1
|
Roberts EM, Yuan K, Chaves AM, Pierce ET, Cresswell R, Dupree R, Yu X, Blanton RL, Wu SZ, Bezanilla M, Dupree P, Haigler CH, Roberts AW. An alternate route for cellulose microfibril biosynthesis in plants. SCIENCE ADVANCES 2024; 10:eadr5188. [PMID: 39671498 PMCID: PMC11641006 DOI: 10.1126/sciadv.adr5188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Similar to cellulose synthases (CESAs), cellulose synthase-like D (CSLD) proteins synthesize β-1,4-glucan in plants. CSLDs are important for tip growth and cytokinesis, but it was unknown whether they form membrane complexes in vivo or produce microfibrillar cellulose. We produced viable CESA-deficient mutants of the moss Physcomitrium patens to investigate CSLD function without interfering CESA activity. Microscopy and spectroscopy showed that CESA-deficient mutants synthesize cellulose microfibrils that are indistinguishable from those in vascular plants. Correspondingly, freeze-fracture electron microscopy revealed rosette-shaped particle assemblies in the plasma membrane that are indistinguishable from CESA-containing rosette cellulose synthesis complexes (CSCs). Our data show that proteins other than CESAs, most likely CSLDs, produce cellulose microfibrils in P. patens protonemal filaments. The data suggest that the specialized roles of CSLDs in cytokinesis and tip growth are based on differential expression and different interactions with microtubules and possibly Ca2+, rather than structural differences in the microfibrils they produce.
Collapse
Affiliation(s)
- Eric M. Roberts
- Department of Biology, Rhode Island College, Providence, RI 02908, USA
| | - Kai Yuan
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Arielle M. Chaves
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Ethan T. Pierce
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Ray Dupree
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Xiaolan Yu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Richard L. Blanton
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Shu-Zon Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Candace H. Haigler
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Alison W. Roberts
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
2
|
Cosgrove D, Dupree P, Gomez ED, Haigler CH, Kubicki JD, Zimmer J. How Many Glucan Chains Form Plant Cellulose Microfibrils? A Mini Review. Biomacromolecules 2024; 25:6357-6366. [PMID: 39207939 PMCID: PMC11480985 DOI: 10.1021/acs.biomac.4c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Assessing the number of glucan chains in cellulose microfibrils (CMFs) is crucial for understanding their structure-property relationships and interactions within plant cell walls. This Review examines the conclusions and limitations of the major experimental techniques that have provided insights into this question. Small-angle X-ray and neutron scattering data predominantly support an 18-chain model, although analysis is complicated by factors such as fibril coalescence and matrix polysaccharide associations. Solid-state nuclear magnetic resonance (NMR) spectroscopy allows the estimation of the CMF width from the ratio of interior to surface glucose residues. However, there is uncertainty in the assignment of NMR spectral peaks to surface or interior chains. Freeze-fracture transmission electron microscopy images show cellulose synthase complexes to be "rosettes" of six lobes each consistent with a trimer of cellulose synthase enzymes, consistent with the synthesis of 18 parallel glucan chains in the CMF. Nevertheless, the number of chains in CMFs remains to be conclusively demonstrated.
Collapse
Affiliation(s)
- Daniel
J. Cosgrove
- Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Paul Dupree
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Enrique D. Gomez
- Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Candace H. Haigler
- Crop
Sciences and Department of Botany, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - James D. Kubicki
- Department
of Geological Sciences, UTEP University
of Texas El Paso, El Paso, Texas 79968, United States
| | - Jochen Zimmer
- Molecular
Physiology and Biological Physics, University
of Virginia, Charlottesville, Virginia 22903-1738, United States
| |
Collapse
|
3
|
Pedersen GB, Blaschek L, Frandsen KEH, Noack LC, Persson S. Cellulose synthesis in land plants. MOLECULAR PLANT 2023; 16:206-231. [PMID: 36564945 DOI: 10.1016/j.molp.2022.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
All plant cells are surrounded by a cell wall that provides cohesion, protection, and a means of directional growth to plants. Cellulose microfibrils contribute the main biomechanical scaffold for most of these walls. The biosynthesis of cellulose, which typically is the most prominent constituent of the cell wall and therefore Earth's most abundant biopolymer, is finely attuned to developmental and environmental cues. Our understanding of the machinery that catalyzes and regulates cellulose biosynthesis has substantially improved due to recent technological advances in, for example, structural biology and microscopy. Here, we provide a comprehensive overview of the structure, function, and regulation of the cellulose synthesis machinery and its regulatory interactors. We aim to highlight important knowledge gaps in the field, and outline emerging approaches that promise a means to close those gaps.
Collapse
Affiliation(s)
- Gustav B Pedersen
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Leonard Blaschek
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Kristian E H Frandsen
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Lise C Noack
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Staffan Persson
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark; Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Cosgrove DJ. Building an extensible cell wall. PLANT PHYSIOLOGY 2022; 189:1246-1277. [PMID: 35460252 PMCID: PMC9237729 DOI: 10.1093/plphys/kiac184] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 05/15/2023]
Abstract
This article recounts, from my perspective of four decades in this field, evolving paradigms of primary cell wall structure and the mechanism of surface enlargement of growing cell walls. Updates of the structures, physical interactions, and roles of cellulose, xyloglucan, and pectins are presented. This leads to an example of how a conceptual depiction of wall structure can be translated into an explicit quantitative model based on molecular dynamics methods. Comparison of the model's mechanical behavior with experimental results provides insights into the molecular basis of complex mechanical behaviors of primary cell wall and uncovers the dominant role of cellulose-cellulose interactions in forming a strong yet extensible network.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, Pennsylvania 16802, USA
| |
Collapse
|
5
|
Deligey F, Frank MA, Cho SH, Kirui A, Mentink-Vigier F, Swulius MT, Nixon BT, Wang T. Structure of In Vitro-Synthesized Cellulose Fibrils Viewed by Cryo-Electron Tomography and 13C Natural-Abundance Dynamic Nuclear Polarization Solid-State NMR. Biomacromolecules 2022; 23:2290-2301. [PMID: 35341242 PMCID: PMC9198983 DOI: 10.1021/acs.biomac.1c01674] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/16/2022] [Indexed: 12/25/2022]
Abstract
Cellulose, the most abundant biopolymer, is a central source for renewable energy and functionalized materials. In vitro synthesis of cellulose microfibrils (CMFs) has become possible using purified cellulose synthase (CESA) isoforms from Physcomitrium patens and hybrid aspen. The exact nature of these in vitro fibrils remains unknown. Here, we characterize in vitro-synthesized fibers made by CESAs present in membrane fractions of P. patens over-expressing CESA5 by cryo-electron tomography and dynamic nuclear polarization (DNP) solid-state NMR. DNP enabled measuring two-dimensional 13C-13C correlation spectra without isotope-labeling of the fibers. Results show structural similarity between in vitro fibrils and native CMF in plant cell walls. Intensity quantifications agree with the 18-chain structural model for plant CMF and indicate limited fibrillar bundling. The in vitro system thus reveals insights into cell wall synthesis and may contribute to novel cellulosic materials. The integrated DNP and cryo-electron tomography methods are also applicable to structural studies of other carbohydrate-based biomaterials.
Collapse
Affiliation(s)
- Fabien Deligey
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Mark A. Frank
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Sung Hyun Cho
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Alex Kirui
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Matthew T. Swulius
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, Hershey, Pennsylvania 17033, United States
| | - B. Tracy Nixon
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Tuo Wang
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
6
|
Nayeri S, Baghban Kohnehrouz B, Ahmadikhah A, Mahna N. CRISPR/Cas9-mediated P-CR domain-specific engineering of CESA4 heterodimerization capacity alters cell wall architecture and improves saccharification efficiency in poplar. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1197-1212. [PMID: 35266285 PMCID: PMC9129088 DOI: 10.1111/pbi.13803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 05/21/2023]
Abstract
Cellulose is the most abundant unique biopolymer in nature with widespread applications in bioenergy and high-value bioproducts. The large transmembrane-localized cellulose synthase (CESA) complexes (CSCs) play a pivotal role in the biosynthesis and orientation of the para-crystalline cellulose microfibrils during secondary cell wall (SCW) deposition. However, the hub CESA subunit with high potential homo/heterodimerization capacity and its functional effects on cell wall architecture, cellulose crystallinity, and saccharification efficiency remains unclear. Here, we reported the highly potent binding site containing four residues of Pro435, Trp436, Pro437, and Gly438 in the plant-conserved region (P-CR) of PalCESA4 subunit, which are involved in the CESA4-CESA8 heterodimerization. The CRISPR/Cas9-knockout mutagenesis in the predicted binding site results in physiological abnormalities, stunt growth, and deficient roots. The homozygous double substitution of W436Q and P437S and heterozygous double deletions of W436 and P437 residues potentially reduced CESA4-binding affinity resulting in normal roots, 1.5-2-fold higher plant growth and cell wall regeneration rates, 1.7-fold thinner cell wall, high hemicellulose content, 37%-67% decrease in cellulose content, high cellulose DP, 25%-37% decrease in cellulose crystallinity, and 50% increase in saccharification efficiency. The heterozygous deletion of W436 increases about 2-fold CESA4 homo/heterodimerization capacity led to the 50% decrease in plant growth and increase in cell walls thickness, cellulose content (33%), cellulose DP (20%), and CrI (8%). Our findings provide a strategy for introducing commercial CRISPR/Cas9-mediated bioengineered poplars with promising cellulose applications. We anticipate our results could create an engineering revolution in bioenergy and cellulose-based nanomaterial technologies.
Collapse
Affiliation(s)
- Shahnoush Nayeri
- Department of Plant Sciences and BiotechnologyFaculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | | | - Asadollah Ahmadikhah
- Department of Plant Sciences and BiotechnologyFaculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Nasser Mahna
- Department of Horticultural SciencesFaculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
7
|
Nicolas WJ, Fäßler F, Dutka P, Schur FKM, Jensen G, Meyerowitz E. Cryo-electron tomography of the onion cell wall shows bimodally oriented cellulose fibers and reticulated homogalacturonan networks. Curr Biol 2022; 32:2375-2389.e6. [PMID: 35508170 PMCID: PMC9240970 DOI: 10.1016/j.cub.2022.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 01/23/2023]
Abstract
One hallmark of plant cells is their cell wall. They protect cells against the environment and high turgor and mediate morphogenesis through the dynamics of their mechanical and chemical properties. The walls are a complex polysaccharidic structure. Although their biochemical composition is well known, how the different components organize in the volume of the cell wall and interact with each other is not well understood and yet is key to the wall's mechanical properties. To investigate the ultrastructure of the plant cell wall, we imaged the walls of onion (Allium cepa) bulbs in a near-native state via cryo-focused ion beam milling (cryo-FIB milling) and cryo-electron tomography (cryo-ET). This allowed the high-resolution visualization of cellulose fibers in situ. We reveal the coexistence of dense fiber fields bathed in a reticulated matrix we termed "meshing," which is more abundant at the inner surface of the cell wall. The fibers adopted a regular bimodal angular distribution at all depths in the cell wall and bundled according to their orientation, creating layers within the cell wall. Concomitantly, employing homogalacturonan (HG)-specific enzymatic digestion, we observed changes in the meshing, suggesting that it is-at least in part-composed of HG pectins. We propose the following model for the construction of the abaxial epidermal primary cell wall: the cell deposits successive layers of cellulose fibers at -45° and +45° relative to the cell's long axis and secretes the surrounding HG-rich meshing proximal to the plasma membrane, which then migrates to more distal regions of the cell wall.
Collapse
Affiliation(s)
- William J Nicolas
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Florian Fäßler
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Przemysław Dutka
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125, USA
| | - Florian K M Schur
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Grant Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125, USA; Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Elliot Meyerowitz
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA.
| |
Collapse
|
8
|
Chan J, Coen E. Interaction between Autonomous and Microtubule Guidance Systems Controls Cellulose Synthase Trajectories. Curr Biol 2020; 30:941-947.e2. [DOI: 10.1016/j.cub.2019.12.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/14/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023]
|
9
|
Zhong R, Cui D, Ye ZH. Secondary cell wall biosynthesis. THE NEW PHYTOLOGIST 2019; 221:1703-1723. [PMID: 30312479 DOI: 10.1111/nph.15537] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/28/2018] [Indexed: 05/19/2023]
Abstract
Contents Summary 1703 I. Introduction 1703 II. Cellulose biosynthesis 1705 III. Xylan biosynthesis 1709 IV. Glucomannan biosynthesis 1713 V. Lignin biosynthesis 1714 VI. Concluding remarks 1717 Acknowledgements 1717 References 1717 SUMMARY: Secondary walls are synthesized in specialized cells, such as tracheary elements and fibers, and their remarkable strength and rigidity provide strong mechanical support to the cells and the plant body. The main components of secondary walls are cellulose, xylan, glucomannan and lignin. Biochemical, molecular and genetic studies have led to the discovery of most of the genes involved in the biosynthesis of secondary wall components. Cellulose is synthesized by cellulose synthase complexes in the plasma membrane and the recent success of in vitro synthesis of cellulose microfibrils by a single recombinant cellulose synthase isoform reconstituted into proteoliposomes opens new doors to further investigate the structure and functions of cellulose synthase complexes. Most genes involved in the glycosyl backbone synthesis, glycosyl substitutions and acetylation of xylan and glucomannan have been genetically characterized and the biochemical properties of some of their encoded enzymes have been investigated. The genes and their encoded enzymes participating in monolignol biosynthesis and modification have been extensively studied both genetically and biochemically. A full understanding of how secondary wall components are synthesized will ultimately enable us to produce plants with custom-designed secondary wall composition tailored to diverse applications.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dongtao Cui
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
10
|
Polko JK, Kieber JJ. The Regulation of Cellulose Biosynthesis in Plants. THE PLANT CELL 2019; 31:282-296. [PMID: 30647077 PMCID: PMC6447023 DOI: 10.1105/tpc.18.00760] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 01/09/2019] [Indexed: 05/18/2023]
Abstract
Cell walls define the shape of plant cells, controlling the extent and orientation of cell elongation, and hence organ growth. The main load-bearing component of plant cell walls is cellulose, and how plants regulate its biosynthesis during development and in response to various environmental perturbations is a central question in plant biology. Cellulose is synthesized by cellulose synthase (CESA) complexes (CSCs) that are assembled in the Golgi apparatus and then delivered to the plasma membrane (PM), where they actively synthesize cellulose. CSCs travel along cortical microtubule paths that define the orientation of synthesis of the cellulose microfibrils. CSCs recycle between the PM and various intracellular compartments, and this trafficking plays an important role in determining the level of cellulose synthesized. In this review, we summarize recent findings in CESA complex organization, CESA posttranslational modifications and trafficking, and other components that interact with CESAs. We also discuss cell wall integrity maintenance, with a focus on how this impacts cellulose biosynthesis.
Collapse
Affiliation(s)
- Joanna K Polko
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
11
|
Kang X, Kirui A, Dickwella Widanage MC, Mentink-Vigier F, Cosgrove DJ, Wang T. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat Commun 2019; 10:347. [PMID: 30664653 PMCID: PMC6341099 DOI: 10.1038/s41467-018-08252-0] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/19/2018] [Indexed: 01/16/2023] Open
Abstract
Lignin is a complex aromatic biopolymer that strengthens and waterproofs plant secondary cell walls, enabling mechanical stability in trees and long-distance water transport in xylem. Lignin removal is a key step in paper production and biomass conversion to biofuels, motivating efforts to re-engineer lignin biosynthesis. However, the physical nature of lignin's interactions with wall polysaccharides is not well understood. Here we show that lignin self-aggregates to form highly hydrophobic and dynamically unique nanodomains, with extensive surface contacts to xylan. Solid-state NMR spectroscopy of intact maize stems, supported by dynamic nuclear polarization, reveals that lignin has abundant electrostatic interactions with the polar motifs of xylan. Lignin preferentially binds xylans with 3-fold or distorted 2-fold helical screw conformations, indicative of xylans not closely associated with cellulose. These findings advance our knowledge of the molecular-level organization of lignocellulosic biomass, providing the structural foundation for optimization of post-harvest processing for biofuels and biomaterials.
Collapse
Affiliation(s)
- Xue Kang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alex Kirui
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | | | | | - Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
12
|
Polko JK, Barnes WJ, Voiniciuc C, Doctor S, Steinwand B, Hill JL, Tien M, Pauly M, Anderson CT, Kieber JJ. SHOU4 Proteins Regulate Trafficking of Cellulose Synthase Complexes to the Plasma Membrane. Curr Biol 2018; 28:3174-3182.e6. [DOI: 10.1016/j.cub.2018.07.076] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/28/2018] [Accepted: 07/27/2018] [Indexed: 12/30/2022]
|
13
|
Klar V, Orelma H, Rautkoski H, Kuosmanen P, Harlin A. Spinning Approach for Cellulose Fiber Yarn Using a Deep Eutectic Solvent and an Inclined Channel. ACS OMEGA 2018; 3:10918-10926. [PMID: 31459203 PMCID: PMC6709781 DOI: 10.1021/acsomega.8b01458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/07/2018] [Indexed: 06/10/2023]
Abstract
We developed a spinning approach for a dope produced by treating softwood pulp with a deep eutectic solvent (DES). The DES enables formation of a sufficiently viscous spinnable gel-like suspension of fibers, which solidifies upon the removal of the DES. This solidification, however, requires a longer time compared to most conventional wet spinning processes. Consequently, the continuity of the spinning process has been constrained in previous work. Moreover, the ability to draw the incipient yarn to increase orientation has been limited. Here we present a continuous spinning approach where the fiber yarn properties and processability can be improved using an inclined channel. A combination of an air gap and an inclined ethanol stream transports and draws the incipient fiber yarn during spinning. The influence of syringe tip diameter, angle of the channel, ethanol flow rate, and twisting were studied experimentally. The improvements in the spinning process resulted in an increase in load bearing capability and ability to reduce the linear density of the fiber yarn.
Collapse
Affiliation(s)
- Ville Klar
- Department
of Mechanical Engineering, Aalto University
School of Engineering, P.O. Box 16300,
Aalto, FIN-00076 Espoo, Finland
| | - Hannes Orelma
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044 VTT Espoo, Finland
| | - Hille Rautkoski
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044 VTT Espoo, Finland
| | - Petri Kuosmanen
- Department
of Mechanical Engineering, Aalto University
School of Engineering, P.O. Box 16300,
Aalto, FIN-00076 Espoo, Finland
| | - Ali Harlin
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044 VTT Espoo, Finland
| |
Collapse
|
14
|
Nixon BT, Mansouri K, Singh A, Du J, Davis JK, Lee JG, Slabaugh E, Vandavasi VG, O’Neill H, Roberts EM, Roberts AW, Yingling YG, Haigler CH. Comparative Structural and Computational Analysis Supports Eighteen Cellulose Synthases in the Plant Cellulose Synthesis Complex. Sci Rep 2016; 6:28696. [PMID: 27345599 PMCID: PMC4921827 DOI: 10.1038/srep28696] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022] Open
Abstract
A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individual lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In summary, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains.
Collapse
Affiliation(s)
- B. Tracy Nixon
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16802, USA
| | - Katayoun Mansouri
- Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Abhishek Singh
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Juan Du
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16802, USA
| | - Jonathan K. Davis
- Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jung-Goo Lee
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Erin Slabaugh
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Hugh O’Neill
- Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Eric M. Roberts
- Department of Biology, Rhode Island College, Providence, RI 02908, USA
| | - Alison W. Roberts
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Yaroslava G. Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Candace H. Haigler
- Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
15
|
Environmental and Endogenous Control of Cortical Microtubule Orientation. Trends Cell Biol 2016; 26:409-419. [DOI: 10.1016/j.tcb.2016.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/29/2016] [Accepted: 02/03/2016] [Indexed: 12/31/2022]
|
16
|
Martoïa F, Dumont PJJ, Orgéas L, Belgacem MN, Putaux JL. On the origins of the elasticity of cellulose nanofiber nanocomposites and nanopapers: a micromechanical approach. RSC Adv 2016. [DOI: 10.1039/c6ra07176g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The elastic properties of cellulose nanofibril (NFC) nanocomposites and nanopapers are predicted by a multiscale network model that shows that the deformation mechanisms are governed by the bonds between rigid NFC segments and in the kinked regions.
Collapse
Affiliation(s)
- F. Martoïa
- Univ. Grenoble Alpes
- LGP2
- F-38000 Grenoble
- France
- CNRS
| | | | - L. Orgéas
- Univ. Grenoble Alpes
- 3SR Lab
- F-38000 Grenoble
- France
- CNRS
| | | | - J.-L. Putaux
- Univ. Grenoble Alpes
- CERMAV
- F-38000 Grenoble
- France
- CNRS
| |
Collapse
|
17
|
Liu Z, Persson S, Sánchez-Rodríguez C. At the border: the plasma membrane-cell wall continuum. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1553-63. [PMID: 25697794 DOI: 10.1093/jxb/erv019] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization.
Collapse
Affiliation(s)
- Zengyu Liu
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Staffan Persson
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Clara Sánchez-Rodríguez
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
18
|
López CA, Bellesia G, Redondo A, Langan P, Chundawat SPS, Dale BE, Marrink SJ, Gnanakaran S. MARTINI coarse-grained model for crystalline cellulose microfibers. J Phys Chem B 2015; 119:465-73. [PMID: 25417548 DOI: 10.1021/jp5105938] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Commercial-scale biofuel production requires a deep understanding of the structure and dynamics of its principal target: cellulose. However, an accurate description and modeling of this carbohydrate structure at the mesoscale remains elusive, particularly because of its overwhelming length scale and configurational complexity. We have derived a set of MARTINI coarse-grained force field parameters for the simulation of crystalline cellulose fibers. The model is adapted to reproduce different physicochemical and mechanical properties of native cellulose Iβ. The model is able not only to handle a transition from cellulose Iβ to another cellulose allomorph, cellulose IIII, but also to capture the physical response to temperature and mechanical bending of longer cellulose nanofibers. By developing the MARTINI model of a solid cellulose crystalline fiber from the building blocks of a soluble cellobiose coarse-grained model, we have provided a systematic way to build MARTINI models for other crystalline biopolymers.
Collapse
Affiliation(s)
- César A López
- Theoretical Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Cosgrove DJ. Re-constructing our models of cellulose and primary cell wall assembly. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:122-131. [PMID: 25460077 PMCID: PMC4293254 DOI: 10.1016/j.pbi.2014.11.001] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/03/2014] [Accepted: 11/03/2014] [Indexed: 05/18/2023]
Abstract
The cellulose microfibril has more subtlety than is commonly recognized. Details of its structure may influence how matrix polysaccharides interact with its distinctive hydrophobic and hydrophilic surfaces to form a strong yet extensible structure. Recent advances in this field include the first structures of bacterial and plant cellulose synthases and revised estimates of microfibril structure, reduced from 36 to 18 chains. New results also indicate that cellulose interactions with xyloglucan are more limited than commonly believed, whereas pectin–cellulose interactions are more prevalent. Computational results indicate that xyloglucan binds tightest to the hydrophobic surface of cellulose microfibrils. Wall extensibility may be controlled at limited regions (‘biomechanical hotspots’) where cellulose–cellulose contacts are made, potentially mediated by trace amounts of xyloglucan.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
21
|
Vain T, Crowell EF, Timpano H, Biot E, Desprez T, Mansoori N, Trindade LM, Pagant S, Robert S, Höfte H, Gonneau M, Vernhettes S. The Cellulase KORRIGAN Is Part of the Cellulose Synthase Complex. PLANT PHYSIOLOGY 2014; 165:1521-1532. [PMID: 24948829 PMCID: PMC4119035 DOI: 10.1104/pp.114.241216] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by a large relative molecular weight cellulose synthase complex (CSC), which comprises at least three distinct cellulose synthases. Cellulose synthesis in plants or bacteria also requires the activity of an endo-1,4-β-d-glucanase, the exact function of which in the synthesis process is not known. Here, we show, to our knowledge for the first time, that a leaky mutation in the Arabidopsis (Arabidopsis thaliana) membrane-bound endo-1,4-β-d-glucanase KORRIGAN1 (KOR1) not only caused reduced CSC movement in the plasma membrane but also a reduced cellulose synthesis inhibitor-induced accumulation of CSCs in intracellular compartments. This suggests a role for KOR1 both in the synthesis of cellulose microfibrils and in the intracellular trafficking of CSCs. Next, we used a multidisciplinary approach, including live cell imaging, gel filtration chromatography analysis, split ubiquitin assays in yeast (Saccharomyces cerevisiae NMY51), and bimolecular fluorescence complementation, to show that, in contrast to previous observations, KOR1 is an integral part of the primary cell wall CSC in the plasma membrane.
Collapse
Affiliation(s)
- Thomas Vain
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Elizabeth Faris Crowell
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Hélène Timpano
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Eric Biot
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Thierry Desprez
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Nasim Mansoori
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Luisa M Trindade
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Silvère Pagant
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Stéphanie Robert
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Herman Höfte
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Martine Gonneau
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| | - Samantha Vernhettes
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., S.P., S.R., H.H., M.G., S.V.);AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (T.V., E.F.C., H.T., E.B., T.D., H.H., M.G., S.V.); andWageningen University and Research Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands (N.M., L.M.T.)
| |
Collapse
|
22
|
Plant Cell Wall Polysaccharides: Structure and Biosynthesis. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_73-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|