1
|
Eisenhut M. Rhinorrhea and increased chloride secretion through the CFTR chloride channel-a systematic review. Eur Arch Otorhinolaryngol 2023; 280:4309-4318. [PMID: 37338585 DOI: 10.1007/s00405-023-08067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE Allergic and non-allergic rhinorrhea in the forms of acute or chronic rhinosinusitis can mean a watery nasal discharge that is disabling. Primary objective was to review the evidence supporting the hypothesis that rhinorrhea is due to increased chloride secretion through the CFTR chloride channel. METHODS The structure of the evidence review followed the EQUATOR Reporting Guidelines. Databases searched from inception to February 2022 included Pubmed, EMBASE and the Cochrane library using keywords "Rhinorrhea", "chloride", "chloride channel", "CFTR" and "randomized controlled trial". Quality assessment was according to the Oxford Centre for Evidence-based Medicine. RESULTS 49 articles were included. They included randomized controlled trials out of which subsets of data with the outcome of rhinorrhea on 6038 participants were analysed and in vitro and animal studies. The review revealed that drugs, which activate CFTR are associated with rhinorrhea. Viruses, which cause rhinorrhea like rhinovirus were found to activate CFTR. The chloride concentration in nasal fluid showed an increase in patients with viral upper respiratory tract infection. Increased hydrostatic tissue pressure, which is an activator of CFTR was observed in allergic upper airway inflammation. In this condition exhaled breath condensate chlorine concentration was found to be significantly increased. Drugs, which can reduce CFTR function including steroids, anti-histamines, sympathomimetic and anticholinergic drugs reduced rhinorrhea in randomized controlled trials. CONCLUSIONS A model of CFTR activation-mediated rhinorrhea explains the effectiveness of anticholinergic, sympathomimetic, anti-histamine and steroid drugs in reducing rhinorrhea and opens up avenues for further improvement of treatment by already known specific CFTR inhibitors.
Collapse
Affiliation(s)
- Michael Eisenhut
- Paediatric Department, Luton and Dunstable University Hospital, Luton, LU40DZ, UK.
| |
Collapse
|
2
|
Liu XY, Zhao Y, Jin LL, Pang Y, Yu B. Trans-ε-viniferin as an inhibitor of TMEM16A preventing intestinal smooth muscle contraction. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:867-879. [PMID: 36625145 DOI: 10.1080/10286020.2023.2165067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
TMEM16A regulator is an important tool to study the physiological functions and pathogenesis related to TMEM16A. In the present study, trans-ε-viniferin (TV) was identified as a TMEM16A inhibitor with inhibitory activity against TMEM16A mediated Cl- currents, which was reversible, without affecting intracytoplasmic Ca2+ concentration and TMEM16A protein expression. TV inhibited intestinal peristalsis and prolonged gastrointestinal transport time. TV could inhibit autonomic and Eact-stimulated intestinal contractility, and was equally effective in ACh- and HA-induced high contractile states. The results indicate that TV significantly inhibits the intestinal smooth muscle contraction, which may be applied in the treatment of TMEM16A-related intestinal dynamic abnormalities.
Collapse
Affiliation(s)
- Xin-Yi Liu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Yan Zhao
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Ling-Ling Jin
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yue Pang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Bo Yu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
3
|
D'Eusanio V, Genua F, Marchetti A, Morelli L, Tassi L. Characterization of Some Stilbenoids Extracted from Two Cultivars of Lambrusco- Vitis vinifera Species: An Opportunity to Valorize Pruning Canes for a More Sustainable Viticulture. Molecules 2023; 28:molecules28104074. [PMID: 37241814 DOI: 10.3390/molecules28104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Pruning canes from grape vines are valuable byproducts that contain resveratrol and other health-boosting stilbenoids. This study aimed to assess the effect of roasting temperature on the stilbenoid content of vine canes by comparing two Vitis vinifera cultivars, Lambrusco Ancellotta and Salamino. Samples were collected during different phases of the vine plant cycle. One set was collected in September after the grape harvest and was air-dried and analyzed. A second set was obtained during vine pruning in February and evaluated immediately after collection. The main stilbenoid identified in each sample was resveratrol (~100-2500 mg/kg), with significant levels of viniferin (~100-600 mg/kg) and piceatannol (~0-400 mg/kg). Their contents decreased with increasing roasting temperature and residence time on the plant. This study provides valuable insights into the use of vine canes in a novel and efficient manner, which could potentially benefit different industries. One potential use involves the roasted cane chips to accelerate the aging of vinegars and alcoholic beverages. This method is more efficient and cost-effective than traditional aging, which is slow and unfavorable from an industrial perspective. Furthermore, incorporating vine canes into maturation processes reduces viticulture waste and enhances the final products with health-promoting molecules, such as resveratrol.
Collapse
Affiliation(s)
- Veronica D'Eusanio
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Francesco Genua
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Andrea Marchetti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Interdepartmental Research Center BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42121 Reggio Emilia, Italy
| | - Lorenzo Morelli
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Lorenzo Tassi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Interdepartmental Research Center BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42121 Reggio Emilia, Italy
| |
Collapse
|
4
|
Nietert MM, Vinhoven L, Auer F, Hafkemeyer S, Stanke F. Comprehensive Analysis of Chemical Structures That Have Been Tested as CFTR Activating Substances in a Publicly Available Database CandActCFTR. Front Pharmacol 2021; 12:689205. [PMID: 34955819 PMCID: PMC8692862 DOI: 10.3389/fphar.2021.689205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Cystic fibrosis (CF) is a genetic disease caused by mutations in CFTR, which encodes a chloride and bicarbonate transporter expressed in exocrine epithelia throughout the body. Recently, some therapeutics became available that directly target dysfunctional CFTR, yet research for more effective substances is ongoing. The database CandActCFTR aims to provide detailed and comprehensive information on candidate therapeutics for the activation of CFTR-mediated ion conductance aiding systems-biology approaches to identify substances that will synergistically activate CFTR-mediated ion conductance based on published data. Results: Until 10/2020, we derived data from 108 publications on 3,109 CFTR-relevant substances via the literature database PubMed and further 666 substances via ChEMBL; only 19 substances were shared between these sources. One hundred and forty-five molecules do not have a corresponding entry in PubChem or ChemSpider, which indicates that there currently is no single comprehensive database on chemical substances in the public domain. Apart from basic data on all compounds, we have visualized the chemical space derived from their chemical descriptors via a principal component analysis annotated for CFTR-relevant biological categories. Our online query tools enable the search for most similar compounds and provide the relevant annotations in a structured way. The integration of the KNIME software environment in the back-end facilitates a fast and user-friendly maintenance of the provided data sets and a quick extension with new functionalities, e.g., new analysis routines. CandActBase automatically integrates information from other online sources, such as synonyms from PubChem and provides links to other resources like ChEMBL or the source publications. Conclusion: CandActCFTR aims to establish a database model of candidate cystic fibrosis therapeutics for the activation of CFTR-mediated ion conductance to merge data from publicly available sources. Using CandActBase, our strategy to represent data from several internet resources in a merged and organized form can also be applied to other use cases. For substances tested as CFTR activating compounds, the search function allows users to check if a specific compound or a closely related substance was already tested in the CF field. The acquired information on tested substances will assist in the identification of the most promising candidates for future therapeutics.
Collapse
Affiliation(s)
- Manuel Manfred Nietert
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany.,CIDAS Campus Institute Data Science, Georg-August-University, Göttingen, Germany
| | - Liza Vinhoven
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Auer
- Institute for Informatics, University of Augsburg, Augsburg, Germany
| | | | - Frauke Stanke
- German Center for Lung Research (DZL), Partner Site BREATH, Hannover, Germany.,Clinic for Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Wilson BAP, Thornburg CC, Henrich CJ, Grkovic T, O'Keefe BR. Creating and screening natural product libraries. Nat Prod Rep 2020; 37:893-918. [PMID: 32186299 PMCID: PMC8494140 DOI: 10.1039/c9np00068b] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2020The National Cancer Institute of the United States (NCI) has initiated a Cancer Moonshot program entitled the NCI Program for Natural Product Discovery. As part of this effort, the NCI is producing a library of 1 000 000 partially purified natural product fractions which are being plated into 384-well plates and provided to the research community free of charge. As the first 326 000 of these fractions have now been made available, this review seeks to describe the general methods used to collect organisms, extract those organisms, and create a prefractionated library. Importantly, this review also details both cell-based and cell-free bioassay methods and the adaptations necessary to those methods to productively screen natural product libraries. Finally, this review briefly describes post-screen dereplication and compound purification and scale up procedures which can efficiently identify active compounds and produce sufficient quantities of natural products for further pre-clinical development.
Collapse
Affiliation(s)
- Brice A P Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, USA.
| | | | | | | | | |
Collapse
|
6
|
Liu JP, Chen BL, Zhang MZ, Huang ZW, Zhang HR, Xu C, Li J, Liu ZW, Jiang F, Li X, Robinson N. Chinese herbal medicine for the treatment of human immunodeficiency virus/acquired immune deficiency syndrome-associated diarrhea: A protocol for the systematic review and meta-analysis of randomized clinical trials. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020. [DOI: 10.4103/wjtcm.wjtcm_74_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Tosco A, Villella VR, Raia V, Kroemer G, Maiuri L. Cystic Fibrosis: New Insights into Therapeutic Approaches. CURRENT RESPIRATORY MEDICINE REVIEWS 2020. [DOI: 10.2174/1573398x15666190702151613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the identification of Cystic Fibrosis (CF) as a disease in 1938 until 2012, only
therapies to treat symptoms rather than etiological therapies have been used to treat the disease. Over
the last few years, new technologies have been developed, and gene editing strategies are now
moving toward a one-time cure. This review will summarize recent advances in etiological therapies
that target the basic defect in the CF Transmembrane Receptor (CFTR), the protein that is mutated in
CF. We will discuss how newly identified compounds can directly target mutated CFTR to improve
its function. Moreover, we will discuss how proteostasis regulators can modify the environment in
which the mutant CFTR protein is synthesized and decayed, thus restoring CFTR function. The
future of CF therapies lies in combinatory therapies that may be personalized for each CF patient.
Collapse
Affiliation(s)
- Antonella Tosco
- Department of Translational Medical Sciences, Pediatric Unit, Regional Cystic Fibrosis Center, Federico II University, Naples 80131, Italy
| | - Valeria R. Villella
- Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Valeria Raia
- Department of Translational Medical Sciences, Pediatric Unit, Regional Cystic Fibrosis Center, Federico II University, Naples 80131, Italy
| | - Guido Kroemer
- Equipe11 labellisee Ligue Nationale Contrele Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Luigi Maiuri
- Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
8
|
Villella VR, Tosco A, Esposito S, Bona G, Raia V, Maiuri L. Mutation-specific therapies and drug repositioning in cystic fibrosis. Minerva Pediatr 2019; 71:287-296. [DOI: 10.23736/s0026-4946.19.05506-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Tosco A, Villella VR, Castaldo A, Kroemer G, Maiuri L, Raia V. Repurposing therapies for the personalised treatment of cystic fibrosis. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1483231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Antonella Tosco
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Valeria R. Villella
- European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Alice Castaldo
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Guido Kroemer
- Equipe11 labellisée Ligue Nationale Contrele Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Paris, Sorbonne Paris Cité, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, HôpitalEuropéen Georges Pompidou, AP-HP, Paris, France
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Valeria Raia
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
10
|
Yu B, Jiang Y, Zhang B, Yang H, Ma T. Resveratrol dimer trans-ε-viniferin prevents rotaviral diarrhea in mice by inhibition of the intestinal calcium-activated chloride channel. Pharmacol Res 2017; 129:453-461. [PMID: 29155014 DOI: 10.1016/j.phrs.2017.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/27/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
We previously identified, by a natural-product screen, resveratrol oligomers as inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Here, we report the resveratrol dimer trans-ε-viniferin (TV) and tetramer r-2-viniferin (RV) as inhibitors of the intestinal calcium-activated chloride channel (CaCC) and demonstrate their antisecretory efficacy in a neonatal mouse model of rotaviral diarrhea. Short-circuit measurements show inhibition of CaCC current in the human colonic cell line HT-29 by TV and RV with IC50∼1 and 20μM, respectively. TV primarily inhibited the physiologically relevant, long-term CaCC current following agonist stimulation, without effect on cytoplasmic Ca2+ signaling. TV and RV inhibited short-circuit current in mouse colon as well. In a neonatal mouse model of rotaviral secretory diarrhea produced by oral inoculation with rotavirus, 2μg TV or 11μg RV inhibited secretory diarrhea by >50%, without effect on the rotaviral infection. Our results support the antisecretory efficacy of non-toxic, natural-product resveratrol oligomers for diarrheas produced by CaCC activation. Because these compounds also inhibit the CFTR chloride channel, they may be useful for antisecretory therapy of a wide range of diarrheas.
Collapse
Affiliation(s)
- Bo Yu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, PR China
| | - Yu Jiang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, PR China; College of Life Science, Jilin Agricultural University, Changchun, PR China
| | - Bo Zhang
- Institute of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Hong Yang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, PR China.
| | - Tonghui Ma
- Institute of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.
| |
Collapse
|
11
|
Yu B, Jiang Y, Jin L, Ma T, Yang H. Role of Quercetin in Modulating Chloride Transport in the Intestine. Front Physiol 2016; 7:549. [PMID: 27932986 PMCID: PMC5120089 DOI: 10.3389/fphys.2016.00549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/01/2016] [Indexed: 12/17/2022] Open
Abstract
Epithelial chloride channels provide the pathways for fluid secretion in the intestine. Cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride channels (CaCCs) are the main chloride channels in the luminal membrane of enterocytes. These transmembrane proteins play important roles in many physiological processes. In this study, we have identified a flavonoid quercetin as a modulator of CaCC chloride channel activity. Fluorescence quenching assay showed that quercetin activated Cl− transport in a dose-dependent manner, with EC50 ~37 μM. Short-circuit current analysis confirmed that quercetin activated CaCC-mediated Cl− currents in HT-29 cells that can be abolished by CaCCinh-A01. Ex vivo studies indicated that application of quercetin to mouse ileum and colon on serosal side resulted in activation of CFTR and CaCC-mediated Cl− currents. Notably, we found that quercetin exhibited inhibitory effect against ANO1 chloride channel activity in ANO1-expressing FRT cells and decreased mouse intestinal motility. Quercetin-stimulated short-circuit currents in mouse ileum was multi-component, which included elevation of Ca2+ concentration through L-type calcium channel and activation of basolateral NKCC, Na+/K+-ATPase, and K+ channels. In vivo studies further revealed that quercetin promoted fluid secretion in mouse ileum. The modulatory effect of quercetin on CaCC chloirde channels may therefore represent a potential therapeutic strategy for treating CaCC-related diseases like constipation, secretory diarrhea and hypertension. The inverse effects of quercetin on CaCCs provided evidence that ANO1 and intestinal epithelial CaCCs are different calcium-activated chloride channels.
Collapse
Affiliation(s)
- Bo Yu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University Dalian, China
| | - Yu Jiang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University Dalian, China
| | - Lingling Jin
- College of Basic Medical Sciences, Dalian Medical University Dalian, China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University Dalian, China
| | - Hong Yang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University Dalian, China
| |
Collapse
|
12
|
Mutyam V, Du M, Xue X, Keeling KM, White EL, Bostwick JR, Rasmussen L, Liu B, Mazur M, Hong JS, Falk Libby E, Liang F, Shang H, Mense M, Suto MJ, Bedwell DM, Rowe SM. Discovery of Clinically Approved Agents That Promote Suppression of Cystic Fibrosis Transmembrane Conductance Regulator Nonsense Mutations. Am J Respir Crit Care Med 2016; 194:1092-1103. [PMID: 27104944 PMCID: PMC5114449 DOI: 10.1164/rccm.201601-0154oc] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/21/2016] [Indexed: 01/03/2023] Open
Abstract
RATIONALE Premature termination codons (PTCs) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). Several agents are known to suppress PTCs but are poorly efficacious or toxic. OBJECTIVES To determine whether there are clinically available agents that elicit translational readthrough and improve CFTR function sufficient to confer therapeutic benefit to patients with CF with PTCs. METHODS Two independent screens, firefly luciferase and CFTR-mediated transepithelial chloride conductance assay, were performed on a library of 1,600 clinically approved compounds using fisher rat thyroid cells stably transfected with stop codons. Select agents were further evaluated using secondary screening assays including short circuit current analysis on primary cells from patients with CF. In addition, the effect of CFTR modulators (ivacaftor) was tested in combination with the most efficacious agents. MEASUREMENTS AND MAIN RESULTS From the primary screen, 48 agents were selected as potentially active. Following confirmatory tests in the transepithelial chloride conductance assay and prioritizing agents based on favorable pharmacologic properties, eight agents were advanced for secondary screening. Ivacaftor significantly increased short circuit current following forskolin stimulation in cells treated with pyranoradine tetraphosphate, potassium p-aminobenzoate, and escin as compared with vehicle control. Escin, an herbal agent, consistently induced readthrough activity as demonstrated by enhanced CFTR expression and function in vitro. CONCLUSIONS Clinically approved drugs identified as potential readthrough agents, in combination with ivacaftor, may induce nonsense suppression to restore therapeutic levels of CFTR function. One or more agents may be suitable to advance to human testing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marina Mazur
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Jeong S. Hong
- Gregory Fleming James Cystic Fibrosis Research Center
- Department of Cell Developmental and Integrative Biology, and
| | | | - Feng Liang
- Cystic Fibrosis Foundation Therapeutics, Boston, Massachusetts
| | - Haibo Shang
- Cystic Fibrosis Foundation Therapeutics, Boston, Massachusetts
| | - Martin Mense
- Cystic Fibrosis Foundation Therapeutics, Boston, Massachusetts
| | | | - David M. Bedwell
- Department of Microbiology
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Steven M. Rowe
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
- Department of Cell Developmental and Integrative Biology, and
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
13
|
Karaki SI, Ishikawa J, Tomizawa Y, Kuwahara A. Effects of ε-viniferin, a dehydrodimer of resveratrol, on transepithelial active ion transport and ion permeability in the rat small and large intestinal mucosa. Physiol Rep 2016; 4:4/9/e12790. [PMID: 27162263 PMCID: PMC4873638 DOI: 10.14814/phy2.12790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 04/18/2016] [Indexed: 12/28/2022] Open
Abstract
ε-Viniferin is a dehydrodimer of resveratrol, a polyphenol synthesized in many plants, including grapevine. The present study investigated the effects of ε-viniferin and resveratrol on epithelial secretory and barrier functions in isolated rat small and large intestinal mucosa. Mucosa-submucosa tissue preparations of various segments of the rat large and small intestines were mounted on Ussing chambers, and short-circuit current (Isc) and tissue conductance (Gt) were continuously measured. The mucosal addition of ε-viniferin (>10(-5) mol/L) and resveratrol (>10(-4) mol/L) to the cecal mucosa, which was the most sensitive region, induced an increase in Isc and a rapid phase decrease (P-1) followed by rapid (P-2) and broad (P-3) peak increases in Gt in concentration-dependent manners. Mucosal ε-viniferin (10(-4) mol/L), but not resveratrol (10(-4) mol/L), increased the permeability of FITC-conjugated dextran (4 kDa). The mucosal ε-viniferin-evoked changes in Isc (Cl(-) secretion), but not in Gt, were attenuated by a selective cyclooxygenase (COX)-1 inhibitor and a selective EP4 prostaglandin receptor. The mucosal ε-viniferin-evoked increase in Isc was partially attenuated, and P-2, but not P-1 or P-3, change in Gt was abolished by a transient receptor potential cation channel, subfamily A, member 1 (TRPA1) inhibitor. Moreover, the mucosal ε-viniferin concentration-dependently attenuated the mucosal propionate (1 mmol/L)-evoked increases in Isc and Gt Immunohistochemical studies revealed COX-1-immunoreactive epithelial cells in the cecal crypt. The present study showed that mucosal ε-viniferin modulated transepithelial ion transport and permeability, possibly by activating sensory epithelial cells expressing COX-1 and TRPA1. Moreover, mucosal ε-viniferin decreased mucosal sensitivity to other luminal molecules such as short-chain fatty acids. In conclusion, these results suggest that ε-viniferin modifies intestinal mucosal transport and barrier functions.
Collapse
Affiliation(s)
- Shin-Ichiro Karaki
- Laboratory of Physiology, Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka, Japan
| | - Junji Ishikawa
- FANCL Research Institute, FANCL Corporation, Yokohama, Japan
| | - Yuka Tomizawa
- Laboratory of Physiology, Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka, Japan
| | - Atsukazu Kuwahara
- Laboratory of Physiology, Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
14
|
Abstract
The recent FDA approval of two drugs to treat the basic defect in cystic fibrosis has given hope to patients and their families battling this devastating disease. Over many years, with heavy financial investment from Vertex Pharmaceuticals and the Cystic Fibrosis Foundation, pre-clinical evaluation of thousands of synthetic drugs resulted in the production of Kalydeco and Orkambi. Yet, despite the success of this endeavor, many other compounds have been proposed as therapeutic agents in the treatment of CF. Of note, several of these compounds are naturally occurring, and are present in spices from the grocery store and over the counter preparations in health food stores. In this short review, we look at three such compounds, genistein, curcumin, and resveratrol, and evaluate the scientific support for their use as therapeutic agents in the treatment of patients with CF.
Collapse
Affiliation(s)
- Isha Dey
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, Illinois, USA
| | - Kalpit Shah
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, Illinois, USA
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, Illinois, USA
| |
Collapse
|
15
|
Ohara K, Kusano K, Kitao S, Yanai T, Takata R, Kanauchi O. ε-Viniferin, a resveratrol dimer, prevents diet-induced obesity in mice. Biochem Biophys Res Commun 2015; 468:877-82. [PMID: 26596701 DOI: 10.1016/j.bbrc.2015.11.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023]
Abstract
Red wines are thought to be one of the major dietary sources of trans-resveratrol. The beneficial effects of t-resveratrol against metabolic disorders have been well characterized, however, red wines also contain various resveratrol derivatives whose health benefits have not been completely elucidated. In this report, we investigated ε-viniferin, a resveratrol dimer, which is present at comparable concentrations to t-resveratrol in red wines, and has higher anti-adipogenesis activity in 3T3-L1 cells. In addition, ε-viniferin was more effective than t-resveratrol in its anti-obesity and anti-inflammatory effects in high-fat diet fed mice. These results suggested ε-viniferin may be one of the active ingredients against metabolic disorders in red wines, in addition to t-resveratrol.
Collapse
Affiliation(s)
- Kazuaki Ohara
- Kirin Company, Limited, Research Laboratories for Health Science and Food Technologies, Research and Development Division, 1-13-5, Fukuura Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Kaori Kusano
- Kirin Company, Limited, Research Laboratories for Health Science and Food Technologies, Research and Development Division, 1-13-5, Fukuura Kanazawa-ku, Yokohama 236-0004, Japan
| | - Sayoko Kitao
- Kirin Company, Limited, Research Laboratories for Health Science and Food Technologies, Research and Development Division, 1-13-5, Fukuura Kanazawa-ku, Yokohama 236-0004, Japan
| | - Takaaki Yanai
- Mercian Corporation, New Product & Process Developments, 4-9-1 Johnan, Fujisawa, Kanagawa 251-0057, Japan
| | - Ryoji Takata
- Mercian Corporation, New Product & Process Developments, 4-9-1 Johnan, Fujisawa, Kanagawa 251-0057, Japan
| | - Osamu Kanauchi
- Kirin Company, Limited, Research Laboratories for Health Science and Food Technologies, Research and Development Division, 1-13-5, Fukuura Kanazawa-ku, Yokohama 236-0004, Japan
| |
Collapse
|
16
|
Jai Y, Shah K, Bridges RJ, Bradbury NA. Evidence against resveratrol as a viable therapy for the rescue of defective ΔF508 CFTR. Biochim Biophys Acta Gen Subj 2015; 1850:2377-84. [PMID: 26342647 DOI: 10.1016/j.bbagen.2015.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/10/2015] [Accepted: 08/31/2015] [Indexed: 01/23/2023]
Abstract
BACKGROUND Resveratrol, a natural phenolic compound, has been reported to rescue mutant ΔF508 CFTR in expression systems and primary epithelial cells. Although this implies a therapeutic benefit to patients with CF, investigations were performed using resveratrol concentrations greatly in excess of those achievable in plasma. We evaluated the efficacy of resveratrol as a CFTR corrector in relevant primary airway cells, using physiologically achievable resveratrol concentrations. METHODS Cells expressing wt or ΔF508 CFTR were exposed to chronic or acute resveratrol. CFTR mRNA and protein expression were monitored. The effects of resveratrol on primary ΔF508 human airway cells were evaluated by equivalent current analysis using modified Ussing chambers. RESULTS Consistent with previously published data in heterologous expression systems, high doses of resveratrol increased CFTR expression; however physiologically relevant concentrations were without effect. In contrast to heterologous expression systems, resveratrol was unable to increase mutant CFTR channel activity in primary airway cells. Elevated amiloride-sensitive currents, indicative of sodium transport and characteristically elevated in CF airway cells, were also unaffected by resveratrol. CONCLUSIONS High concentrations of resveratrol can increase CFTR mRNA and protein in some cell types. In addition, acute resveratrol exposure can stimulate CFTR mediated chloride secretion, probably by increasing cellular cAMP levels. Resveratrol at physiologically achievable levels yielded no benefit in primary ΔF508 airway cells, either in terms of amiloride-sensitive currents of CFTR currents. GENERAL SIGNIFICANCE Taken together, our results do not support the use of resveratrol supplements as a therapy for patients with cystic fibrosis. It is possible that further modifications of the resveratrol backbone would yield a more efficacious compound.
Collapse
Affiliation(s)
- Ying Jai
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kalpit Shah
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Robert J Bridges
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
17
|
Yang H, Ma T. F508del-cystic fibrosis transmembrane regulator correctors for treatment of cystic fibrosis: a patent review. Expert Opin Ther Pat 2015; 25:991-1002. [PMID: 25971311 DOI: 10.1517/13543776.2015.1045878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is an autosomal recessive genetic disease caused by malfunction of CF transmembrane regulator (CFTR). The deletion of a phenylalanine at residue 508 (F508del) is the most common mutation that causes cellular processing, chloride channel gating and protein stability defects in CFTR. Pharmacological modulators of F508del-CFTR, aimed at correcting the cellular processing defect (correctors) and the gating defect (potentiators) in CFTR protein, are regarded as promising therapeutic agents for CF disease. Endeavors in searching F508del-CFTR modulators have shown encouraging results, with several small-molecule compounds having entered clinical trials or even represented clinical options. AREAS COVERED This review covers the discovery of F508del-CFTR correctors described in both patents (2005 - present) and scientific literatures. EXPERT OPINION Cyclopropane carboxamide derivatives of CFTR correctors continue to dominate in this area, among which lumacaftor (a NBD1-MSD1/2 interface stabilizer) is the most promising compound and is now under the priority review by US FDA. However, the abrogation effect of ivacaftor (potentiator) on lumacaftor suggests the requirement of discovering new correctors and potentiators that can cooperate well. Integration screening for simultaneously identifying combinations of correctors (particularly NBD1 stabilizer) and potentiators should provide an alternative strategy. A recently reported natural product fraction library may be useful for the integration screening.
Collapse
Affiliation(s)
- Hong Yang
- a 1 School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University , Dalian 116029, P.R. China +86 411 85827085 ; +86 411 85827068 ;
| | | |
Collapse
|
18
|
Chen L, Yu B, Zhang Y, Gao X, Zhu L, Ma T, Yang H. Bioactivity-guided fractionation of an antidiarrheal Chinese herb Rhodiola kirilowii (Regel) Maxim reveals (-)-epicatechin-3-gallate and (-)-epigallocatechin-3-gallate as inhibitors of cystic fibrosis transmembrane conductance regulator. PLoS One 2015; 10:e0119122. [PMID: 25747701 PMCID: PMC4352019 DOI: 10.1371/journal.pone.0119122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/22/2015] [Indexed: 02/02/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is the principal apical route for transepithelial fluid transport induced by enterotoxin. Inhibition of CFTR has been confirmed as a pharmaceutical approach for the treatment of secretory diarrhea. Many traditional Chinese herbal medicines, like Rhodiola kirilowii (Regel) Maxim, have long been used for the treatment of secretory diarrhea. However, the active ingredients responsible for their therapeutic effectiveness remain unknown. The purpose of this study is to identify CFTR inhibitors from Rhodiola kirilowii (Regel) Maxim via bioactivity-directed isolation strategy. We first identified fractions of Rhodiola kirilowii (Regel) Maxim that inhibited CFTR Cl- channel activity. Further bioactivity-directed fractionation led to the identification of (-)–epigallocatechin-3-gallate (EGCG) as CFTR Cl- channel inhibitor. Analysis of 5 commercially available EGCG analogs including (+)–catechins (C), (-)–epicatechin (EC), (-)–epigallocatechin (EGC), (-)–epicatechin-3-gallate (ECG) and EGCG revealed that ECG also had CFTR inhibitory activity. EGCG dose-dependently and reversibly inhibited CFTR Cl- channel activity in transfected FRT cells with an IC50 value around 100 μM. In ex vivo studies, EGCG and ECG inhibited CFTR-mediated short-circuit currents in isolated rat colonic mucosa in a dose-dependent manner. In an intestinal closed-loop model in mice, intraluminal application of EGCG (10 μg) and ECG (10 μg) significantly reduced cholera toxin-induced intestinal fluid secretion. CFTR Cl- channel is a molecular target of natural compounds EGCG and ECG. CFTR inhibition may account, at least in part, for the antidiarrheal activity of Rhodiola kirilowii (Regel) Maxim. EGCG and ECG could be new lead compounds for development of CFTR-related diseases such as secretory diarrhea.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116029, P. R. China
| | - Bo Yu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116029, P. R. China
| | - Yaofang Zhang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, P. R. China
| | - Xin Gao
- School of Medicine, Yanbian University, Yanji, 133002, P. R. China
| | - Liang Zhu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, P. R. China
| | - Tonghui Ma
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116029, P. R. China
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, P. R. China
| | - Hong Yang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116029, P. R. China
- * E-mail:
| |
Collapse
|
19
|
Houillé B, Besseau S, Courdavault V, Oudin A, Glévarec G, Delanoue G, Guérin L, Simkin AJ, Papon N, Clastre M, Giglioli-Guivarc'h N, Lanoue A. Biosynthetic origin of E-resveratrol accumulation in grape canes during postharvest storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1631-8. [PMID: 25598452 DOI: 10.1021/jf505316a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Grape canes are vineyard waste products containing valuable phytochemicals of medicine and agriculture interest. Grape canes storage is critical for the accumulation of these bioactive compounds. In the present study, we investigated the changes in stilbenoid phytochemical composition during grape cane storage and the influence of the temperature on final concentrations. A strong increase in the concentration of the monomer E-resveratrol (approximately 40-fold) was observed during the first 6 weeks of storage at 20 °C in eight different grape varieties without any change in oligomer concentrations. The E-resveratrol accumulation was temperature-dependent with an optimal range at 15-20 °C. A 2 h heat-shock treatment aiming at protein denaturation inhibited E-resveratrol accumulation. The constitutive expression of key genes involved in the stilbene precursor biosynthesis along with an induction of stilbene synthase (STS) expression during the first weeks of storage contribute to a de novo biosynthesis of E-resveratrol in pruned wood grapes.
Collapse
Affiliation(s)
- Benjamin Houillé
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François-Rabelais de Tours , F-37200 Tours, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jiang Y, Yu B, Fang F, Cao H, Ma T, Yang H. Modulation of Chloride Channel Functions by the Plant Lignan Compounds Kobusin and Eudesmin. FRONTIERS IN PLANT SCIENCE 2015; 6:1041. [PMID: 26635857 PMCID: PMC4658577 DOI: 10.3389/fpls.2015.01041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/09/2015] [Indexed: 05/05/2023]
Abstract
Plant lignans are diphenolic compounds widely present in vegetables, fruits, and grains. These compounds have been demonstrated to have protective effect against cancer, hypertension and diabetes. In the present study, we showed that two lignan compounds, kobusin and eudesmin, isolated from Magnoliae Flos, could modulate intestinal chloride transport mediated by cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride channels (CaCCs). The compounds activated CFTR channel function in both FRT cells and in HT-29 cells. The modulating effects of kobusin and eudesmin on the activity of CaCCgie (CaCC expressed in gastrointestinal epithelial cells) were also investigated, and the result showed that both compounds could stimulate CaCCgie-mediated short-circuit currents and the stimulation was synergistic with ATP. In ex vivo studies, both compounds activated CFTR and CaCCgie chloride channel activities in mouse colonic epithelia. Remarkably, the compounds showed inhibitory effects toward ANO1/CaCC-mediated short-circuit currents in ANO1/CaCC-expressing FRT cells, with IC50 values of 100 μM for kobusin and 200 μM for eudesmin. In charcoal transit study, both compounds mildly reduced gastrointestinal motility in mice. Taken together, these results revealed a new kind of activity displayed by the lignan compounds, one that is concerned with the modulation of chloride channel function.
Collapse
Affiliation(s)
- Yu Jiang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University Dalian, China
| | - Bo Yu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University Dalian, China
| | - Fang Fang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University Dalian, China
| | - Huanhuan Cao
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University Dalian, China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University Dalian, China
| | - Hong Yang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University Dalian, China
| |
Collapse
|
21
|
Jiang Y, Yu B, Wang X, Sui Y, Zhang Y, Yang S, Yang H, Ma T. Stimulation effect of wide type CFTR chloride channel by the naturally occurring flavonoid tangeretin. Fitoterapia 2014; 99:284-91. [PMID: 25451794 DOI: 10.1016/j.fitote.2014.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 11/16/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed in the apical membrane of serous epithelial cells. Both deficiency and overactivation of CFTR may cause fluid and salt secretion related diseases. In the present study, we identified tangeretin from Pericarpium Citri Reticulatae Viride as a CFTR activator using high-throughput screening based on FRT cell-based fluorescence assay. The activation effect of tangeretin on CFTR chloride channel and the possible underlying mechanisms were investigated. Fluorescence quenching tests showed that tangeretin dose- and time-dependently activated CFTR chloride channel, the activity had rapid and reversible characteristics and the activation effect could be completely reversed by the CFTR specific blocker CFTRinh-172. Primary mechanism studies indicated that the activation effect of tangeretin on CFTR chloride channel was FSK dependent as well as had additional effect with FSK and IBMX suggesting that tangeretin activates CFTR by direct interacting with the protein. Ex-vivo tests revealed that tangeretin could accelerate the speed of the submucosal gland fluid secretion. Short-circuit current measurement demonstrated that tangeretin activated rat colonic mucosa chloride current. Thus, CFTR Cl(-) channel is a molecular target of natural compound tangeretin. Tangeretin may have potential use for the treatment of CFTR-related diseases like cystic fibrosis, bronchiectasis and habitual constipation.
Collapse
Affiliation(s)
- Yu Jiang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116029, PR China
| | - Bo Yu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116029, PR China
| | - Xue Wang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116029, PR China
| | - Yujie Sui
- Central Research Laboratory, Jilin University Bethune Second Hospital, Changchun 130041, PR China
| | - Yaofang Zhang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116029, PR China
| | - Shuang Yang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116029, PR China
| | - Hong Yang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116029, PR China.
| | - Tonghui Ma
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116029, PR China
| |
Collapse
|