such as aberrant DNA methylation and histone modification, are interesting as they are also associated with diagnosis or prognosis significance. Indeed, mucin hypomethylation has been shown to be associated with carcinogenesis progression and was linked to prognosis in colon cancer or pancreatic cancer patients. Finally we describe the relationship between mucin expression and non-coding RNAs that also may serve as biomarkers. Altogether the concomitant knowledge of specific mucin-pattern expression and epigenetic regulation could be translated as biomarkers with a better specificity/sensitivity performance in several epithelial cancers.
Collapse
|
10
|
Fujii Y, Matsumoto K, Kato H, Yamazaki T, Tomoda T, Horiguchi S, Tsutsumi K, Nishida K, Tanaka T, Hanada K, Okada H. Endoscopic ultrasonography findings of pancreatic parenchyma for predicting subtypes of intraductal papillary mucinous neoplasms. Pancreatology 2021; 21:622-629. [PMID: 33640249 DOI: 10.1016/j.pan.2021.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/17/2021] [Accepted: 01/31/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS The subtypes of intraductal papillary mucinous neoplasms (IPMNs) are closely associated with the clinicopathological behavior and recurrence after surgical resection. However, there are no established non-invasive methods to confirm the subtypes of IPMNs without surgery. The aim of this study is to predict the subtypes of IPMNs using the findings of endoscopic ultrasonography (EUS). METHODS Sixty-two consecutive patients with IPMNs who underwent EUS before surgery were retrospectively reviewed. The following EUS findings were analyzed and their relationship with the subtypes was evaluated: diameter of the main pancreatic duct, cyst size, number of cysts, height of mural nodule, early chronic pancreatitis (CP) finding, fatty parenchyma and atrophic parenchyma. RESULTS The subtypes of IPMNs were as follows: gastric (G)-type 38 (61%), intestinal (I) -type 14 (23%) and pancreatobiliary (PB) -type 10 (16%). Fatty parenchyma was significantly associated with G-type (P < 0.0001). Early CP findings ≥2 and atrophic parenchyma were significantly correlated with I-type (P < 0.0001). PB-type was significantly associated with pancreatic parenchyma without early CP findings or fatty degeneration in comparison to the other subtypes (P < 0.0001). Using the above characteristic EUS findings, the sensitivity, specificity, and accuracy were as follows: 63%, 92% and 74%, respectively, in G-type, 57%, 96% and 87% in I-type, and 90%, 94% and 94% in PB-type. CONCLUSIONS The evaluation of EUS findings, especially focused on the pancreatic parenchyma, has the potential to predict the subtypes of IPMN.
Collapse
Affiliation(s)
- Yuki Fujii
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Kazuyuki Matsumoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan.
| | - Hironari Kato
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Tatsuhiro Yamazaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Takeshi Tomoda
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Shigeru Horiguchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Koichiro Tsutsumi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Kenji Nishida
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Takehiro Tanaka
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Keiji Hanada
- Department of Gastroenterology, JA Onomichi General Hospital, Hiroshima, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| |
Collapse
|
11
|
Tripathi K, Goel A, Singhai A, Garg M. Promoter hypomethylation as potential confounder of Ras gene overexpression and their clinical significance in subsets of urothelial carcinoma of bladder. Mol Biol Rep 2021; 48:2183-2199. [PMID: 33620658 DOI: 10.1007/s11033-021-06227-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/10/2021] [Indexed: 12/31/2022]
Abstract
Overexpression of normal Ras and its aberrant CpG island methylation in the promoter regions have been shown to direct cells for uncontrolled abnormal growth and bladder tumor formation and therefore, fetched recent attention as a marker of diagnosis and prognosis to predict the biological behavior of urothelial carcinoma of bladder (UCB). Methylation pattern at CpG islands of the promoter regions of rat sarcoma (Ras) gene homologues namely Kristen-Ras (K-Ras), Harvey (H-Ras), and Neuroblastoma (N-Ras) were examined by methylation specific polymerase chain reaction (MSP). Real time-quantitative polymerase chain reaction (RT-qPCR) was done to determine transcriptomic expressions of these Ras isoforms in the prospective series of 42 NMIBC (non-muscle invasive bladder cancer) and 45 MIBC (muscle invasive bladder cancer) biopsies. CpG loci in H-Ras and K-Ras were observed to be more hypomethylated in MIBC, whereas more hypomethylation in N-Ras was noted in NMIBC. Strong association of hypomethylation index with tumor stage, grade, type and size validate them it as marker of diagnosis in UCB patients. Differential overexpression of H-Ras, N-Ras and K-Ras genes in NMIBC and MIBC and their association with patients' demographics identify them as important diagnostic markers in pathogenesis of UCB. Given the reported ability of promoter hypomethylation to activate Ras expression, correlation studies examined positive significant association between hypomethylation index and expression. Study concludes that promoter hypomethylation of N-Ras and K-Ras could be a potential confounder of their increased expression in NMIBC. Biological significance of simultaneous presence of higher expression and promoter hypomethylation of Ras gene isoforms in MIBC is difficult to resolve in a given cohort of patients.
Collapse
Affiliation(s)
- Kiran Tripathi
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - Apul Goel
- Department of Urology, King George Medical University, Lucknow, 226003, India
| | - Atin Singhai
- Department of Pathology, King George Medical University, Lucknow, 226003, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
12
|
Bararia A, Dey S, Gulati S, Ghatak S, Ghosh S, Banerjee S, Sikdar N. Differential methylation landscape of pancreatic ductal adenocarcinoma and its precancerous lesions. Hepatobiliary Pancreat Dis Int 2020; 19:205-217. [PMID: 32312637 DOI: 10.1016/j.hbpd.2020.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 03/18/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal diseases with an incidence almost equal to the mortality. In addition to having genetic causes, cancer can also be considered an epigenetic disease. DNA methylation is the premier epigenetic modification and patterns of aberrant DNA methylation are recognized to be a common hallmark of human tumor. In the multistage carcinogenesis of pancreas starting from precancerous lesions to pancreatic ductal adenocarcinoma (PDAC), the epigenetic changes play a significant role. DATA SOURCES Relevant studies for this review were derived via an extensive literature search in PubMed via using various keywords such as pancreatic ductal adenocarcinoma, precancerous lesions, methylation profile, epigenetic biomarkers that are relevant directly or closely associated with the concerned area of our interest. The literature search was intensively done considering a time frame of 20 years (1998-2018). RESULT In this review we have highlighted the hypermethylation and hypomethylation of the precancerous PDAC lesions (pancreatic intra-epithelial neoplasia, intraductal papillary mucinous neoplasm, mucinous cystic neoplasm and chronic pancreatitis) and PDAC along with the potential biomarkers. We have also achieved the early epigenetic driver that leads to progression from precancerous lesions to PDAC. A bunch of epigenetic driver genes leads to progression of precancerous lesions to PDAC (ppENK, APC, p14/5/16/17, hMLH1 and MGMT) are also documented. We summarized the importance of these observations in therapeutics and diagnosis of PDAC hence identifying the potential use of epigenetic biomarkers in epigenetic targeted therapy. Epigenetic inactivation occurs by hypermethylation of CpG islands in the promoter regions of tumor suppressor genes. We listed all hyper- and hypomethylation of CpG islands of several genes in PDAC including its precancerous lesions. CONCLUSIONS The concept of the review would help to understand their biological effects, and to determine whether they may be successfully combined with other epigenetic drugs. However, we need to continue our research to develop more specific DNA-demethylating agents, which are the targets for hypermethylated CpG methylation sites.
Collapse
Affiliation(s)
- Akash Bararia
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
| | - Subhankar Dey
- Department of Zoology, New Alipore College, University of Calcutta, Kolkata, India
| | - Sumit Gulati
- Department of Gastroenterological Surgery, Calcutta Medical Research Institute, Kolkata, India
| | - Supriyo Ghatak
- Department of Gastroenterological Surgery, Calcutta Medical Research Institute, Kolkata, India
| | - Shibajyoti Ghosh
- Department of General Surgery, Medical College and Hospital, Kolkata, India
| | - Sudeep Banerjee
- Department of Gastrointestinal Surgery, Tata Medical Center, Rajarhat, Kolkata, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India.
| |
Collapse
|
13
|
Majumder S, Raimondo M, Taylor WR, Yab TC, Berger CK, Dukek BA, Cao X, Foote PH, Wu CW, Devens ME, Mahoney DW, Smyrk TC, Pannala R, Chari ST, Vege SS, Topazian MD, Petersen BT, Levy MJ, Rajan E, Gleeson FC, Dayyeh BA, Nguyen CC, Faigel DO, Woodward TA, Wallace MB, Petersen G, Allawi HT, Lidgard GP, Kisiel JB, Ahlquist DA. Methylated DNA in Pancreatic Juice Distinguishes Patients With Pancreatic Cancer From Controls. Clin Gastroenterol Hepatol 2020; 18:676-683.e3. [PMID: 31323382 PMCID: PMC6984349 DOI: 10.1016/j.cgh.2019.07.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Precursors of pancreatic cancer arise in the ductal epithelium; markers exfoliated into pancreatic juice might be used to detect high-grade dysplasia (HGD) and cancer. Specific methylated DNA sequences in pancreatic tissue have been associated with adenocarcinoma. We analyzed these methylated DNA markers (MDMs) in pancreatic juice samples from patients with pancreatic ductal adenocarcinomas (PDACs) or intraductal papillary mucinous neoplasms (IPMNs) with HGD (cases), and assessed their ability to discriminate these patients from individuals without dysplasia or with IPMNs with low-grade dysplasia (controls). METHODS We obtained pancreatic juice samples from 38 patients (35 with biopsy-proven PDAC or pancreatic cystic lesions with invasive cancer and 3 with HGD) and 73 controls (32 with normal pancreas and 41 with benign disease), collected endoscopically from the duodenum after secretin administration from February 2015 through November 2016 at 3 medical centers. Samples were analyzed for the presence of 14 MDMs (in the genes NDRG4, BMP3, TBX15, C13orf18, PRKCB, CLEC11A, CD1D, ELMO1, IGF2BP1, RYR2, ADCY1, FER1L4, EMX1, and LRRC4), by quantitative allele-specific real-time target and signal amplification. We performed area under the receiver operating characteristic curve analyses to determine the ability of each marker, and panels of markers, to distinguish patients with HGD and cancer from controls. MDMs were combined to form a panel for detection using recursive partition trees. RESULTS We identified a group of 3 MDMs (at C13orf18, FER1L4, and BMP3) in pancreatic juice that distinguished cases from controls with an area under the receiver operating characteristic value of 0.90 (95% CI, 0.83-0.97). Using a specificity cut-off value of 86%, this group of MDMs distinguished patients with any stage of pancreatic cancer from controls with 83% sensitivity (95% CI, 66%-93%) and identified patients with stage I or II PDAC or IPMN with HGD with 80% sensitivity (95% CI, 56%-95%). CONCLUSIONS We identified a group of 3 MDMs in pancreatic juice that identify patients with pancreatic cancer with an area under the receiver operating characteristic value of 0.90, including patients with early stage disease or advanced precancer. These DNA methylation patterns might be included in algorithms for early detection of pancreatic cancer, especially in high-risk cohorts. Further optimization and clinical studies are needed.
Collapse
Affiliation(s)
- Shounak Majumder
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| | - Massimo Raimondo
- Division of Gastroenterology & Hepatology Mayo Clinic Jacksonville, FL
| | - William R. Taylor
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Tracy C. Yab
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Calise K. Berger
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Brian A. Dukek
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Xiaoming Cao
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Patrick H. Foote
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Chung Wah Wu
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Mary E. Devens
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Douglas W. Mahoney
- Department of Biomedical Statistics & Informatics, Mayo Clinic, Rochester, MN
| | - Thomas C. Smyrk
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN
| | - Rahul Pannala
- Division of Gastroenterology & Hepatology, Mayo Clinic Scottsdale, AZ
| | - Suresh T. Chari
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | | | - Mark D. Topazian
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Bret T. Petersen
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Michael J. Levy
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Elizabeth Rajan
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Ferga C. Gleeson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Barham Abu Dayyeh
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - Cuong C. Nguyen
- Division of Gastroenterology & Hepatology, Mayo Clinic Scottsdale, AZ
| | - Douglas O. Faigel
- Division of Gastroenterology & Hepatology, Mayo Clinic Scottsdale, AZ
| | | | | | - Gloria Petersen
- Department of Health Sciences Research Mayo Clinic, Rochester, MN
| | | | | | - John B. Kisiel
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| | - David A. Ahlquist
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
14
|
Yokoyama S, Hamada T, Higashi M, Matsuo K, Maemura K, Kurahara H, Horinouchi M, Hiraki T, Sugimoto T, Akahane T, Yonezawa S, Kornmann M, Batra SK, Hollingsworth MA, Tanimoto A. Predicted Prognosis of Patients with Pancreatic Cancer by Machine Learning. Clin Cancer Res 2020; 26:2411-2421. [PMID: 31992588 DOI: 10.1158/1078-0432.ccr-19-1247] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/20/2019] [Accepted: 01/23/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Pancreatic cancer remains a disease of high mortality despite advanced diagnostic techniques. Mucins (MUC) play crucial roles in carcinogenesis and tumor invasion in pancreatic cancers. MUC1 and MUC4 expression are related to the aggressive behavior of human neoplasms and a poor patient outcome. In contrast, MUC2 is a tumor suppressor, and we have previously reported that MUC2 is a favorable prognostic factor in pancreatic neoplasia. This study investigates whether the methylation status of three mucin genes from postoperative tissue specimens from patients with pancreatic neoplasms could serve as a predictive biomarker for outcome after surgery. EXPERIMENTAL DESIGN We evaluated the methylation status of MUC1, MUC2, and MUC4 promoter regions in pancreatic tissue samples from 191 patients with various pancreatic lesions using methylation-specific electrophoresis. Then, integrating these results and clinicopathologic features, we used support vector machine-, neural network-, and multinomial-based methods to develop a prognostic classifier. RESULTS Significant differences were identified between the positive- and negative-prediction classifiers of patients in 5-year overall survival (OS) in the cross-validation test. Multivariate analysis revealed that these prognostic classifiers were independent prognostic factors analyzed by not only neoplastic tissues but also nonneoplastic tissues. These classifiers had higher predictive accuracy for OS than tumor size, lymph node metastasis, distant metastasis, and age and can complement the prognostic value of the TNM staging system. CONCLUSIONS Analysis of epigenetic changes in mucin genes may be of diagnostic utility and one of the prognostic predictors for patients with pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Seiya Yokoyama
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Taiji Hamada
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Michiyo Higashi
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Kei Matsuo
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kosei Maemura
- Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Michiko Horinouchi
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tsubasa Hiraki
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoyuki Sugimoto
- Graduate School of Science and Engineering (Science), Kagoshima University, Kagoshima, Japan
| | - Toshiaki Akahane
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Suguru Yonezawa
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Marko Kornmann
- Department of General and Visceral Surgery, University of Ulm, Ulm, Germany
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Michael A Hollingsworth
- Fred and Pamela Buffet Cancer Center, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska
| | - Akihide Tanimoto
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
15
|
Choi MH, Mejlænder-Andersen E, Manueldas S, El Jellas K, Steine SJ, Tjensvoll K, Sætran HA, Knappskog S, Hoem D, Nordgård O, Hovland R, Molven A. Mutation analysis by deep sequencing of pancreatic juice from patients with pancreatic ductal adenocarcinoma. BMC Cancer 2019; 19:11. [PMID: 30611220 PMCID: PMC6321709 DOI: 10.1186/s12885-018-5195-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
Background Reliable methods are needed to identify patients with early-stage cancer or high-grade precancerous lesions in the pancreas. Analysis of pancreatic juice to detect somatic mutations could represent one such approach. Here we investigated the concordance between mutations found in the primary tumor and pancreatic juice from the same patient. Methods Amplicon-based targeted deep sequencing was performed on samples from 21 patients with pancreatic ductal adenocarcinoma (PDAC) who had undergone Whipple’s operation. Mutation profiles were determined in formalin-fixed sections of the primary tumor and in pancreatic juice sampled from the main pancreatic duct during surgery. Results Using a cut-off of 3% for variant allele frequency, KRAS mutations were detected in 20/21 primary tumors (95%) and in 15/21 (71%) juice samples. When also considering low-frequency variants, KRAS mutations were found in 20/21 juice samples. Most juice samples exhibited multiple KRAS variants not seen in the primary tumor, and only in 11 cases (52%) did the most abundant variant of the juice correspond to the KRAS mutation detected in the tumor. TP53 mutations were found in 16 tumors (76%) and six juice samples (29%). Among the positive juice samples, only one exhibited more than a single TP53 mutation. Detection of both KRAS and TP53 mutations was fully concordant in the primary tumor and juice sample in 7/21 cases (33%). Conclusions Pancreatic juice from PDAC patients is rich in KRAS mutations often not seen in the primary tumor and possibly reflecting precancerous lesions in other regions of the pancreas. The inclusion of TP53 mutation detection and additional markers must therefore be considered for fully exploiting the clinical potential of pancreatic juice samples in early cancer detection. Electronic supplementary material The online version of this article (10.1186/s12885-018-5195-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Man Hung Choi
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Eline Mejlænder-Andersen
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Sophia Manueldas
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Khadija El Jellas
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Solrun J Steine
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kjersti Tjensvoll
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Hege Aase Sætran
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Dag Hoem
- Department of Gastrointestinal Surgery, Haukeland University Hospital, Bergen, Norway
| | - Oddmund Nordgård
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Randi Hovland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway. .,Department of Pathology, Haukeland University Hospital, Bergen, Norway. .,KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
16
|
Kaplan JH, Gonda TA. The Use of Biomarkers in the Risk Stratification of Cystic Neoplasms. Gastrointest Endosc Clin N Am 2018; 28:549-568. [PMID: 30241643 DOI: 10.1016/j.giec.2018.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cyst fluid biomarkers may be used to identify pancreatic cyst subtypes. Biomarkers are selected based on their ability to accurately distinguish mucinous from nonmucinous cysts and to risk stratify cysts based on malignant potential. Biomarkers of interest include but are not limited to amylase, oncogenes, DNA analysis, and epigenetic markers. The introduction of next-generation sequencing and molecular panels has aided in improved diagnostic accuracy and risk stratification. This review presents the diagnostic performance of currently available biomarkers and proposes an algorithm to incorporate their use in the diagnosis of pancreatic cysts.
Collapse
Affiliation(s)
- Jeremy H Kaplan
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, 161 Fort Washington Avenue, New York, NY 10032, USA
| | - Tamas A Gonda
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, 161 Fort Washington Avenue, New York, NY 10032, USA.
| |
Collapse
|
17
|
Yokoyama S, Higashi M, Kitamoto S, Oeldorf M, Knippschild U, Kornmann M, Maemura K, Kurahara H, Wiest E, Hamada T, Kitazono I, Goto Y, Tasaki T, Hiraki T, Hatanaka K, Mataki Y, Taguchi H, Hashimoto S, Batra SK, Tanimoto A, Yonezawa S, Hollingsworth MA. Aberrant methylation of MUC1 and MUC4 promoters are potential prognostic biomarkers for pancreatic ductal adenocarcinomas. Oncotarget 2018; 7:42553-42565. [PMID: 27283771 PMCID: PMC5173155 DOI: 10.18632/oncotarget.9924] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/01/2016] [Indexed: 01/14/2023] Open
Abstract
Pancreatic cancer is still a disease of high mortality despite availability of diagnostic techniques. Mucins (MUC) play crucial roles in carcinogenesis and tumor invasion in pancreatic neoplasms. MUC1 and MUC4 are high molecular weight transmembrane mucins. These are overexpressed in many carcinomas, and high expression of these molecules is a risk factor associated with poor prognosis. We evaluated the methylation status of MUC1 and MUC4 promoter regions in pancreatic tissue samples from 169 patients with various pancreatic lesions by the methylation specific electrophoresis (MSE) method. These results were compared with expression of MUC1 and MUC4, several DNA methylation/demethylation factors (e.g. ten-eleven translocation or TET, and activation-induced cytidine deaminase or AID) and CAIX (carbonic anhydrase IX, as a hypoxia biomarker). These results were also analyzed with clinicopathological features including time of overall survival of PDAC patients. We show that the DNA methylation status of the promoters of MUC1 and MUC4 in pancreatic tissue correlates with the expression of MUC1 and MUC4 mRNA. In addition, the expression of several DNA methylation/demethylation factors show a significant correlation with MUC1 and MUC4 methylation status. Furthermore, CAIX expression significantly correlates with the expression of MUC1 and MUC4. Interestingly, our results indicate that low methylation of MUC1 and/or MUC4 promoters correlates with decreased overall survival. This is the first report to show a relationship between MUC1 and/or MUC4 methylation status and prognosis. Analysis of epigenetic changes in mucin genes may be of diagnostic utility and one of the prognostic predictors for patients with PDAC.
Collapse
Affiliation(s)
- Seiya Yokoyama
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan.,Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Eppley Institute for Research in Cancer, Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michiyo Higashi
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan.,Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Sho Kitamoto
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Monika Oeldorf
- Department of General and Visceral Surgery, University of Ulm, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, University of Ulm, Ulm, Germany
| | - Marko Kornmann
- Department of General and Visceral Surgery, University of Ulm, Ulm, Germany
| | - Kosei Maemura
- Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Edwin Wiest
- Eppley Institute for Research in Cancer, Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tomofumi Hamada
- Department of Oral Surgery, Kagoshima University Medical and Dental Hospital, Kagoshima, Japan
| | - Ikumi Kitazono
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Yuko Goto
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Takashi Tasaki
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Tsubasa Hiraki
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Kazuhito Hatanaka
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Yuko Mataki
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Hiroki Taguchi
- Department of Digestive and Life-Style Related Diseases, Human and Environmental Sciences, Health Research, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shinichi Hashimoto
- Department of Digestive and Life-Style Related Diseases, Human and Environmental Sciences, Health Research, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Akihide Tanimoto
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Suguru Yonezawa
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer, Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
18
|
Syren P, Andersson R, Bauden M, Ansari D. Epigenetic alterations as biomarkers in pancreatic ductal adenocarcinoma. Scand J Gastroenterol 2017; 52:668-673. [PMID: 28301276 DOI: 10.1080/00365521.2017.1301989] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 02/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) prognosis remains very poor and has only marginally improved during the last decades. Epigenetic alterations have been the focus of many recent studies and offer valuable options for PDAC detection, prognosis and treatment. DNA methylation, histone modifications and microRNA (miR) level changes can be used as biomarkers. These alterations occur early in carcinogenesis and may be specific for PDAC. Additionally, epigenetic alterations can be analyzed from cell-free DNA, free-circulating nucleosomes or shed tumor cells in blood. High-throughput methods are available for miR and DNA methylation level detection. In particular, multiple promising miR level changes have been discovered. No single epigenetic biomarker that offers a sufficient specificity has been discovered yet, but patterns containing multiple independent biomarkers exist.
Collapse
Affiliation(s)
- Pascal Syren
- a Department of Surgery , Clinical Sciences Lund, Lund University and Skåne University Hospital , Lund , Sweden
| | - Roland Andersson
- a Department of Surgery , Clinical Sciences Lund, Lund University and Skåne University Hospital , Lund , Sweden
| | - Monika Bauden
- a Department of Surgery , Clinical Sciences Lund, Lund University and Skåne University Hospital , Lund , Sweden
| | - Daniel Ansari
- a Department of Surgery , Clinical Sciences Lund, Lund University and Skåne University Hospital , Lund , Sweden
| |
Collapse
|
19
|
Niu L, Xu Z, Liu H, Cao H, Yang G. Intraductal tubulopapillary neoplasm accompanied by invasive carcinoma of the pancreas: A case report and review of the literature. Mol Clin Oncol 2017; 6:676-682. [PMID: 28529742 PMCID: PMC5431636 DOI: 10.3892/mco.2017.1216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/23/2017] [Indexed: 01/14/2023] Open
Abstract
Intraductal tubulopapillary neoplasms (ITPNs) are rare pancreatic neoplasms accounting for ~0.4% of pancreatic tumors. However, their clinicopathological characteristics have not been clearly determined and the number of available clinical studies on this type of tumor is limited at present. Due to the rare incidence of ITPN, diagnosis is often delayed. We herein present a unique case of a 38-year-old man who was diagnosed with ITPN accompanied with invasive carcinoma of the pancreas and underwent total pancreatectomy. The morphological characteristics of ITPN include closely packed tubular glands, without mucin secretion, accompanied with invasion of the loose connective tissue. The immunohistochemical staining suggested that the tumors did not originate from the gastrointestinal tract but rather from the bile duct. In addition, the Ki-67 positive staining rate of tumor cells was <20%. The microsatellite instability analysis demonstrated microsatellite stability, without detected gene mutations of epidermal growth factor receptor, Kirsten rat sarcoma viral oncogene homolog, neuroblastoma RAS viral oncogene homolog or B-Raf proto-oncogene. However, a mutation was identified in exon 9 of the P53 gene, the most frequently mutated gene in human cancer, which suggested the underlying mechanism of ITPN. On the basis of this case, the aim of this study was to summarize and review the relevant reports of ITPNs in recent years, in order to investigate the clinicopathological characteristics and differential diagnosis of ITPN.
Collapse
Affiliation(s)
- Li Niu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhigao Xu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Huan Liu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hong Cao
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Guifang Yang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
20
|
Yokoyama S, Higashi M, Tsutsumida H, Wakimoto J, Hamada T, Wiest E, Matsuo K, Kitazono I, Goto Y, Guo X, Hamada T, Yamada S, Hiraki T, Yonezawa S, Batra SK, Hollingsworth MA, Tanimoto A. TET1-mediated DNA hypomethylation regulates the expression of MUC4 in lung cancer. Genes Cancer 2017; 8:517-527. [PMID: 28680536 PMCID: PMC5489649 DOI: 10.18632/genesandcancer.139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/14/2017] [Indexed: 01/29/2023] Open
Abstract
Lung cancer remains a disease of high mortality, despite advanced diagnostic techniques. Mucins (MUC) play crucial roles in carcinogenesis and tumor invasion in lung neoplasms. Our immunohistochemistry (IHC) studies have shown that high MUC4 expression correlates with a poor outcome. We have also shown that the expression of several mucin genes in cancer cell lines is regulated by DNA methylation. We evaluated the expression level of MUC4, mRNA and several DNA hypomethylation factors in lung tissue samples from 33 patients with various lung lesions. The results indicated that the DNA methylation status of MUC4 matched the expression level of mRNA. In addition, the TET1 (Ten-Eleven Translocation) mRNA showed a significant correlation with the status of DNA methylation of MUC4. Furthermore, the treatment of a lung cancer cell line with TET1 siRNA caused a reduction in MUC4 mRNA expression. Thus, we suggest that TET1 mediated DNA hypomethylation plays a key role in the expression of MUC4. This is the first report that TET1 mediated DNA hypomethylation regulates the expression of MUC4 in lung cancer. The analysis of these epigenetic changes may be useful for diagnosing carcinogenic risk.
Collapse
Affiliation(s)
- Seiya Yokoyama
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Sakuragoaka, Japan
- Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
- Eppley Institute for Research in Cancer, Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, NE, USA
| | - Michiyo Higashi
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Sakuragoaka, Japan
- Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Hideaki Tsutsumida
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Sakuragoaka, Japan
| | - Jouji Wakimoto
- Department of Respiratory Medicine, Minami-kyushu National Hospital, Aira, Japan
| | - Tomofumi Hamada
- Department of Oral Surgery, Kagoshima University Medical and Dental Hospital, Sakuragoaka, Japan
| | - Edwin Wiest
- Eppley Institute for Research in Cancer, Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, NE, USA
| | - Kei Matsuo
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Sakuragoaka, Japan
| | - Ikumi Kitazono
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Sakuragoaka, Japan
| | - Yuko Goto
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Sakuragoaka, Japan
| | - Xin Guo
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Sakuragoaka, Japan
| | - Taiji Hamada
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Sakuragoaka, Japan
| | - Sohsuke Yamada
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Sakuragoaka, Japan
| | - Tsubasa Hiraki
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Sakuragoaka, Japan
| | - Suguru Yonezawa
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Sakuragoaka, Japan
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, NE, USA
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer, Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, NE, USA
| | - Akihide Tanimoto
- Department of Pathology, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Sakuragoaka, Japan
| |
Collapse
|
21
|
Hart PA, Topazian M, Raimondo M, Cruz-Monserrate Z, Fisher WE, Lesinski GB, Steen H, Conwell DL. Endoscopic Pancreas Fluid Collection: Methods and Relevance for Clinical Care and Translational Science. Am J Gastroenterol 2016; 111:1258-66. [PMID: 27481304 PMCID: PMC5568003 DOI: 10.1038/ajg.2016.297] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/01/2016] [Indexed: 02/08/2023]
Abstract
Pancreatic secretions have an important role in the regulation of a normal nutritional state but can be altered owing to a variety of pathophysiological mechanisms in the context of exocrine pancreatic disease. The development of an endoscopic technique for collection of pancreatic fluid, termed endoscopic pancreatic function testing, has led to improved understanding of these alterations and is particularly helpful to characterize chronic pancreatitis. In addition, investigators have found endoscopically collected pancreatic fluid to be a valuable biofluid for the purposes of translational science. Techniques such as proteomic, cytokine, genetic mutation, DNA methylation, and microRNA analyses, among others, can be utilized to gain a better understanding of the molecular characteristics of chronic pancreatitis and other pancreatic diseases. Endoscopic collection of pancreatic fluid is safe and relatively straightforward, permitting opportunities for longitudinal analysis of these translational markers throughout the course of disease. This manuscript summarizes our current knowledge of pancreatic fluid, with an emphasis on proper techniques for sample collection and handling, its clinical utility, and preliminary observations in translational science.
Collapse
Affiliation(s)
- Phil A. Hart
- Section of Pancreatic Disorders, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mark Topazian
- Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Massimo Raimondo
- Division of Gastroenterology and Hepatology, Mayo Clinic Jacksonville, Jacksonville, Florida, USA
| | - Zobeida Cruz-Monserrate
- Section of Pancreatic Disorders, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - William E. Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Gregory B. Lesinski
- Section of Pancreatic Disorders, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hanno Steen
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Msaachusetts, USA
| | - Darwin L. Conwell
- Section of Pancreatic Disorders, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
22
|
Kwak HA, Liu X, Allende DS, Pai RK, Hart J, Xiao SY. Interobserver variability in intraductal papillary mucinous neoplasm subtypes and application of their mucin immunoprofiles. Mod Pathol 2016; 29:977-84. [PMID: 27198568 DOI: 10.1038/modpathol.2016.93] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 12/28/2022]
Abstract
Intraductal papillary mucinous neoplasm is considered a precursor lesion to pancreatic adenocarcinoma. These are further classified into four histologic subtypes: gastric, intestinal, pancreatobiliary, and oncocytic. The first aim of this study was to assess the interobserver variability among five gastrointestinal pathologists in diagnosing intraductal papillary mucinous neoplasm subtypes by morphology alone. The second aim of the study was to compare intraductal papillary mucinous neoplasm subtypes, which received consensus diagnoses (≥80% agreement) with their respective mucin immunoprofiles (MUC1, MUC2, MUC5AC, MUC6, and CDX2). A consensus histologic subtype was reached in 58% of cases (29/50) among the five gastrointestinal pathologists. Overall there was moderate agreement (κ=0.41, P<0.01) in subtyping intraductal papillary mucinous neoplasms without the use of immunohistochemistry. The histologic subtype with the best interobserver agreement was intestinal type (κ=0.56, P<0.01) followed by pancreatobiliary, gastric, mixed, and oncocytic types (κ=0.43, P<0.01; κ=0.38, P<0.01; κ=0.17, P<0.01; κ=0.08, P<0.04, respectively). Both kappa values for mixed and oncocytic subtypes were likely artificially low due to the underrepresentation of these subtypes in this study and not a true indication of poor interobserver agreement. Following an intradepartmental consensus meeting between two gastrointestinal pathologists, 68% of cases (34/50) received a consensus intraductal papillary mucinous neoplasm subtype. Sixty-nine percent of cases (11/16) that did not receive a consensus intraductal papillary mucinous neoplasm subtype could be classified based on their respective immunoprofiles. Standardizing the use of immunohistochemistry with a mucin immunopanel (MUC1, MUC2, MUC5AC, and MUC6) may improve the agreement of diagnosing intraductal papillary mucinous neoplasm histologic subtypes.
Collapse
Affiliation(s)
- Heewon A Kwak
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Xiuli Liu
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Daniela S Allende
- Department of Pathology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Rish K Pai
- Department of Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - John Hart
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Shu-Yuan Xiao
- Department of Pathology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Crawley AS, O'Kennedy RJ. The need for effective pancreatic cancer detection and management: a biomarker-based strategy. Expert Rev Mol Diagn 2016; 15:1339-53. [PMID: 26394703 DOI: 10.1586/14737159.2015.1083862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer (Pa) is generally a very aggressive disease, with few effective approaches available for early diagnosis or therapy. These factors, combined with the aggressiveness and chemoresistance of Pa, results in a bleak outcome post-diagnosis. Cancer-related biomarkers have established capabilities for diagnosis, prognosis and screening and can be exploited to aid in earlier less-invasive diagnosis and optimization of targeted therapies. Pa has only one US FDA-approved biomarker, CA19-9, which has significant limitations. Hence, it is vital that novel biomarkers are identified and validated to diagnose, treat, control and monitor Pa. This review focuses on existing and potential Pa-associated markers and discusses how they may be applied in cohort for improved management of Pa.
Collapse
Affiliation(s)
- Aoife S Crawley
- a 1 School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Richard J O'Kennedy
- a 1 School of Biotechnology, Dublin City University, Dublin 9, Ireland.,b 2 Biomedical Diagnostics Institute, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
24
|
Abstract
CA19-9 (carbohydrate antigen 19-9, also called cancer antigen 19-9 or sialylated Lewis a antigen) is the most commonly used and best validated serum tumor marker for pancreatic cancer diagnosis in symptomatic patients and for monitoring therapy in patients with pancreatic adenocarcinoma. Normally synthesized by normal human pancreatic and biliary ductal cells and by gastric, colon, endometrial and salivary epithelia, CA 19-9 is present in small amounts in serum, and can be over expressed in several benign gastrointestinal disorders. Importantly, it exhibits a dramatic increase in its plasmatic levels during neoplastic disease. However, several critical aspects for its clinical use, such as false negative results in subjects with Lewis (a-b-) genotype and false positive elevation, occasional and transient, in patients with benign diseases, together with its poor positive predictive value (72.3 %), do not make it a good cancer-specific marker and renders it impotent as a screening tool. In the last years a large number of putative biomarkers for pancreatic cancer have been proposed, most of which is lacking of large scale validation. In addition, none of these has showed to possess the requisite sensitivity/specificity to be introduced in clinical use. Therefore, although with important limitations we well-know, CA 19-9 continues being the only pancreatic cancer marker actually in clinical use.
Collapse
|
25
|
Othman MO, Topazian MD. Pulling the Trigger on Pancreatic Cysts. Clin Gastroenterol Hepatol 2015; 13:1824-7. [PMID: 26122760 DOI: 10.1016/j.cgh.2015.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 06/22/2015] [Accepted: 06/22/2015] [Indexed: 02/07/2023]
Affiliation(s)
| | - Mark D Topazian
- Mayo Clinic, Division of Gastroenterology and Hepatology, Rochester, Minnesota
| |
Collapse
|
26
|
Exploring the role and diversity of mucins in health and disease with special insight into non-communicable diseases. Glycoconj J 2015; 32:575-613. [PMID: 26239922 DOI: 10.1007/s10719-015-9606-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
Mucins are major glycoprotein components of the mucus that coats the surfaces of cells lining the respiratory, digestive, gastrointestinal and urogenital tracts. They function to protect epithelial cells from infection, dehydration and physical or chemical injury, as well as to aid the passage of materials through a tract i.e., lubrication. They are also implicated in the pathogenesis of benign and malignant diseases of secretory epithelial cells. In Human there are two types of mucins, membrane-bound and secreted that are originated from mucous producing goblet cells localized in the epithelial cell layer or in mucous producing glands and encoded by MUC gene. Mucins belong to a heterogeneous family of high molecular weight proteins composed of a long peptidic chain with a large number of tandem repeats that form the so-called mucin domain. The molecular weight is generally high, ranging between 0.2 and 10 million Dalton and all mucins contain one or more domains which are highly glycosylated. The size and number of repeats vary between mucins and the genetic polymorphism represents number of repeats (VNTR polymorphisms), which means the size of individual mucins can differ substantially between individuals which can be used as markers. In human it is only MUC1 and MUC7 that have mucin domains with less than 40% serine and threonine which in turn could reduce number of PTS domains. Mucins can be considered as powerful two-edged sword, as its normal function protects from unwanted substances and organisms at an arm's length while, malfunction of mucus may be an important factor in human diseases. In this review we have unearthed the current status of different mucin proteins in understanding its role and function in various non-communicable diseases in human with special reference to its organ specific locations. The findings described in this review may be of direct relevance to the major research area in biomedicine with reference to mucin and mucin associated diseases.
Collapse
|
27
|
Hatzimichael E, Lagos K, Sim VR, Briasoulis E, Crook T. Epigenetics in diagnosis, prognostic assessment and treatment of cancer: an update. EXCLI JOURNAL 2014; 13:954-76. [PMID: 26417314 PMCID: PMC4464089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/29/2014] [Indexed: 11/06/2022]
Abstract
Cancer cells contain multiple genetic and epigenetic changes. The relative specificity of many epigenetic changes for neoplastic cells has allowed the identification of diagnostic, prognostic and predictive biomarkers for a number of solid tumors and hematological malignancies. Moreover, epigenetically-acting drugs are already in routine use for cancer and numerous additional agents are in clinical trials. Here, we review recent progress in the development and application of epigenetic strategies for the diagnosis, risk stratification and treatment of cancer.
Collapse
Affiliation(s)
| | - Konstantinos Lagos
- Department of Haematology, University Hospital of Ioannina, Ioannina, Greece
| | - Van Ren Sim
- Dundee Cancer Center, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | | | - Tim Crook
- Dundee Cancer Center, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|